

UML for Agent-Oriented Software Development:
 The Tropos Proposal*

John Mylopoulos1, Manuel Kolp1 and Jaelson Castro2

1Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto
M5S 3G4, Canada

 {jm, mkolp}@cs.toronto.edu
2 Centro de Informática, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire S/N,

Recife PE, Brazil 50732-970
jbc@cin.ufpe.br

Abstract. We describe a software development methodology called Tropos for
agent-oriented software systems. The methodology adopts the i* modeling
framework [29], which offers the notions of actor, goal and (actor) dependency,
and uses these as a foundation to model early and late requirements,
architectural and detailed design. The paper outlines the methodology, and
shows how the concepts of Tropos can be accommodated within UML. In
addition, we also adopt recent proposals for extensions of UML to support
design specifications for agent software. Finally the paper compares Tropos to
other research on agent-oriented software development.

1 Introduction

The explosive growth of application areas such as electronic commerce, enterprise
resource planning and mobile computing has profoundly and irreversibly changed our
views on software and Software Engineering. Software must now be based on open
architectures that continuously change and evolve to accommodate new components
and meet new requirements. Software must also operate on different platforms,
without recompilation, and with minimal assumptions about its operating
environment and its users. As well, software must be robust and autonomous, capable
of serving a naïve user with a minimum of overhead and interference. These new
requirements, in turn, call for new concepts, tools and techniques for engineering and
managing software.

For these reasons -- and more -- agent-oriented software development is gaining
popularity over traditional software development techniques. After all, agent-based
architectures (known as multi-agent systems in the Agent research community) do
provide for an open, evolving architecture which can change at run-time to exploit the
services of new agents, or replace under-performing ones. In addition, software agents
can, in principle, cope with unforeseen circumstances because they include in their
architecture goals, along with a planning capability for meeting them. Finally, agent

* For further detail about the Tropos project, see http://www.cs.toronto.edu/km/tropos.

technologies have matured to the point where protocols for communication and
negotiation have been standardized [12].

What would it take to adopt a popular software modeling language such as UML
[2] and turn it into one that supports agent-oriented software development? This paper
sketches an agent-oriented software development methodology and proposes
extension to UML to accommodate its concepts and features. Our proposal is based
on on-going research within the Tropos project [3, 23].

Tropos is founded on the premise that in order to build software that operates
within a dynamic environment, one needs to analyze and model explicitly that
environment in terms of “actors”, their goals and dependencies on other actors.
Accordingly, Tropos supports four phases of software development:
• Early requirements, concerned with understanding the problem by studying an

organizational setting; the output of this phase is an organizational model which
includes relevant external actors, their respective goals and their inter-
dependencies.

• Late requirements, where the system-to-be is described within its operational
environment, along with relevant functions and qualities.

• Architectural design, where the system’s global architecture is defined in terms of
subsystems, interconnected through data, control and other dependencies.

• Detailed design, where behaviour of each architectural component is defined in
further detail.

To support modeling and analysis during each of these phases, we adopt the
concepts offered by i* [29], a modeling framework offering concepts such as actor
(actors can be agents, positions or roles), as well as social dependencies among
actors, including goal, softgoal, task and resource dependencies. These concepts are
used to support modeling during the four phases listed above. This means that both
the system’s environment and the system itself are seen as organizations of actors,
each having goals to be fulfilled and each relying on other actors to help them with
goal fulfillment.

In order to illustrate the Tropos software development methodology, we use a
small case study for a B2C (business to consumer) e-commerce application. Media
Shop is a store selling and shipping different kinds of media items such as books,
newspapers, magazines, audio CDs, videotapes, and the like. Media Shop customers
(on-site or remote) can use a periodically updated catalogue describing available
media items to specify their order. Media Shop is supplied with the latest releases
from Media Producer and in-catalogue items by Media Supplier. To increase market
share, Media Shop has decided to open up a B2C retail sales front on the internet.
With the new setup, a customer can order Media Shop items in person, by phone, or
through the internet. The system has been named Medi@ and is available on the
world-wide-web using communication facilities provided by Telecom Co. It also uses
financial services supplied by Bank Co., which specializes on on-line transactions.

The basic objective for the new system is to allow an on-line customer to examine
the Medi@ internet catalogue, and place orders. There are no registration restrictions,
or identification procedures for Medi@ users. Potential customers can search the on-
line store by either browsing the catalogue or querying the item database. The
catalogue groups media items of the same type into (sub)hierarchies and genres (e.g.,
audio CDs are classified into pop, rock, jazz, opera, world, classical music,

soundtrack, …) so that customers can browse only (sub)categories of interest. An on-
line search engine allows customers with particular items in mind to search title,
author/artist and description fields through keywords or full-text search. If the item is
not available in the catalogue, the customer has the option of asking Media Shop to
order it, provided the customer has editor/publisher references (e.g., ISBN, ISSN),
and identifies herself (in terms of name and credit card number). For detailed
descriptions of the medi@ case study, see [3] and [20].

Section 2 introduces the primitive concepts offered by i* and illustrates their use
for early requirements analysis. Section 3 sketches how the Tropos methodology
works for later phases of the development process. Section 4 presents fragments of
Tropos models in UML using existing and extended UML diagrammatic techniques.
Section 5 compares our proposal with others in the literature, offers an initial
assessment of UML’s suitability for modeling agent-oriented software, and outlines
directions for further research.

2 Early Requirements with i*

Early requirements analysis focuses on the intentions of stakeholders. These
intentions are modeled as goals which, through some form of a goal-oriented analysis,
eventually lead to the functional and non-functional requirements of the system-to-be
[8]. In i* (which stands for “distributed intentionality’’), stakeholders are represented
as (social) actors who depend on each other for goals to be achieved, tasks to be
performed, and resources to be furnished. The i* framework includes the strategic
dependency model for describing the network of relationships among actors, as well
as the strategic rationale model for describing and supporting the reasoning that each
actor goes through concerning its relationships with other actors. These models have
been formalized using intentional concepts from Artificial Intelligence, such as goal,
belief, ability, and commitment (e.g., [6]). The framework has been presented in
detail in [29] and has been related to different application areas, including
requirements engineering [27], business process reengineering [30], and software
processes [28].

A strategic dependency model is a graph involving actors who have strategic
dependencies among each other. A dependency describes an “agreement” (called
dependum) between two actors: the depender and the dependee. The depender is the
depending actor, and the dependee, the actor who is depended upon. The type of the
dependency describes the nature of the agreement. Goal dependencies are used to
represent delegation of responsibility for fulfilling a goal; softgoal dependencies are
similar to goal dependencies, but their fulfillment cannot be defined precisely (for
instance, the appreciation is subjective, or the fulfillment can occur only to a given
extent); task dependencies are used in situations where the dependee is required to
perform a given activity; and resource dependencies require the dependee to provide
a resource to the depender. As shown in Figure 1, actors are represented as circles;
dependums -- goals, softgoals, tasks and resources -- are respectively represented as
ovals, clouds, hexagons and rectangles; and dependencies have the form depender →
dependum → dependee.

Buy Media
Items

Media
Producer

Customers
Happy

Customer
Media Media

Supplier

Consult
Catalogue

Continuous
Supply

Continuing
Business

Media Items

Shop
Quality

Packages

Increase
Market Share

Fig. 1. i* Model for a Media Shop

These elements are sufficient for producing a first model of an organizational
environment. For instance, Figure 1 depicts an i* model of our Medi@ example. The
main actors are Customer, MediaShop, MediaSupplier and MediaProducer. Customer
depends on MediaShop to fulfill her goal: Buy Media Items. Conversely, MediaShop
depends on Customer to increase market share and make “customers happy”. Since
the dependum HappyCustomers cannot be defined precisely, it is represented as a
softgoal.

The Customer also depends on MediaShop to consult the catalogue (task
dependency). Furthermore, MediaShop depends on MediaSupplier to supply media
items in a continuous way and get a Media Item (resource dependency) . The items
are expected to be of good quality because, otherwise, the Continuing Business
dependency would not be fulfilled. Finally, MediaProducer is expected to provide
MediaSupplier with Quality Packages.

We have defined a formal language, called Formal Tropos [13], that complements
i* in several directions. First of all, it provides a textual notation for i* models and
allows us to describe dynamic constraints among the different elements of the
specification in a first order, linear-time temporal logic. Second, it has a precisely
defined semantics that is amenable to formal analysis. Finally, Formal Tropos comes
with a methodology for the automated analysis and animation of specifications [13],
based on model checking techniques [5].

Entity MediaItem
Attribute constant itemType : ItemType, price : Amount,

 InStock : Boolean

Dependency BuyMediaItems
Type goal
Mode achieve
Depender Customer
Dependee MediaShop
Attribute constant item : MediaItem
Fulfillment

 condition for depender
∀ media : MediaItem(self.item.type =
media.type → item.price <= media.price)

[the customer expects to get the best price for the type of item]

Dependency ContinuousSupply
Type goal
Mode maintain
Depender MediaShop
Dependee MediaSupplier
Attribute constant item : MediaItem
Fulfillment

 condition for depender
∃ buy : BuyItem(JustCreated(buy) → buy.item.inStock)

[the media retailer expects to get items in stock as soon as someone is interested in
buying them]

Fig. 2. Formal Tropos Specifications

As an example, Figure 2 presents the specification in Formal Tropos for the

BuyMediaItems and ContinuousSupply goal dependencies. Notice that the Formal
Tropos specification provides additional information that is not present in the i*
diagram. For instance, the fulfillment condition of BuyMediaItems states that the
customer expects to get the best price for the type of product that she is buying. The
condition for ContinuousSupply states that the shop expects to have the items in stock
as soon as someone is interested in buying them.

Customers

Process
Internet

Market Share
Increase

Accounting

Cpy
Telecom Communication

Services Medi@

Supplier
Media

Items
Media

Legend
Means-ends link

Happy

Orders

Actor

Actor Boundary

Items
Buy Media

Customer

Bank Cpy

DependeeDepender X
Dependency

Decomposition link

Goal

Ressource

Task

Softgoal

Manage
Orders

Customer

Billing

Staff

Be Friendly

Handle

Handle

Service
Improve

Phone
OrderBy

Enhance
Catalogue

Select
Items

Consult
Catalogue

OrderBy
Internet

Staff
Training

Desires
Customer
Satisfy

Person
OrderIn

Determine
Amount

Sell Stock

Shop

Inventory
Manage

Media
Run Shop

Run
Shop

Continuing
Business

Continuing
Supply

Fig. 3. Means-Ends Analysis for the Softgoal Increase Market Share

Once the relevant stakeholders and their goals have been identified, a strategic
rationale model determines through a means-ends analysis how these goals (including

softgoals) can actually be fulfilled through the contributions of other actors. A
strategic rationale model is a graph with four types of nodes -- goal, task, resource,
and softgoal -- and two types of links -- means-ends links and task decomposition
links. A strategic rationale graph captures the relationship between the goals of each
actor and the dependencies through which the actor expects these dependencies to be
fulfilled.

Figure 3 focuses on one of the (soft)goal dependency identified for Media Shop,
namely Increase Market Share. To achieve that softgoal, the analysis postulates a
goal Run Shop that can be fulfilled by means of a task Run Shop. Tasks are partially
ordered sequences of steps intended to accomplish some (soft)goal. Tasks can be
decomposed into goals and/or subtasks, whose collective fulfillment completes the
task. In the figure, Run Shop is decomposed into goals Handle Billing and Handle
Customer Orders, tasks Manage Staff and Manage Inventor, and softgoal Improve
Service which together accomplish the top-level task. Sub-goals and subtasks can be
specified more precisely through refinement. For instance, the goal Handle Customer
Orders is fulfilled either through tasks OrderByPhone, OrderInPerson or
OrderByInternet while the task Manage Staff would be collectively accomplished by
tasks Sell Stock and Enhance Catalogue.

3 Other Phases

3.1 Late Requirements Analysis

Late requirements analysis results in a requirements specification which describes
all functional and non-functional requirements for the system-to-be. In Tropos, the
information system is represented as one or more actors which participate in a
strategic dependency model, along with other actors from the system’s operational
environment. In other words, the system comes into the picture as one or more actors
who contribute to the fulfillment of stakeholder goals.

For our example, the Medi@ system is introduced as an actor in the strategic
dependency model depicted in Figure 4. With respect to the actors previously
identified, Customer depends on Media Shop to buy media items while Media Shop
depends on Customer to increase market share and remain happy (with Media Shop
service). Media Shop depends on Medi@ for processing internet orders and on Bank
Cpy to process business transactions. Customer, in turn, depends on Medi@ to place
orders through the internet, to search the database for keywords, or simply to browse
the on-line catalogue. With respect to relevant qualities, Customer requires that
transaction services be secure and usable, while Media Shop expects Medi@ to be
easily adaptable. Further dependencies are shown on Figure 4 and explained in [3].

Although a strategic dependency model provides hints about why processes are
structured in a certain way, it does not sufficiently support the process of suggesting,
exploring, and evaluating alternative solutions.

Increase
Market Share

Browse
Catalogue

Buy Media

Telecom
Cpy

Media
Supplier

Items

Services
Internet

Services
Communication

Customer

Orders
Internet
Process

Place Order

Keyword
Search

Bank Cpy

Find User
Medi@

Business
Continuing

Media Shop

Media Items

New Needs

Security

Transactions
Money

Process
On-line

Accounting

Happy
Customers

Adaptability

Availability

Fig. 4. Strategic Dependency Model for a Media Shop

As late requirements analysis proceeds, Medi@ is given additional responsibilities,
and ends up as the depender of several dependencies. Moreover, the system is
decomposed into several sub-actors which take on some of these responsibilities. This
decomposition and responsibility assignment is realized using the same kind of
means-ends analysis along with the strategic rationale analysis illustrated in Figure 3.
Hence, the analysis in Figure 5 focuses on the system itself, instead of an external
stakeholder.

The figure postulates a root task Internet Shop Managed providing sufficient
support (++) [4] to the softgoal Increase Market Share. That task is firstly refined into
goals Internet Order Handled and Item Searching Handled, softgoals Attract New
Customer, Secure and Usable and tasks Produce Statistics and Adaptation. To
manage internet orders, Internet Order Handled is achieved through the task
Shopping Cart which is decomposed into subtasks Select Item, Add Item, Check Out,
and Get Identification Detail. These are the main process activities required to design
an operational on-line shopping cart [7]. The latter (goal) is achieved either through
sub-goal Classic Communication Handled dealing with phone and fax orders or
Internet Handled managing secure or standard form orderings. To allow for the
ordering of new items not listed in the catalogue, Select Item is also further refined
into two alternative subtasks, one dedicated to select catalogued items, the other to
preorder unavailable products.

To provide sufficient support (++) to the Adaptable softgoal, Adaptability is
refined into four subtasks dealing with catalogue updates, system evolution, interface
updates and system monitoring.

The goal Item Searching Handled might alternatively be fulfilled through tasks
Database Querying or Catalogue Consulting with respect to customers’ navigating

desiderata, i.e., searching with particular items in mind by using search functions or
simply browsing the catalogued products.

In addition, as already pointed, Figure 5 introduces softgoal contributions to model
sufficient/partial positive (respectively ++ and +) or negative (respectively - - and -)
support to softgoals Secure, Available, Adaptable, Attract New Customers and
Increase Market Share. The result of this means-ends analysis is a set of (system and
human) actors who are dependees for some of the dependencies that have been
postulated.

Internet

Available

Process

++

Place

Availability

-

++

Form

+

Media

Order

On-line
Money

Transactions

Process

Get

Buy

Secure

-

-
Search

Keyword

Catalogue

Consulting

+

Browse

Media

+

-

+

Cpy
Telecom

Detail

Order

++

Market Share

Cpy
Bank

Media
Shop

Orders

Items

Supplier

Catalogue

Secure

Catalogue

Identification

Customer
Attract New

Customer
Produce
Statistics

Update

Services

Shop

Internet
Handled

Adaptation

Increase

Item

Internet

Managed

Security
Adaptability

Medi@

Find User
New Needs

Internet

Orders
Handled

Internet

Handled
Searching

Order

MonitoringSystem

Available Non Available
Pre-Order

Item

System
Database

Communication

Shopping
Cart

Querying

Classic

Evolution

Item

Order

Form

Fax

Pick

Phone

Check Out

Order

Adaptable

Standard

Handled

Add Item
Select Item

Update GUI

Fig. 5. Strategic Rationale Model for Medi@

Resource, task and softgoal dependencies correspond naturally to functional and
non-functional requirements. Leaving (some) goal dependencies between system
actors and other actors is a novelty. Traditionally, functional goals are
“operationalized” during late requirements [8], while quality softgoals are either
operationalized or “metricized” [9]. For example, a security softgoal might be

operationalized by defining interfaces which minimize input/output between the
system and its environment, or by limiting access to sensitive information.
Alternatively, the security requirement may be metricized into something like “No
more than X unauthorized operations in the system-to-be per year”.

Leaving goal dependencies with system actors as dependees makes sense whenever
there is a foreseeable need for flexibility in the performance of a task on the part of
the system. For example, consider a communication goal “communicate X to Y”.
According to conventional development techniques, such a goal needs to be
operationalized before the end of late requirements analysis, perhaps into some sort of
a user interface through which user Y will receive message X from the system. The
problem with this approach is that the steps through which this goal is to be fulfilled
(along with a host of background assumptions) are frozen into the requirements of the
system-to-be. This early translation of goals into concrete plans for their fulfillment
makes systems fragile and less reusable.

In our example, we have left three (soft)goals (Availability, Security, Adaptability)
in the late requirements model. For instance, we have left Availability because we
propose to allow system agents to automatically decide at run-time which catalogue
browser, shopping cart and order processor architecture fit best customer needs or
navigator/platform specifications. Moreover, we would like to include different search
engines, reflecting different search techniques, and let the system dynamically choose
the most appropriate.

3.2 Architectural Design

A system architecture constitutes a relatively small, intellectually manageable
model of system structure, which describes how system components work together.
By now, software architects have developed catalogues of architectural style for e-
business applications (e.g., [7]: Thin Web Client, Thick Web Client, Web Delivery, …)
Unfortunately, these architectural styles focus on web concepts, protocols and
underlying technologies but not on business processes nor non functional
requirements of the application. As a result, the organizational architecture styles are
not described nor the conceptual high-level perspective of the e-business application.
In Tropos, we have defined organizational architectural styles [19, 20, 14] for agent,
cooperative, dynamic and distributed applications to guide the design of the system
architecture. These architectural styles (pyramid, joint venture, structure in 5,
takeover, arm’s length, vertical integration, co-optation, bidding, …) are based on
concepts and design alternatives coming from research on organization management :
organization theory, agency theory, strategic alliances, …. For instance, the joint
venture style involves agreement between two or more principal partners to obtain the
benefits of larger scale, partial investment and lower maintenance costs. Through the
delegation of authority to a specific Joint Management actor that coordinates tasks
and manages sharing of knowledge and resources, they pursue joint objectives. Each
principal partner can manage and control itself on a local dimension and interact
directly with other principal partners to exchange, provide and receive services, data
and knowledge. However, the strategic operation and coordination of such a system
and its partner actors on a global dimension are only ensured by the Joint
Management actor.

The first task during architectural design is to select among alternative architectural
styles using as criteria the desired qualities identified earlier. The analysis involves
refining these qualities, represented as softgoals, to sub-goals that are more specific
and more precise and then evaluating alternative architectural styles against them, as
shown in Figure 6. The styles are represented as operationalized softgoals (saying,
roughly, “make the architecture of the new system pyramid-/joint venture-/co-
optation-based, … ”). Design rationale is represented by claim softgoals drawn as
dashed clouds. These can represent contextual information (such as priorities) to be
considered and properly reflected into the decision making process. Exclamation
marks (! and !!) are used to mark priority softgoals. A check-mark “✔ ” indicates a
fulfilled softgoal, while a cross “✕ ” labels an unfulfillable one.

Software quality attributes Security, Availability and Adaptability have been left in
the late requirements model (See Section 3.1). They will guide the selection process
of th appropriate architectural style.

Pyramid

Claim

can aquire
trusted information"]

["External Agents

Availability

Consistency
ExternalValidation

Integrity

Adaptability

++

-
+

+++

++

-

-

+ +

+
Identification

++

Claim

Completness
Usability Authentication Confidentiality Run-time

Maintainability
Extensibility

Modifiability
Run-time

Updatability

Elasticity Authorization

["Possible Conflicts"] Dynamicity

!

Security

!

Evolvability

++

Co-optation

Adjustability
ResponseTime

Claim
["Possible Conflicts"]

+

+

+

Joint Venture

--

+
-

++

++

++

++

++

++

+

+
+

-

Accuracy

+

++

......
Other Styles

- - - - ++

+
+

Fig. 6. Selecting the Architecture

In Figure 6, Adaptability has been AND-decomposed into Dynamicity and
Updatability. For our e-commerce example, dynamicity should deal with the way the
system can be designed using generic mechanisms to allow web pages and user
interfaces to be dynamically and easily changed. Indeed, information content and
layout need to be frequently refreshed to give correct information to customers or
simply be fashionable for marketing reasons. Frameworks like Active Server Pages
(ASP), Server Side Includes (SSI) to create dynamic pages make this attribute easier
to achieve. Updatability should be strategically important for the viability of the
application, the stock management and the business itself since Media Shop

employees have to very regularly bring up to date the catalogue by for inventory
consistency. Comparable analyses are carried out in turn for newly identified quality
sub-attributes and for the other top-level quality softgoals Security and Availability.

Eventually, the analysis shown in Figure 6 allows us to choose the joint venture
architectural style for our e-commerce example (the operationalized attribute is
marked with a “✔ ”). More details about the selection and non-functional
requirements decomposition process can be found in [19, 20]. In addition, more
specific attributes have been identified during the decomposition process, such as
Integrity (Accuracy, Completeness), Usability, Response Time, Maintainability,
Updatability, Confidentiality, Authorization (Identification, Authentication,
Validation) and need to be considered in the system architecture.

Figure 7 suggests a possible assignment of system responsibilities, based on the
joint venture architectural style for our e-business application. The system is
decomposed into three principal partners (Store Front, Billing Processor and Back
Store) controlling themselves on a local dimension and exchanging, providing and
receiving services, data and resources with each other.

Browser
Item

Item
Detail

Profiler
Customer

Customer
DataShopping

Cart

Information
Cart

Delivery
Processor

Processor
Statistics

Integrity

Usability

Order
Processor

Confiden-
tiality

Detail
Delivery

Information
Billing

Profile
Customer

Selected
Items

Ratings

Updatability

Accounting
Processor

Check
Out

Authori-
zation

Security
Checker

Response
time

Payment
Request

Front
Store

Catalogue
On-line

Consult
Catalogue

Item
Select

Invoice
Processor

ability
Adapt-

Manager

Avail-
ability

Manager

Processor
Billing

Store
BackJoint

Manager

Invoice
Process

Maintain-
ability

Monitor

Observe

Fig. 7. The E-commerce System in Joint Venture Architecture

Each of them delegates authority to and is controlled and coordinated by the joint
management actor (Joint Manager) managing the system on a global dimension.
Store Front interacts primarily with Customer and provides her with a usable front-
end web application. Back Store keeps track of all web information about customers,
products, sales, bills and other data of strategic importance to Media Shop. Billing

Processor is in charge of the secure management of orders and bills, and other
financial data; also of interactions to Bank Cpy. Joint Manager manages all of them
controlling security gaps, availability bottlenecks and adaptability issues.

To accommodate the responsibilities of Store Front, we introduce Item Browser to
manage catalogue navigation, Shopping Cart to select and custom items, Customer
Profiler to track customer data and produce client profiles, and On-line Catalogue to
deal with digital library obligations. To cope with the identified software quality
attributes (Security, Availability and Adaptability), Joint Manager is further refined
into four new system sub-actors Availability Manager, Security Checker and
Adaptability Manager each of them assuming one of the main softgoals (and their
more specific subgoals) and observed by a Monitor. Further refinements are shown
on Figure 7 and explained in [19, 20].

3.3 Detailed Design

The detailed design phase is intended to introduce additional detail for each
architectural component of a system. In our case, this includes actor communication
and actor behavior. To support this phase, we propose to adopt agent specifications
proposed by FIPA (Foundation for Intelligent Agents) [12] notably agent role and
patterns (see [14, 20]) that can be found in agent communication languages like
FIPA-ACL [12] or KQML [12].

For instance, the matchmaker agent pattern locates a provider corresponding to a
consumer request for service, and then hands the consumer a handle to the chosen
provider. Contrary to the broker pattern who directly handles all interactions between
the consumer and the provider, the negotiation for service and actual service provision
are separated into two distinct phases.

Processor
Statistics

Policies

Profile
Customer

Access

Catalogue
On-line

Shopping
Cart

Item
Browser

Policy
Checker Monitor

Locate
Source

Route Info
Request

Mediator

Source
Matchm.

Access

Searcher
Info

Information
Hits

Translate
Response

Provide
Information

Wrapper

Fwd unsafe

Violation
Fwd Privacy

Notify
Source
Access

Query
Information

Source

Info
Ask for

Advertising

Fig. 8. Detailing Item Browser with Agent Patterns

Figure 8 shows a possible use of the patterns in the e-business system depicted in
Figure 7. In particular, it describes how to solve the goal of managing catalogue
navigation that the Store Front has delegated to the Item Browser. The goal is
decomposed into different subgoals and solved with a combination of patterns. The
broker pattern is applied to the Info Searcher, which satisfies requests of searching

information by accessing On-line Catalogue. The Source Matchmaker applies the
matchmaker pattern locating the appropriate source for the Info Searcher, and the
monitor pattern is used to check any possible change in the On-line Catalogue.
Finally, the mediator pattern is applied to mediate the interaction among the Info
Searcher, the Source Matchmaker, and the Wrapper, while the wrapper pattern makes
the interaction between the Item Browser and the On-line Catalogue possible. Of
course, other patterns can be applied [20]. For instance, we could use the contract-net
pattern to select a wrapper to which delegate the interaction with the On-line
Catalogue, or the embassy to route the request of a wrapper to the On-line Catalogue.

4 Tropos Models in UML

We have defined a set of stereotypes, tagged values, and constraints to
accommodate Tropos concepts within UML. This section briefly describes some of
them according to GRL (Goal-oriented Requirement Language) [15]. For an
exhaustive and formal definition of the Tropos ontology see [15].

Stereotypes

i* actor

Metamodel class

Description

Icon

Constraints

Tagged values

Task

Metamodel class

Description

Actor

An actor is an active entity that carries out actions to achieve
goals by exercising its know-how. An actor may optionally have
a boundary, with intentional elements inside.

None

Actor_id, external_name, description, goal_model_id

Use Case

A task specifies a particular way of doing something. Tasks can
also be seen as the solutions in the target system, which will
satisfice the softgoals (operationalizations). These solutions
provide operations, processes, data representations, structuring,
constraints and agents in the target system to meet the needs
stated in the goals and softgoals.

Icon

Constraints

Tagged values

Goal

Metamodel class

Description

Icon

Constraints

Tagged values

i* dependency

Metamodel class

Description

Constraints

Tagged values

Means-ends

Metamodel class

Description

None

Task_id, external_name, owner_id, description

Class

A goal is a condition or state of affairs in the world that the
stakeholders would like to achieve. How the goal is to be
achieved is not specified, allowing alternatives to be considered.
A goal can be either a business goal or a system goal.

None

Goal_id, external_name, owner_id, description

Association

The Dependency statement describes an intentional relationship
between two actors, i.e., one actor (<Depender>) depends on
another actor (<Dependee>) on something (<Dependum>).

Dependencies must have at least one depender and one dependee.

Dependency_id, dependency_name, dependum_type,
depender_id, dependee_id

Association

The Means-ends statement describes how goals are in fact
achieved. Each task provided is an alternative means for
achieving the goal. Normally, each task would have different
types of impacts on softgoals, which would serve as criteria for
evaluating and choosing among each task alternative.

Constraints

Tagged values

Task Decomp.

Metamodel class

Description

Constraints

Tagged values

Only goals are applicable to means-ends links.

Means-ends_id, means_element_id, ends_element_id

Aggregation

The decomposition relationship provides the ability to define
what other elements need to be achieved or available in order for
a task to perform.

Only tasks are decomposable. Sub-components of tasks are goals,
tasks, resources, and softgoals.

Decomposition_id, sub-element_id, decomposed_element_id

For instance, Figure 9 depicts the i* model from Figure 1 in UML using the

stereotypes we have defined, notably <<i* actor>> and <<i* dependency>>. Such
mapping in UML could also be done in a similar way for strategic rationale (e.g.,
Figure 3) or goal analysis (e.g., Figure 6) models.

Media Producer

<<tas k dependency>>
C ons ult C ata logue

<<goal dependency>>
Buy Media Item s

<<re s ource de pe nd en cy>>
Media Item s

<<goal dependency>>
C ontinuous Supply

<<s oftgoal dependency>>

Long Term Bus ines s

<<s oftgoal dependency>>

Quality Packages
C us tom er

<<i* actor>> <<i* actor>> <<i* actor>> <<i* actor>>

<<s oftgoal dependency>>

Media SupplierMedia Shop

Satis fied Cus tom ers

Fig. 9. Representing the i* Model from Figure 1 in UML with stereotypes

In addition to the introduction of Tropos concepts in UML through stereotypes, we
also adopt UML extensions proposed by FIPA and the OMG Agent Work group [1,
21, 22]. The rest of the section concentrates on the Shopping cart actor and the check
out dependency. Figure 10 depicts a partial UML class diagram focusing on that
actor that will be implemented as an aggregation of several CartForms and ItemLines.
Associations ItemDetail to On-line Catalogue, aggregation of MediaItems, and
CustomerDetail to CustomerProfiler, aggregation of CustomerProfileCards are
directly derived from resource dependencies with the same name in Figure 7.

i* tasks will be implemented as agent plans represented as methods following the
label “Plans”.

id : long
itemNbr : string
itemTitle : string

MediaItem

itemBarCode : OLE
itemPicture : OLE
category :string
genre : string

publisher : string
editor : string
description : string

date : date

weight : single
unitPrice : currency

CD CDromDVD Book Video

0..*

itemCount : integer

ShoppingCart

...

CartForm
<<Text>> itemCount : integer

<<Button>>Recalculate

getCart()
buildItemTable()
writeTableRow()
updateItems()
loadCartForm()
updateCartForm()
killCartForm()

0..*

ItemDetail

CustomerData

0..*

0..*

0..*

weight()
cost()

ItemLine

allowsSubs :boolean
qty : integer
id : long

0..* 1

<<Text>> qty[0..*] : integer
<<Text>> currentTotal : currency
<<Checkbox>> selectItem[0..*]

<<Submit>> AddItem
<<Submit>> Checkout

<<Submit>> Confirm
<<Button>> Cancel

tax : currency
taxRate : float
total : currency
totWeight : single
shippingCost : currency
qty[0..*] : integer
subTotals[0..*] : currency
itemCount()

1

getIdentDetails
not_understood
verifyCC
logout
cancel
checkout
addItem
selectItem
initialize

failure
confirm
removeItem
succeded
propose
refuse

Plans :

notification()
calculateTotals()
calculateQty()

initializeReport()
getLineItem()
computeWeight()

inform()

Catalogue
On-line

CustomerProfiler

customerid : long

middleName : string

customerName : string
firstName :string

tel : string
address : string

e-mail : string
dob : date
profession : string
salary : integer
maritalStatus : string
familyComp[0..1] : integer
internetPref[0..10] : boolean
entertPref[0..10]:string
hobbies[0..5] : string
comments : string
creditcard# : integer
prevPurchase[[0..*] [0..*]]

: string
prevPurchPrice[[0..*] [0..*]]

: integer

CustomerProfileCard

<<i* actor>>
<<i* actor>>

<<i* actor>>

Fig. 10. Partial Class Diagram for Store Front Focusing on Shopping Cart

To specify the checkout task, for instance, we use AUML - the Agent Unified
Modeling Language [1], which supports templates and packages to represent checkout
as an object, but also in terms of sequence and collaborations diagrams.

Figure 11(a) introduces the checkout interaction context which is triggered by the
checkout communication act (CA) and ends with a returned information status. This
diagram only provides basic specification for an intra-agent order processing protocol.
In particular, the diagram stipulates neither the procedure used by the Customer to
produce the checkout CA, nor the procedure employed by the Shopping Cart to
respond to the CA.

As shown in Figure 11(b), such details can be provided by using levelling [22], i.e.,
by introducing additional interaction and other diagrams. Each additional level can
express inter-actor or intra-actor dialogues. At the lowest level, specification of an
actor requires spelling out the detailed processing that takes place within the actor.

Figure 11(b) focuses on the protocol between Customer and Shopping Cart which
consists of a customization of the Contract Net FIPA agent pattern [21]. Such a
protocol describes a communication pattern among actors, as well as constraints on
the contents of the messages they exchange.

We use plan diagrams [18], based on state charts and activity diagrams, to specify
the internal processing (tasks) of atomic actors. The initial transition of the plan
diagram is labeled with an activation event (Press checkout button) and activation
condition ([checkout button activated]) which determine when and in what context
the plan should be activated. Transitions from a state automatically occur when
exiting the state and no event is associated (e.g., when exiting Fields Checking) or
when the associated event occurs (e.g., Press cancel button), provided in all cases that
the associated condition is true (e.g., [Mandatory fields filled]). When the transition
occurs, any associated action is performed (e.g., verifyCC()).

Processor

inform

Accounting
Processor Processor

Invoice

inform

checkout

payment request

processOrder

process invoice

billing information

delivery detail

Processor
Delivery

Processor
Statistics

12/19/00
9:31 53

X

X

X

Timeout

Plan Diagram (cf. next figure)

checkout-request for proposal

refuse

not-understood Notification

propose

Decision

cancel-proposal

accept-proposal

inform
succeeded

failure

FIPA Contract Net Protocol

accept-proposal, succeeded, failure
propose, cancel-proposal
checkout-rfp, refuse, not-understood,

12/19/00 at 9:31 53

Customer, Shopping Cart

b)

a)

inform

Order
<<i* actor>> <<i* actor>> <<i* actor>> <<i* actor>> <<i* actor>> <<i* actor>> <<i* actor>>

Customer Shopping Cart

Fig. 11. Sequence Diagram to Order Media Items (a), and Agent Interaction Protocol Focusing
on a Checkout Dialogue (b)

An important feature of plan diagrams is their notion of failure. Failure can occur
when an action upon a transition fails, when an explicit transition to a fail state
(denoted by a small no entry sign) occurs, or when the activity of an active state
terminates in failure and no outgoing transition is enabled.

Figure 12 depicts the plan diagram for checkout, triggered by pushing the checkout
button. Mandatory fields are first checked. If any mandatory fields are not filled, an
iteration allows the customer to update them. For security reasons, the loop exits after
5 tries ([i<5]) and causes the plan to fail. Credit Card validity is then checked. Again
for security reasons, when not valid, the CC# can only be corrected 3 times.
Otherwise, the plan terminates in failure. The customer is then asked to confirm the
CC# to allow item registration. If the CC# is not confirmed, the plan fails. Otherwise,
the plan continues: each item is iteratively registered, final amounts are calculated,
stock records and customer profiles are updated and a report is displayed. When
finally the whole plan succeeds, the ShoppingCart automatically logs out and asks the
Order Processor to initialize the order. When, for any reason, the plan fails, the
ShoppingCart automatically logs out. At anytime, if the cancel button is pressed, or
the timeout is more than 90 seconds (e.g., due to a network bottleneck), the plan fails
and the Shopping Cart is reinitialized.

Checking

[i=3]

Fields
Checking

Credit Card

[i=5]

Fields Updated

[[Not all mandatory
fields filled] ^ [i<5]]

Updating Correcting
CC#

Updated

Fields

Press checkout button [checkout button activated] / shoppingCart.checkout()

Checkout

fail /shoppingCart.logout()

[Mandatory fields filled]
/verifyCC()

/ cancel()
[Not confirmed]

Updating
Stock Records

[foreach
selected item]

Amounts
calculated

Records updated

[Already registered]

[new customer]

[foreach
registered item]

Displaying
Reportsucceeded [report asked]

/ initializeReport()/ shoppingCart.logout()

succeeded/ shoppingcart.logout()

Calculating
Final Amounts

Item
Registering

Customer Profile
Updating

Items
Registered

pass / orderProcessor.
processOrder(this)

profile
updated

^ [i<3]]
[[CC# not valid]

[CC# valid]
/ confirm()? /confirm()

Press confirm button

any [[Cancel button pressed] OR
[timeout>90 sec]] / shoppingCart.initialize()

Fig. 12. A Plan Diagram for Checkout

5 Conclusion and Discussion

We have proposed a development methodology founded on intentional concepts,
and inspired by early requirements modeling. We have also sketched how these
concepts can be accommodated within UML, and how they can incorporate recent
proposals for UML extensions. We believe that the methodology is particularly
appropriate for generic, componentized software systems, such as e-business
applications that can be downloaded and used in a variety of operating environments
and computing platforms around the world. Preliminary results (e.g., [20, 23]) suggest
that the methodology complements well proposals for agent-oriented programming
environments.

As a matter of fact, unlike UML and existing UML extensions for agent software
development such as AUML [22], the Tropos approach is requirement- and goal-
oriented, i.e., based and driven by intentional and social primitives. Besides, in
Tropos, we do not necessarily operationalize or metricize these intentional an social
structures early on during the development process, avoiding to freeze solutions to a
given requirement in the produced software designs. This kind of approach is
especially relevant for developing agent applications since, in addition to be systems
requiring flexibility and dynamicity, they are built on mental states like beliefs,
intentions, desires or commitments and considered “societies” of software entities.

On the other hand, there already exist some proposals for agent-oriented software
development like [10, 16, 17, 18, 25]. Such proposals are mostly extensions to known
object-oriented and/or knowledge engineering methodologies. Moreover, all these
proposals focus on design -- as opposed to requirements analysis -- and are therefore
considerably narrower in scope than Tropos. Indeed, Tropos proposes to adopt the

same concepts, inspired by requirements modeling research, for describing
requirements and system design models in order to narrow the semantic gap between
them. The architecture and software design models produced within our framework
are intentional in the sense that system components have associated goals that are
supposed to be fulfilled. They are also social in the sense that each component has
obligations/expectations towards/from other components. Obviously, such models are
best suited to cooperative, dynamic and distributed applications like multi-agent
systems.

The research reported here is still in progress. Much remains to be done to further
refine the proposed methodology and validate its usefulness with real case studies.
We are currently working on the development of additional formal analysis
techniques for Tropos including temporal analysis (using model-checking), goal
analysis and social structures analysis, also the development of tools which support
different phases of the methodology and the definition of the Formal Tropos
language.

References

[1] Bauer, B., Extending UML for the Specification of Agent Interaction Protocols, OMG
document ad/99-12-03, FIPA submission to the OMG’s Analysis and Design Task Force
(ADTF) in response to the Request of Information (RFI) entitled “UML2.0 RFI”, December
1999.

[2] Booch, G., Rumbaugh, J. and Jacobson, I., The Unified Modeling Language User Guide,
The Addison-Wesley Object Technology Series, Addison-Wesley, 1999.

 [3] Castro, J., Kolp, M. and Mylopoulos, J., “A Requirements-Driven Development
Methodology”, Proceedings of the 13th International Conference on Advanced Information
Systems Engineering (CAiSE’01), Interlaken, Switzerland, June 2001.

[4] Chung, L. K., Nixon, B. A., Yu, E. and Mylopoulos, J., Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

[5] Clarke, E., Grumberg, O. and Peled, D., Model Checking, MIT Press, 1999.
[6] Cohen, P. and Levesque, H., “Intention is Choice with Commitment”, Artificial Intelligence,

32(3), 1990, pp. 213-261.
[7] Conallen, J., Building Web Applications with UML, The Addison-Wesley Object

Technology Series, Addison-Wesley, 2000.
[8] Dardenne, A., van Lamsweerde, A. and Fickas, S., “Goal–directed Requirements

Acquisition”, Science of Computer Programming, 20, 1993, pp. 3-50.
[9] Davis, A., Software Requirements: Objects, Functions and States, Prentice Hall, 1993.
[10] DeLoach, S. A. and Wood, M., “Developing Multiagent Systems with agentTool”,

Proceedings of the 7th The Seventh International Workshop on Agent Theories,
Architectures, and Languages (ATAL’00), Boston, USA, July, 2000.

[11] DeMarco, T., Structured Analysis and System Specification, Yourdon Press, 1978.
[12] The Foundation for Intelligent Physical Agents, http://www.fipa.org, 2001.
[13] Fuxman, A., Pistore, M., Mylopoulos, J. and Traverso, P., “Model Checking Early

Requirements Specification in Tropos”, Proceedings of the Fifth IEEE International
Symposium on Requirements Engineering (RE’01), Toronto, Canada, August 2001.

[14] Fuxman, A., Giorgini, P., Kolp, M. and Mylopoulos, J., “Information Systems as Social
Structures”, Proceedings of the Second International Conference on Formal Ontologies for
Information Systems (FOIS’01), Ogunquit, USA, October 2001.

[15] Goal Oriented Requirement Language, http://www.cs.toronto.edu/km/GRL

[16] Iglesias, C., Garrijo, M. and Gonzalez, J., “A Survey of Agent-Oriented Methodologies”,
Proceedings of the 5th International Workshop on Intelligent Agents: Agent Theories,
Architectures, and Languages (ATAL’98), pp. 317-330, Paris, France, July 1998.

[17] Jennings, N. R., “On agent-based software engineering”, Artificial lntelligence, 117, 2000,
pp. 277-296.

[18] Kinny, D. and Georgeff, M., “Modelling and Design of Multi-Agent System”,
Proceedings of the Third International Workshop on Agent Theories, Architectures, and
Languages (ATAL’96), pp. 1-20, Budapest, Hungary, August 1996.

[19] Kolp, M., Castro, J. and Mylopoulos, J., “A Social Organization Perspective on Software
Architectures”, Proceedings of the First International Workshop From Software
Requirements to Architectures (STRAW'01), pp. 5-12, Toronto, Canada, May 2001.

[20] Kolp, M., Giorgini, P. and Mylopoulos, J., “A Goal-Based Organizational Perspective on
Multi-Agents Architectures”, Proceedings of the 9th International Workshop on Intelligent
Agents: Agent Theories, Architectures, and Languages (ATAL’01), Seattle, USA, August
2001.

[21] Odell, J. and Bock, C., Suggested UML Extensions for Agents, OMG document ad/99-12-
01, Submitted to the OMG’s Analysis and Design Task Force (ADTF) in response to the
Request of Information (RFI) entitled “UML 2.0 RFI”, December 1999.

[22] Odell, J., Van Dyke Parunak, H. and Bauer, B., “Extending UML for Agents”,
Proceedings of the Agent-Oriented Information System Workshop at the 17th National
Conference on Artificial Intelligence, pp. 3-17, Austin, USA, July 2000.

[23] Perini, A., Bresciani, P., Giunchiglia, F., Giorgini, P. and Mylopoulos, J., “A Knowledge
Level Software Engineering Methodology for Agent Oriented Programming”. Proceedings
of the Fifth International Conference on Autonomous Agents (Agents’01), Montreal,
Canada, June 2001.

[24] Wirfs-Brock, R., Wilkerson, B. and Wiener, L., Designing Object-Oriented Software,
Englewood Cliffs, Prentice-Hall, 1990.

[25] Wooldridge, M., Jennings, N. R. and Kinny D., “The Gaia Methodology for Agent-
Oriented Analysis and Design”, Journal of Autonomous Agents and Multi-Agent Systems,
3(3), 2000.

[26] Yourdon, E. and Constantine, L., Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design, Prentice-Hall, 1979.

[27] Yu, E., “Modeling Organizations for Information Systems Requirements Engineering”,
Proceedings of the First IEEE International Symposium on Requirements Engineering
(RE’93), pp. 34-41, San Jose, USA, January 1993.

[28] Yu, E. and Mylopoulos, J., “Understanding 'Why' in Software Process Modeling, Analysis
and Design”, Proceedings of the Sixteenth International Conference on Software
Engineering (ICSE’94, , pp. 159-168, Sorrento, Italy, May 1994.

[29] Yu, E., Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada, 1995.

[30] Yu, E. and Mylopoulos, J., “Using Goals, Rules, and Methods to Support Reasoning in
Business Process Reengineering”, International Journal of Intelligent Systems in
Accounting, Finance and Management, 5(1), January 1996, pp. 1-13.

