
The Tropos visual modeling language. A MOF 1.4 compliant meta-model.

Davide Bertolini1, Anna Perini1, Angelo Susi1 and Haralambos Mouratidis2
1ITC-IRST, Via Sommarive 18, I-38050, Trento, Italy

{bertolini,perini,susi}@irst.itc.it
2School of Computing and Technology

University of East London, Barking Campus, Dagenham

Contribution for the AOSE TFG meeting, February 28th, Ljubljana, Slovenia, collocated with the
Second AgentLink III Technical Forum (AL3-TF2) http://www.agentlink.org/activities/al3-tf/tf2/

Premise.
One of the two objectives of the AOSE TGF meeting to be held in Ljubljana, on February 28th is that of collecting,
refining and possibly merging Agent-Oriented (AO) modeling languages meta-models. Our aim in this paper is to
contribute to the achievement of this objective by describing the Tropos modeling language meta-model that we have
implemented in a Tool for AO Modeling (http://sra.itc.it/tools/taom/).This meta-model follows the specification given
in [Bre04] and in a master thesis [San01]. Moreover, we describe our approach in its implementation in the Eclipse
[ECLIPSE] development platform.
In this work we refer to the Model Driven Initiative (MDA) recommendations and standards, in particular the Tropos
meta-model specification here described is compliant to the Meta Object Facilities (MOF) directives that allow to
specify, build and manage technology neutral meta-models.
In the following we recall the essential of the Tropos methodology and the main concepts of its modeling language, as
described in [Bre04]1. We then describe the modeling language meta-model and propose some solutions towards a
possible integration with the “unifying meta-model” presented in [Ber04], to be discussed at the meeting. Finally, we
describe briefly how we implemented the Tropos meta-model.

1. The Tropos methodology

The Tropos methodology is intended to support an AO approach for the analysis and design
activities of the software development process; from the application domain analysis down to the
system implementation. In particular, Tropos rests on the idea of building a model of the system-to-
be and of its environment, which is incrementally refined and extended, by providing a common
interface to the various software development activities, as well as a basis for documentation and
evolution of the software.

1.1 The Tropos development process
The set of activities (or disciplines, according to the terminology adopted in the Unified Process) for
requirements analysis in the Tropos methodology, are Early Requirements and Late
Requirements analysis. During Early Requirements, the analyst focuses on the understanding of a
problem domain by studying an existing organizational setting where the system-to-be will be
introduced. Social actors and software systems that are already present in the domain are modeled
as actors with their individual goals and with mutual, intentional dependencies.
Late Requirement analysis focuses on the system-to-be, which is introduced as a new actor into the
model. The system actor is related to the social actors in terms of dependencies and its goals are
analyzed. This will eventually lead to revise and add new dependencies involving a subset of the
social actors (the users).

On the other hand, the Architectural Design and the Detailed Design focus on the system
specification, according to the requirements resulting from the above phases. In Architectural
design the system's global architecture is specified in terms of subsystems, which are represented as

1 Let’s recall that several research groups are currently contributing to the definition of methods and techniques that can
be exploited in the Tropos methodology. For more information see http://www.troposproject.org/.

actors, who they are assigned subgoals and/or subplans of the goals and plans assigned to the
system. The Detailed design activity, takes into account the target implementation platform that has
been chosen and provides a detailed design of the system components (agents) that will map
directly to the code.

Finally, the Implementation activity produces an implementation skeleton according to the detailed
design specification. Code is then added to the skeleton using the programming language supported
by the implementation platform.

The methodology has been illustrated by several case studies [Per03,Giu01, Cas01].

1.2 The Tropos modeling language
The Tropos modeling language rests on the i* notation [Yu95]. It provides a set of concepts derived
from agent paradigms and a visual notation. In the following we quote some of the key concepts
definitions given in [Bre04]2, namely:
• Actor, which models an entity that has strategic goals and intentionality within the system or

the organizational setting. An actor represents a physical or a software agent as well as a role or
position. While we assume the classical AI definition of software agent, that is, a software
having properties such as autonomy, social ability, reactivity, proactivity, in Tropos we define a
role as an abstract characterization of the behaviour of a social actor within some specialized
context or domain of endeavour, and a position as a set of roles, typically played by one agent.
An agent can occupy a position, while a position is said to cover a role.

• Goal, which represents actors' strategic interests. We distinguish hard goals from softgoals, the
second having no clear-cut definition and/or criteria for deciding whether they are satisfied or
not. Softgoals are typically used to model non-functional requirements.

• Plan, which represents, at an abstract level, a way of doing something. The execution of plan
can be a means for satisfying a goal or for satisficing a softgoal.

• Resource, which represents a physical or an informational entity.
• Dependency between two actors, which indicates that one actor depends, for some reason, on

the other in order to attain some goal, execute some plan, or deliver a resource. The former actor
is called the depender, while the latter is called the dependee. The object around which the
dependency centres is called dependum. In general, by depending on another actor for a
dependum, an actor is able to achieve goals that it would otherwise be unable to achieve on its
own, or not as easily, or not as well. At the same time, the depender becomes vulnerable. If the
dependee fails to deliver the dependum, the depender would be adversely affected in its ability
to achieve its goals.

• And/Or Decomposition. Each goal can be analyzed from the point of view of the individual
actor considering: possible sub-goals. In the case of an AND decomposition, the sub-goals has
to be all fulfilled in order to fulfil the goal that represents the root of the decomposition; in the
case of an OR decomposition the sub-goals represent alternative ways to achieve the root goal.

• Means/end Analysis. Given a goal, the means/end relationship specifies a means (in terms of
a goal, a plan or a resource) to satisfy the goal.

• Contribution. Given a goal, the contribution relationship specifies the goals or plans or
resources that can contribute positively or negatively to its achievement. The measure of the
positive or negative degree of contribution is expressed via the qualitative metrics +, ++, -, --. In
particular, if the goal g1 contributes positively to the goal g2, with metric ++ then if g1 is
satisfied, so is g2. Analogously, if the plan p contributes positively to the goal g, with metric ++,
this says that p fulfills g. A + label for a goal or plan contribution represents a partial, positive
contribution to the goal being analyzed. With labels --, and - we have the dual situation

2 We refer to that paper also for a description of the visual notation and for examples of the various Tropos diagrams.

representing a sufficient or partial negative contribution towards the fulfilment of a goal.
Contribution analysis applied to softgoals is often used to evaluate non-functional (quality)
requirements.

2. The modeling language meta-model
The abstract syntax of the language has been given in terms of a UML meta-model [San01].
A Tropos model is a directed labelled graph whose nodes are instances of meta-classes of the meta-
model, namely actor, goal, plan and resource, and whose arcs are instances of the meta-classes
representing relationships between them, dependency, means-end analysis, contribution and
AND/OR decomposition.
In this section we describe a revision of the UML meta-model given in [Per04] which is compliant
with the MOF 1.4 defined by OMG. For the sake of readability, we consider portions of the Tropos
meta-model referring to the main language concepts.

The concept of Actor.
In the Tropos metamodel, an actor is represented as a UML class as shown in the UML class
diagram of Figure 1. Each actor can have 0…n goals, and each goal is wanted by 13 actor as
specified by the UML association relationship4. It is worth mentioning that the Goal UML class is
used to represent both hard and soft goals. As mentioned above, actors also have dependencies. In
our metamodel, an actor dependency is a quaternary relationship represented as a UML class. A
dependency relates respectively a depender, a dependee, and the dependum (as defined earlier), and
it also provides an optional reason for the dependency (labelled why).

The concept of Goal.
The concept of goal is represented by the class Goal in the UML class diagram depicted in Figure 2.
The distinction between hard and softgoals is captured through a specialization of Goal into
subclasses Hardgoal and Softgoal, respectively. Goals can be analyzed, from the point of view of an
actor, performing means-end analysis, contribution analysis and AND/OR decomposition (listed in
order of strength). Let us consider these in turn.
Means-end Analysis is a ternary relationship defined among an actor, whose point of view is
represented in the analysis, a goal (the end), and a Plan, Resource or Goal (the means). Means-end
analysis is a weak form of analysis, consisting of a discovery of goals, plans or resources that can
provide means for reaching a goal.
Contribution Analysis is a ternary relationship between an actor, whose point of view is
represented, and two goals. Contribution analysis strives to identify goals that can contribute
positively or negatively towards the fulfilment of a goal. A contribution can be annotated with a
qualitative metric, denoted by +,++,-,--.
AND/OR Decomposition is also a ternary relationship which defines an AND- or OR-
decomposition of a root goal into subgoals.

3 Note that in [Per04] this cardinality was 1..n..
4 As already stated belief are not yet represented in our proposal, while they are in [Per04]

Figure 1: The UML class diagram specifying the actor concept in the Tropos metamodel.

Figure 2: The UML class diagram specifying the goal and plan concepts in the Tropos metamodel.

The concept of Plan.
The concept of plan in Tropos is specified by the class diagram depicted in Figure 2. Means-end
analysis and AND/OR decomposition, defined above for goals, can be applied to plans also. In
particular, AND/OR decomposition allows for modeling the plan structure.

2.1 Discussion on the Tropos meta-model
In this section, we discuss the Tropos meta-model with respect to the aspects proposed by [Ber04].
According to this, four main aspects were identified: Agent Structure, Agent Interactions, Agent
Society and Organisational Structure, and Agent Implementation.

• Agent Structure
In comparison with the other meta-models analysed in [Ber04], Tropos adds a higher level of
abstraction according to which, the concept of an actor is employed as a generalisation of an
agent. Initially, during the early and late requirements analysis, actors are identified, which are
then translated to possible agents during the architectural design. Moreover, Tropos defines the
concept of a role as an abstract characterisation of the behaviour of a social actor and the
concept of position to represent a set of roles. Therefore, an agent in Tropos can occupy a
position, while s position is said to cover a role.
A possible integration with the “unifying meta-model” presented in [Ber04] is illustrated in
Figure 3. The classes with names in italic fonts refer to the “unifying meta-model” elements,
while the others to the elements of the Tropos meta-model. In this way all the entities related to
the concept of Actor could be included in the “unifying meta-model” provided that we map the
Tropos concept of “plan” to the concept of “task” in the “unifying meta-model”. In particular,
notice that in this way we will introduce explicitly in the “unifying meta-model” the concept of
actor’s goal. Moreover, as also mentioned below, the relationship between the concept of Actor
in Tropos and that of “Organization” in the “unifying meta-model” is to be analyzed in more
details.

Figure 3: integrating Tropos Actor concept

Concerning entities, such as agent beliefs and capabilities, which are typically used to specify
agent rationality, we think that a deeper understanding of how the “unifying meta-model”
supports the modeling of these agent features is required before proposing an effective
integration/extension.

The following aspects are related to the analysis process and do not necessarily require the
introduction of new elements in the meta-model (we refer here to the hypothetic integration of the
“unifying meta-model” with the Tropos meta-model proposed in the previous point).

• Agent Interactions.
Initially, interactions are modelled in terms of social dependencies, which mainly denote
interactions of an actor with its environment (other actors, agent, roles, positions and/or
systems). In particular, an agent might depend on other agents in order to attain some goal,
execute a plan, or deliver a resource. Later on the development process, dependencies are
translated into structural patterns of interactions between the agents of the system. Such a
structural pattern of interactions is captured in Tropos by emphasizing the chronological
sequence of communications. For this reason, Tropos employs agent interaction protocols to
describe the communication patterns among the agents as well as constraints on the content of
the message they exchange. Moreover, agents are able to communicate with their environment
in terms of events that describe a triggering condition for an agent’s actions. The interaction
protocol concept mentioned in [Ber04] could provide all the entities necessary to specify Tropos
agent interaction protocols.

• Agent Society and organisational structure
Organisational structures are in the very heart of the Tropos development process. During the
early requirements analysis stage developers are concerned with the understanding of a problem
by studying an existing organisational setting. This involves the identification of the domain
stakeholders and their modelling as social actors. Therefore, an organisational model is
produced in which the structure of the organisation is modelled in terms of actors, their
intentions (goals) and their relationships (dependencies). From these considerations it could
appear that the relationship between Actor and Organization could be modeled as the “belongs”
relationship that is currently between the concept of agent and organization in Fig. 4 of [Ber04].
Moreover, dependencies describe an agreement (called dependum) between two actors, the
depender (the depending actor) and the dependee (the actor who is depended upon). This
organisational model forms the basis for the system’s structure. For this, the Tropos ontology
includes social patterns, such as mediator, broker and embassy [Kol02], as well as a set of
organisational styles inspired by organisation theory, which allows defining precisely the
structure of the system in terms of interconnecting agents.

• Agent implementation
The implementation activity follows step-by-step the detailed design specification on the basis
of the establish mapping between the implementation platform constructs and the detailed
design notions. Although it is possible to use any agent platform during the implementation
stage, the Jack Intelligent Agents platform provides a set of constructs, such as capabilities and
plans, which match the concepts of Tropos. Agents are programmed with a set of plans in order
to make them capable of achieving their goals. Agents are defined in terms of their capabilities,
the types of events and messages it responds to, and the plans it uses to achieve its goals. In
particular, a capability contains plans, events, beliefs and an agent can be assigned with one or
more capabilities.

3. A meta-model implementation. The TAOM-Tool for Agent Oriented visual Modeling.

In order to support the use of the methodology we are developing an agent oriented modeling CASE
tool (TAOM) that supports the analyst when building an informal specification using the Tropos
methodology and a component that allows for its automatic transformation into a formal

specification which can be verified by a model-checker. The modeling environment supports the
adoption of a framework, which rests on a light integration of informal and formal languages.
In developing this tool we are taking into account emerging guidelines and standards from the
OMG’ Model-Driven Architecture (MDA) [MDA] initiative, as discussed in [PER04], and in
particular the Meta Object Facility (MOF) [MOF], and a set of requirements for the transformation
techniques that will be applied when transforming a source model into a target model, this is
referred as the Query/View/Transformation (QVT) [OMG] approach.
As described in the previous section, the Tropos metamodel has been according to the MOF (Meta
Object Facilities) directives that allow to specify, build and manage technology neutral meta-
models. For the model implementation we adopted the Java Metadata Interface (JMI) [JMI],
which enables the implementation of a dynamic, platform-independent infrastructure to manage the
creation, storage, access, discovery, and exchange of metadata. Finally, the persistence of the model
has been assured via the representation of the model in XMI [XMI], the OMG standard for
serializing model and meta-data in XML, that allow also the sharing of the model between the
environment components.

Figure 4: A snapshot of the TAOM4E modeling tool showing the editing of an actor diagram

We are currently porting and extending our tools into the ECLIPSE platform (TAOM4E) using the
already stated standard and related technologies plugins available. The ECLIPSE Project
[ECLIPSE] is an open source initiative that allows the integration of different tools into a single
“application”. Eclipse is a kind of universal tool platform - an open extensible IDE for anything and
nothing in particular. New tools are integrated into the platform trough plug-ins that provides new
functionalities to the environment.

Finally, it is important to note that the meta-model implemented in the tool has been designed to be
flexible and extensible in order to allow easy support of variants and addictions to the language and
the management of different project artefacts.

4. Conclusions
In this paper we have described the Tropos metamodel and we have discussed some of its aspects
with reference to the “unifying meta-model” presented in [Ber04]. Moreover, we have briefly
described the TAOM modelling tool, which represents an implementation of the Tropos metamodel.
However, further worked is required. In particular, although entities such as agent belief and
capabilities have been defined in Tropos, work is in progress to better refine them in the Tropos
development process. As a result, such entities have not beed considered in the meta-model
described in this paper. Moreover, important entities related to the description of trust and security
in distributed systems have been added in Tropos and described in details in [Mou03]. Therefore,
we are working on extending our meta-model in order to specify them.

References

[Ber04] C. Bernon, M. Cossentino, M-P. Gleizes, P. Turci, F. Zambonelli. A Study of some Multi-
agent Meta-Models, in Proceedings of the 5th International Workshop on Agent Oriented Software
Systems (AOSE’04), N.Y.-USA, July 2004.
[Bre04] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An Agent-
Oriented Software Development Methodology. Journal of Autonomous Agent and Multi-
Agent Systems, 8(3):203 – 236, May 2004.
[Cas01] J. Castro, M. Kolp, and J. Mylopoulos. A Requirements-Driven Development
Methodology. In Proceedings of the 13th International Conference on Advanced Information
Systems Engineering (CAiSE’01), Interlanken, Switzerland, June 2001.
[Giu01] F. Giunchiglia, A. Perini, and F. Sannicolo'. "Knowledge Level Software Engineering". In
Proceedings of ATAL 2001, Seattle, December 2001, Springer Verlag.
[Mou03] H. Mouratidis, P. Giorgini, and G. Manson, Modelling Secure Multiagent Systems, in
Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent
Systems, Melbourne-Australia, 2003
[Kol02] M. Kolp, P. Giorgini, and J. Mylopoulos. Information Systems Development through
Social Structures, In Proceedings of the 14th International Conference on Software Engineering and
Knowledge Engineering (SEKE'02), Ishia, Italy, July 2002.
[Per03] A. Perini, A. Susi. "Developing a decisioon support system for integrated production in
agriculture". In Environmental Modeling and Software, Journal 19(9), 2004.
[Per04] A.Perini and A. Susi. Agent-Oriented visual modeling and model validation for engineering
distributed systems. MATES 04
[San01] F. Sannicolo’, A. Perini, and F. Giunchiglia. The Tropos modeling language. A User
Guide. Technical Report 0204-13, ITC-irst, December 2001.
[Yu95] Yu, E., 1995. Modelling strategic relationships for process reengineering. Ph.D. thesis,
University of Toronto, Department of Computer Science, University of Toronto.
[MDA] http://www.omg.org/mda/
[MOF] http://www.omg.org/technology/documents/formal/mof.htm
[OMG] http://www.omg.org/
[JMI] http://java.sun.com/products/jmi/index.jsp
[XMI] http://www.omg.org/technology/documents/formal/xmi.htm
[ECLIPSE] http://www.eclipse.org/

