
Applying Tropos Methodology to a real case study:
Complexity and Criticality Analysis

Maddalena Garzetti*, Paolo Giorgini*, John Mylopoulos†, and Fabrizio Sannicolò‡

*Department of Information and Communication Technology, University of Trento,
Trento, Italy, Email:

�
maddalena.garzetti,paolo.giorgini � @dit.unitn.it

†Department of Computer Science, University of Toronto,
Toronto, Canada, Email: jm@cs.toronto.edu

‡ITC-irst, via Sommarive 18, 38055 Povo, Trento, Italy,
Email: sannico@irst.itc.it

Abstract— Currently in Requirements Engineering the atten-
tion is being focused more and more on the understanding of a
problem by studying the existing organizational setting in which
the system will operate. In this paper we present the application
of the Tropos early requirements analysis to a real case study, the
Ice Co. We introduce a new type of analysis for actor diagrams
based on two different parameters, complexity and criticality, and
we show the results we obtained during the case study.

I. INTRODUCTION

The development of a successful software system and in par-
ticular of a multi-agent system, relies on the understanding of
the organizational context within which the system will operate
and how the system will be part of the encompassing organiza-
tional processes. For this reason, in Requirements Engineering
the attention is being focused more and more on the very early
phase of software development in which the system is studied
with its context as a larger social-technical system.

According to this perspective, we are developing Tropos [2],
[16], [11], [9], [10], an agent-oriented software engineering
methodology characterized by three keys aspects [15], [5], [4],
[5]. First, it uses concepts like actors, goals, softgoals, plans,
resources, and intentional dependencies along all the phases of
software development. Second, it pays great attention to the
activities that precede the specification of the perspective re-
quirements, like understanding how and why the intended sys-
tem would meet the organizational goals1. Third, the methodo-
logy rests on the idea of building a model of the system-to-be
that is incrementally refined and extended from a conceptual
level to executable artifacts, by means of a sequence of trans-
formational steps [3].

Tropos supports five phases of software development.
The early requirements analysis is concerned with the un-

derstanding of a problem by studying an existing organizational
setting. The output of this phase is an organizational model

1In particular, Tropos is widely inspired by Eric Yu’s framework for require-
ments engineering, called i� , which offers actors, goals, and actors dependen-
cies as primitive concepts [19], [20], [21].

which includes relevant actors and their respective dependen-
cies. Actors in the organizational setting are characterized by
having goals that each single actor, in isolation, would be un-
able —or not as well or as easily— to achieve. The goals are
achievable in virtue of reciprocal means-end knowledge and de-
pendencies. In particular, a dependency relates one depender,
one dependee, and one dependum. The depender and the de-
pendee are actors, while the dependum may be goals, softgoals,
plans, and resource. The depender delegates the fulfilling of
own dependum to another actor, the dependee.

During the late requirements analysis, the system-to-be is
described within its operational environment, along with rele-
vant functions and qualities. This description models the sys-
tem as a (relatively small) number of actors, which have a num-
ber of social dependencies with other actors in their environ-
ment.

The architectural design phase deals with the definition of
the system’s global architecture in terms of subsystems, rep-
resented as actors, and their data dependencies, represented as
actor dependencies.

The detailed design phase aims at specifying each archi-
tectural component in further detail (adopting a subset of the
AUML diagrams [14], [1]) in terms of inputs, outputs, control
and other relevant information.

Finally, during the implementation phase, the actual imple-
mentation of the system is carried out, consistently with the
detailed design.

The present paper focuses on the Tropos early requirements
analysis phase applied to a real case study, the Ice Co. The
case study is part of a jointly run project involving Univer-
sity of Trento, Istituto Trentino di Cultura (ITC-irst) and Centro
Ricerche Fiat (CRF). The objective of the project is to build a
system for facilitating access by industries in Trentino to the
logistic services available on the web. Ice Co is one of the
companies that we have interviewed and analyzed in order to
understand their needs and then define important and concrete
requirements of the system we want to develop. Three full time
people worked for four months interviewing people inside Ice



Fig. 1. The actor diagram for the Ice Co case study with respect to the in-bound problem.

Co and refining with them the Tropos models. Currently, the
project has started the second phase of the requirements analy-
sis, the Tropos late requirements analysis, that should be con-
cluded by the end of the year.

The organizational environment of Ice Co has been mod-
eled by means of networks of social dependency relationships
among actors (actor diagrams) and the impact of each relation-
ship over the organization has been evaluated using a new type
of analysis based on two different parameters: complexity and
the criticality. The analysis helped us to discover inside the
organization some imbalance between the actors in terms of
complexity of the goals assigned to them and criticality of their
responsibilities with respect to the overall organization. This in-
formation is used to motivate and define the functional require-
ments of the system that will be introduced in the organization.

The rest of this paper is structured as follows. Section II
presents briefly the case study and Section III introduces a por-
tion of the Tropos early requirements analysis for it. Section IV
presents the complexity and criticality analysis and the results
obtained for the case study. Section V compares Tropos with
other relevant methodologies. Conclusion and directions for
further research are presented in Section VI.

II. THE ICE CO CASE STUDY

The Ice Co is an Italian company that produces and
trades in ice-cream and frozen confectionery in the region of
Trentino/Alto-Adige (Italy). Ice Co has two different factories,
one in the province of Trento where they produce ice-cream,
and another one in the province of Bolzano where they pro-
duce frozen confectionery. In each factory there is a ware-
house, where raw materials such as milk, fruit, and packages

are stored, a plant where ice cream or frozen confectionery is
produced, and another warehouse where the end products are
stocked. Moreover, Ice Co owns part of PrimaIce, a service
company which distributes end products to the Ice Co’s cus-
tomers situated both in Trentino/Alto-Adige and throughout the
rest of Italy. PrimaIce is responsible for goods between the
warehouse situated in Trentino and that situated in Alto Adige.

All Ice Co activities can be referred to three main prob-
lems:

In-bound. It consists of two sub-problems: (i) the selec-
tion, among several candidates, of one or more
suppliers for each sort of raw material and (ii)
how to store the different kinds of raw materials
inside the warehouses (e.g., milk and fruit have
to be kept at the temperature of � 27°C).

Production. It concerns the internal organization of Ice Co.
In particular, it addresses the production prob-
lem that includes decisions like, for instance,
the activation and the shutting-down of a pro-
duction line, including who take such decisions
and under what conditions.

Out-bound. It concerns the distribution of the end prod-
ucts. This includes problems related to the spe-
cific customers, such as wholesalers, bars, and
restaurants.

In this paper we use and describe only a portion of the Ice Co
case study, and in particular we consider the in-bound and out-
bound problems. More details about the case study are available
in [8].



III. EARLY REQUIREMENTS ANALYSIS

In early requirement analysis, we model and analyze the in-
tentions of the stakeholders. These are modeled as goals that,
through some form of analysis [13], [6], such as AND-OR de-
composition, means-ends analysis, and contribution analysis,
eventually lead to the functional and non-functional require-
ments of the system-to-be. We use actor diagrams for describ-
ing the network of social dependency relationships among ac-
tors and goal diagrams for analyzing goals. However, in this
paper we present only the analysis of the actor diagrams for the
Ice Co and we omit for lack of space goal analysis.

Graphically in an actor diagram, actors are depicted as cir-
cles, their goals as ovals, and a dependency relationships be-
tween two actors (the depender and the dependee) as two ar-
rowed lines connected by a graphical symbol varying according
to the dependum: a goal (oval), a plan (hexagon) or a resource
(rectangle). In the actor diagram depicted in Figure 1, Ice Co is
modeled as the actor Ice Co. and it is specialized (IsA) in Ice
Co. TN and Ice Co. BZ (i.e., the factories based in Trentino
and in Alto Adige, respectively).
Ice Co. TN depends on the actor Responsible for

Cold Warehouse (responsible for the warehouse containing
raw materials like fruit) for fulfilling the goals manage cold
warehouse and manage customers orders. Moreover, it de-
pends on the Responsible for Hot Warehouse for manage
hot warehouse and on the Responsible Purchases for the
goal manage purchase.
Responsible Purchases has the main goal to buy raw

materials, like sugar, milk, and packing, when it is needed,
and it relies on Responsible for Cold Warehouse and
Responsible for Hot Warehouse for monitoring the ware-
houses (respectively, monitor cold warehouse and monitor
hot warehouse). Responsible Purchases purchases raw
materials from the following suppliers: Cheese Factory (de-
pendum supply milk), Sugar Supplier (dependum supply
sugar), Fruit Supplier (dependum supply fruit), and
Packing Supplier —in this last case, we distinguish be-
tween packing for ICe Co products and generic packing—
. Suppliers deliver raw materials to the warehouses; for in-
stance, the Responsible for Cold Warehouse depends on
the Fruit Supplier for the resource fruit, and analogously,
Responsible for Hot Warehouse depends on the Cheese
Factory for obtaining milk and fresh products and on
Packing Supplier for obtaining the resource packing. Fi-
nally, Ice Co uses a software system (Software) to sup-
port its activities, such as for instance the customers’ or-
ders management and the requests of raw materials to the
suppliers. Software depends on Responsible for Cold
Warehouse for the resources raw materials data, orders
PrimaIce, wholesalers data, and other orders, and
on Responsible for Hot Warehouse for raw materials
data. On the other hand, Software has to provide the infor-
mation about orders to the actor Responsible Purchases.

Figure 2 shows the actor diagram about the out-bound prob-

Fig. 2. Actor diagram modeling the out-bound problem.

lem and in particular, it shows the dependencies between the
actors of the Alto Adige factory involved in goods exchang-
ing (we have a similar diagram for the Trentino factory).
Responsible Purchases BZ (BZ stands for Bolzano) is del-
egated for managing purchases and Responsible for Cold
Warehouse BZ for managing warehouse in Bolzano. As men-
tioned in Section II, although some goods are produced and
packed in the province of Trento, and others in the province of
Bolzano, Ice Co distributes its products in the whole regional
territory. So, in order to exchange goods between Bolzano
and Trento, the Responsible Purchases BZ orders directly
to the Responsible for Cold Warehouse (goal dependency
order goods TN) and analogously, the responsible purchase
of Trento orders goods to the Responsible Cold Warehouse
BZ.
Carrier A is delegated by PrimaIce for transporting goods

between Trento and Bolzano. It receives from Responsible
Cold Warehouse BZ goods to be transferred to Trento (goods
for TN) and provides the Responsible Cold Warehouse
BZ with goods from Trento (goods for TN). Analogously,
Carrier A transfers goods from Bolzano to Trento. Due to
lack of space, the other actor diagrams are not presented here,
but can be found in [8].

IV. COMPLEXITY AND CRITICALITY ANALYSIS

In the previous section we have partially analyzed the Ice Co
case study by actors diagrams. Although Tropos allows us to
refine the model by means of the transformational approach [3]
and others techniques of analysis and decomposition [13], [6],
[17], it is worth, from our point of view, reasoning about other
aspects nor addressed up to now. In particular, during the inter-
views inside Ice Co, people expressed the requirement to differ-
entiate each dependency with respect to the relevance and im-
portance that the dependency assumes for the organization. For
example, they manifested the necessity to express the impor-
tance of receiving fruit in time from a supplier and to manage
effectively customers’ orders. Moreover, according to them, a
dependency should be characterized by a degree of complexity



Local scores – Complexity and criticality
Depender Dependum Dependee Complexity Criticality

1 Ice Co. TN
manage cold
warehouse

Responsible for
Cold Warehouse

3 3

2 Ice Co. TN
manage customers

orders
Responsible for
Cold Warehouse

2 3

3 Ice Co. TN
manage

purchase
Responsible
Purchases

3 2

4 Ice Co. TN
manage hot
warehouse

Responsible for
Hot Warehouse

2 2

5 Responsible for
Hot Warehouse

sugar
Sugar

Supplier
1 1

6 Responsible for
Hot Warehouse

milk and fresh
products

Cheese
Factory

1 3

7 Responsible for
Hot Warehouse

packing
Packing
Supplier

1 2

8 Responsible for
Cold Warehouse

fruit
Fruit

Supplier
1 3

9 Responsible
Purchases

monitor hot
warehouse

Responsible for
Hot Warehouse

1 2

10 Responsible
Purchases

manage cold
warehouse

Responsible for
Cold Warehouse

3 3

11 Responsible
Purchases

supply milk
Cheese
Factory

1 3

12 Responsible
Purchases

supply fruit
Fruit

Supplier
3 3

13 Responsible
Purchases

supply sugar
Sugar

Supplier
1 1

14 Responsible
Purchases

information
about orders

Software 1 1

15 Responsible
Purchases

supply generic
packing

Packing
Supplier

2 2

16 Responsible
Purchases

supply packing
for Ice Co.

Packing
Supplier

1 2

17 Ice Co. TN
obtain qualitative

standard milk
Cheese
Factory

3 3

18 Ice Co. TN
obtain qualitative
standard fruit

Fruit
Supplier

2 3

19 Responsible
Purchases

supply with
reliability and
flexibility

Packing
Supplier

2 3

20 Responsible
Purchases

supply with
reliability and
flexibility

Fruit
Supplier

3 3

21 Software
orders

PrimaICe
Responsible for
Cold Warehouse

1 3

22 Software
raw materials

data
Responsible for
Cold Warehouse

1 3

23 Software other orders
Responsible for
Cold Warehouse

1 3

24 Software
wholesalers

orders
Responsible for
Cold Warehouse

1 3

25 Software
raw materials

data
Responsible for
Hot Warehouse

1 3

TABLE I
ASSIGNMENT VALUES TO EACH DEPENDENCIES REPRESENTED IN FIGURE 1.

representing the amount of the effort and resources needed for
its achievement. So for example, managing the cold warehouse
is a goal that requires more effort than that of managing the hot
warehouse.

We propose in the following an analysis of the dependencies
based on two different kinds of measures:

complexity is the measure of the effort required from
the depender for achieving the dependum,
criticality2 is the measure of how the goals of an actor

2This definition is an extension of that one introduced by Eric Yu in his PhD
thesis [20].

will be affected if the dependum is not achieved.

Complexity allows us to evaluate the amount of the effort
that is required from each actor for achieving its responsibili-
ties, and to analyze the whole actor diagram to discover possi-
ble overloads on some actors with respect to the others. Analo-
gously, it is possible to use criticality to evaluate the criticality
of an actor for the rest of the organization. We distinguish be-
tween ingoing and outgoing criticality. Ingoing criticality rep-
resents the criticality that an actor assumes when it is responsi-
ble for achieving a dependum, namely when the actor assume
the role of dependee in the dependency. The outgoing critical-



ity represents the criticality of the achievement of a dependency
for the depender. Basically, given a dependency we assign to it
a value of criticality that assume a different meaning for the
depender (outgoing criticality) and the dependee (ingoing criti-
cality).

Table I reports the values of complexity and criticality as-
signed to each dependency of the actor diagram in Figure 1.
In our analysis, criticality and complexity can assume values
1 (low), 2 (medium) and 3 (high), but of course the range of
values can be extended.

For each actor of the actor diagram we calculate the global
complexity as the sum of the complexity of the dependencies
where the actor is the dependee. The global ingoing critical-
ity and global outgoing criticality are the sum of the criticality
of the dependencies where the actor is the dependee and de-
pender, respectively. These global values allow us to evaluate
the overall organization in terms of a distribution of complexity
and criticality. So for instance, we can discover that there are
some actors that are particularly critical for the overall organi-
zation’s objectives or that other actors are overloaded in terms
of complexity in their responsibilities. This kind of evaluations
are particularly useful for discovering important requirements
of a software system that eventually will be implemented and
adopted inside the organization, but of course, such information
can be also useful to redistribute the responsibilities and the ac-
tivities among the actors. In this work we use the global values
to define the functional requirements of a software system that
will be adopted to support the organization.

Figure 3 shows the procedure we adopt for the complex-
ity and criticality analysis. Basically, in the first part of the
procedure we calculate for each actor the global values for
complexity and criticality (ingoing and outgoing) and then we
build two lists comp.actorList and crit.actorList in which we
insert all the actors for which the global values of complex-
ity and criticality, respectively, are greater than the max val-
ues they can assume, namely actor.max.complexity and ac-
tor.max.criticality. We suppose that it is possible to define for
each actor a max value of complexity and criticality based on
the actor’s competences, abilities and role it assumes inside
the organization. Finally, the procedure ends with the assign-
ment of some dependencies in which the actors, contained in
the comp.actorList and crit.actorList, are included in the soft-
ware system we want to develop. The idea is that first (as-
sign.comp(comp.actorList)) we assign to the system goals in
order to reduce the complexity of the actors in comp.actorList
and then (assign.crit(crit.actorList)) to reduce criticality of ac-
tors in crit.actorList.

Table II shows the global complexity and critically values for
the actor diagrams presented in Figure 1 and Figure 2. N.o.D. is
the the number of dependencies in which each actor is involved
and for which global values are calculated.

Figure 4 presents the revised actor diagram in which we have
introduced two new actors (software systems) S1 and S2. As-
signing to S1 the responsibility of processing and updating the

global actorList � dependencyList � comp � actorList �
crit � actorList;

procedure weightDependency � actorList � dependencyList �
comp � actorList � crit � actorList �

begin
comp � actorList : � crit � actorList : � nil;
for actor in actorList

global � actor� complexity : � 0;
global � actor� criticality � in : � 0;
global � actor� criticality � out : � 0;
for dependency in dependencyList

if dependency � depender � actor then
actor� criticality � out : � actor� criticality � out 	
dependency � criticality;
if dependency � dependee : � actor then
begin

global � actor � complexity : � actor� complexity 	
dependency � complexity;
global � actor � criticality � in : � actor � criticality � in 	
dependency � criticality;

end ;
end ;
if actor� complexity 
 actor� max � complexity then
add � actor� comp � actorList � ;
if actor� criticality � in 
 actor� max � criticality then
add � actor� crit � actorList � ;

end ;
end ;
assign � comp � comp � actorList � ;
assign � crit � crit � actorList � ;

end procedure

Fig. 3. The procedure for the complexity and criticality analysis.

information used by software system (Software) we can re-
duce the value of the ingoing criticality of the Responsible
for Cold Warehouse, that decreases from 24 to 9. Similarly,
the introduction of S2 allows us to reduce from 3 to 2 the ingo-
ing criticality of the Responsible Purchases.

V. RELATED WORK

As reported in [2], [16], [11], [9], [10], one of most topic
feature of the Tropos methodology is that it aspires to span the
overall software development process. This fact is depicted in
Figure 5 which shows the relative coverage of Tropos as well
as i � [20], KAOS [6], GAIA [18], AAII [12], MaSE [7], and
AUML [14], [1]. Tropos covers the software development pro-
cess as a whole, from the early steps, in which the software en-
gineer picks up and models requirements of the organizational
setting (early requirements) and of the system-to-be (late re-
quirements), up to the detailed design where the design is car-
ried out by means, for example, of a series of AUML activity di-
agrams (for more details about the AUML diagrams in Tropos,



Global scores – Complexity, Ingoing, Outgoing criticality
Actor Complexity N.o.D. Ingoing criticality N.o.D. Outgoing criticality N.o.D.

1 Ice Co. TN 0 0 0 0 16 6

2 Responsible
Purchases

3 1 3 1 27 11

3 Responsible for
Cold Warehouse

15 8 24 9 4 2

4 Responsible for
Hot Warehouse

4 3 7 3 6 3

5 Cheese Factory 5 3 9 3 0 0

6 Sugar
Supplier

2 2 2 2 0 0

7 Fruit
Supplier

8 4 12 4 0 0

8 Packing
Supplier

5 4 9 4 0 0

9 Software 1 1 3 1 15 5
10 Career A 2 2 2 2 2 2

11 Responsible
Purchases BZ

3 1 3 1 2 1

12 Ice Co. BZ 0 0 0 0 6 2

13 Responsible for
Cold Warehouse BZ

6 3 6 3 1 1

TABLE II
TABLE REPRESENTING ALL THE VALUES FOR INGOING AND OUTGOING DEPENDENCIES OF EACH ACTOR.

Fig. 4. Actor diagram modeling the in-bound problem after the revising.

see [2]). Moreover, such methodology uses the same concepts,
like, for example, actor, goal, softgoal, and goal dependencies,
along all the phases; this feature is not addressed from other
methodologies.

VI. CONCLUSION AND FUTURE WORK

In this paper we have presented the Tropos early requirement
analysis for a real case study, the Ice Co, and we have intro-
duced a new type of analysis for actor diagrams based on two

different parameters: complexity and criticality. The analysis
helped us to discover inside the organization some imbalance
between the actors in terms of complexity of the goals assigned
to them and criticality of their responsibilities with respect to
the overall organization. This information is used to motivate
and define the functional requirements of the system that will
be introduced in the organization.

The case study has been analyzed within a running project in
which we are currently involved. The use of the Tropos metho-
dology has been extremely positive and in particular it has been



i*

Kaos

Early Late 
Requirements

Detailed
Design

Architectural 
DesignRequirements

Tropos

Gaia

AAII

AUML

and Mase

Fig. 5. Comparison of Tropos with other software development methodolo-
gies.

an effective means of interaction between us and the people in-
terviewed. It allowed us to show after the interviews our under-
standing of the problem and to discuss with our customers the
possible requirements to consider in the final system. Differ-
ently form other modeling languages, like for instance UML,
the Tropos graphical notation and the concepts used in it are
more intuitive and comprehensible for people that are not ex-
pert in software engineering.

We are currently applying the Tropos late requirements anal-
ysis to the second phase of our project and we are defining new
type of analysis for it. Moreover, we are working to an efficient
algorithm in order to automate the process of reassignment of
the dependencies in the actor diagrams.

REFERENCES

[1] B. Bauer, J. P. Müller, and J. Odell. Agent UML: A formalism for spec-
ifying multiagent software system. In P. Ciancarini and M. Wooldridge,
editors, Agent-Oriented Software Engineering – Proceedings of the First
International Workshop (AOSE2000), volume 1957, pages 91–103, Lim-
erick, Ireland, June 2000. Springer-Verlag Lecture Notes in Computer
Science.

[2] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
TROPOS: An Agent-Oriented Software Development Methodology. Sub-
mitted to the Journal of Autonomous Agents and Multi-Agent Systems.
Kluwer Academic Publishers, March 2002.

[3] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopou-
los. Modelling early requirements in Tropos: a transformation based
approach. In M.J. Wooldridge, G. Weiß, and P. Ciancarini, editors, Agent-
Oriented Software Engineering II, LNCS 2222, pages 151–168. Springer-
Verlag, Montreal, Canada, Second International Workshop, AOSE2001
edition, May 2001.

[4] P. Bresciani and F. Sannicolò. Applying Tropos Requirements Analysis
for defining a Tropos tool. In P. Giorgini, Y. Lespérance, G. Wagner,
and E. Yu, editors, Agent-Oriented Information System. Proceedings of
AOIS-2002: Fourth International Bi-Conference Workshop, pages 135–
138, Toronto, Canada, May 2002.

[5] P. Bresciani and F. Sannicolò. Requirements Analysis in Tropos: a self
referencing example. In Net.ObjectDays 2002 - Workshop on Agent
Technology and Software Engineering (AgeS02), pages 100–114, Octo-
ber 2002.

[6] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed require-
ments acquisition. Science of Computer Programming, 20(1–2):3–50,
1993.

[7] S. A. Deloach. Analysis and Design using MaSE and agentTool. In
12th Midwest Artificial Intelligence and Cognitive Science Conference
(MAICS 2001), Miami University, Oxford, Ohio, March 31 - April 1
2001.

[8] M. Garzetti, P. Giorgini, and F. Sannicolò. The Ice Co case study:
Requirements Analysis. Technical report, University of Trento, via
Sommarive 18, Povo, I-38050, Trento-Povo, July 2002. URL -
http://neven.science.unitn.it/ � logicost/documents/IceCo.doc.

[9] P. Giorgini, A. Perini, J. Mylopoulos, F. Giunchiglia, and P. Bresciani.
Agent-oriented software development: A case study. In S. Sen J.P. Müller,
E. Andre and C. Frassen, editors, Proceedings of the Thirteenth Inter-
national Conference on Software Engineering - Knowledge Engineering
(SEKE01), pages 283–290, Buenos Aires - ARGENTINA, June 2001.

[10] F. Giunchiglia, A. Perini, and J. Mylopoulus. The Tropos Software De-
velopment Methodology: Processes, Models and Diagrams. In C. Castel-
franchi and W.L. Johnson, editors, Proceedings of the first international
joint conference on autonomous agents and multiagent systems, pages
63–74, palazzo Re Enzo, Bologna, Italy, July 2002. ACM press. Featur-
ing: 6th International Conference on Autonomous Agents, 5th Interna-
tional Conference on MultiAgents System, and 9th International Work-
shop on Agent Theory, Architectures, and Languages.

[11] F. Giunchiglia, A. Perini, and F. Sannicolò. Knowledge level software
engineering. In J.-J.C. Meyer and M. Tambe, editors, Intelligent Agents
VIII, LNCS 2333, pages 6–20, Seattle, WA, USA, August 2001. Springer-
Verlag.

[12] D. Kinny, M. Georgeff, and A. Rao. A Methodology and Modelling
Technique for Systems of BDI Agents. In W. Van de Velde and J. W.
Perram, editors, Agents Breaking Away: Proceedings of the Seventh Euro-
pean Workshop on Modelling Autonomous Agents in a Multi-Agent World,
Springer-Verlag: Berlin, Germany, 1996.

[13] J. Mylopoulos, L. Chung, S. Liao, H. Wang, and E. Yu. Exploring Al-
ternatives during Requirements Analysis. IEEE Software, 18(1):92–96,
February 2001.

[14] J. Odell, H. V. D. Parunak, and B. Bauer. Extending UML for Agents. In
G. Wagner, Y. Lesperance, and E. Yu, editors, Proc. of Agent-Oriented In-
formation System Workshop at the 17th National conference on Artificial
Intelligence, pages 3–17, Austin, TX, 2000.

[15] A. Perini, P. Bresciani, P. Giorgini, F. Giunchiglia, and J. Mylopou-
los. Towards an Agent Oriented approach to Software Engineering. In
A. Omicini and M. Viroli, editors, WOA 2001 – Dagli oggetti agli agenti:
tendenze evolutive dei sistemi software, Modena, Italy, 4–5 September
2001. Pitagora Editrice Bologna.

[16] A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopoulos. A
Knowledge Level Software Engineering Methodology for Agent Oriented
Programming. In J. P. Müller, E. Andre, S. Sen, and C. Frasson, editors,
Proceedings of the Fifth International Conference on Autonomous Agents,
pages 648–655, Montreal CA, May 2001.

[17] F. Sannicolò, A. Perini, and F. Giunchiglia. The Tropos modeling lan-
guage. A User Guide. Technical Report 0204-13, ITC-irst, January 2002.

[18] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia Methodology
for Agent-Oriented Analysis and Design. Autonomous Agents and Multi-
Agent Systems, 3(3):285–312, 2000.

[19] E. Yu. Modeling Organizations for Information Systems Requirements
Engineering. In Proceedings First IEEE International Symposium on Re-
quirements Engineering, pages 34–41, San Jose, January 1993.

[20] E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD
thesis, University of Toronto, Department of Computer Science, Univer-
sity of Toronto, 1995.

[21] E. Yu and J. Mylopoulos. Understanding ‘why’ in software process mod-
eling, analysis and design. In Proceedings Sixteenth International Con-
ference on Software Engineering, pages 159–168, Sorrento, Italy, May
1994.


