

A Social Organization Perspective on Software Architectures

Manuel Kolp
Dept. of Computer Science

University of Toronto
10 King’s College Road

Toronto M5S3G4, Canada
mkolp@cs.toronto.edu

Jaelson Castro
Centro de Informática

Universidade Federal de
Pernambuco

Av. Prof. Luiz Freire s/n
Recife PE, Brazil 50732-970

jbc@cin.ufpe.br

John Mylopoulos
Dept. of Computer Science

University of Toronto
10 King’s College Road

Toronto M5S3G4, Canada
jm@cs.toronto.edu

Abstract

This paper proposes a set of concepts for describing a
software architecture as a social organization. This social
structure consists of actors who have goals to fulfil and
social dependencies describing their obligations. The
framework is an adaptation of i* [17] proposed as a
modeling language for early requirements. Based on this
framework, the paper advocates architectural styles for
software which adopt concepts from organization theory
and strategic alliances literature. The styles are modeled
in i* and formalized in terms of Telos metaconcepts. Each
proposed style is evaluated with respect to a set of
software quality attributes, such as predictability,
adaptability and openness. The use of these styles is
illustrated and contrasted with two examples of software
architectures reported in the literature.

1. Introduction

We are interested in narrowing the semantic gap
between a software architecture and the requirements
model from which it was derived. One way to achieve this
is to adopt the same concepts for describing requirements
and software architectures. This paper reports on an
experiment to use concepts from i*, a modeling
framework for early requirements, to model software
architectures.

i* offers concepts such as actor, goal, and social
dependency intended to model social structures involving
social actors, their goals and social inter-dependencies. To
adopt this framework for software architectures, we first
propose a set of architectural styles inspired by
organizational theory and strategic alliance literature, and
formalize these as Telos [9] metaconcepts. To guide the
selection process among the styles, we evaluate them with
respect to a number of software qualities. Finally, we

illustrate their use by applying them to two examples of
software architectures reported in the literature.

This research is being conducted in the context of the
Tropos project [1], which is developing a requirements-
driven methodology for software systems.

Section 2 presents our organization-inspired
architectural styles described in terms of the strategic
dependency model from i* and specified in Telos. Section
3 introduces a set of desirable software quality attributes
for comparing them. Section 4 overviews a mobile robot
and an e-business examples while Section 5 sketches the
Tropos project within which this research has been
conducted. Finally, Section 6 summarizes the
contributions of the paper and points to further research.

2. Organizational Styles

Organizational theory (such as [7, 10]) and strategic
alliances (e.g., [5, 16]) study alternatives for (business)
organizations. These alternatives are used to model the
coordination of business stakeholders -- individuals,
physical or social systems -- to achieve common goals.
Using them, we view a software system as a social
organization of coordinated autonomous components (or
agents) that interact in order to achieve specific, possibly
common goals. We adopt (some of) the styles defined in
organizational theory and strategic alliances to design the
architecture of the system, model them with i*, and
specify them in Telos [9].

In i*, a strategic dependency model is a graph, in
which each node represents an actor, and each link
between two actors indicates that one actor depends on
another for something in order that the former may attain
some goal. We call the depending actor the depender and
the actor who is depended upon the dependee. The object
around which the dependency centers is called the
dependum. By depending on another actor for a
dependum, an actor is able to achieve goals that it is
otherwise unable to achieve, or not as easily or as well. At

the same time, the depender becomes vulnerable. If the
dependee fails to deliver the dependum, the depender
would be adversely affected in its ability to achieve its
goals.

The model distinguishes among four types of
dependencies -- goal-, task-, resource-, and softgoal-
dependency -- based on the type of freedom that is
allowed in the relationship between depender and
dependee. Softgoals are distinguished from goals because
they do not have a formal definition, and are amenable to
a different (more qualitative) kind of analysis [2].

For instance, in the structure-in-5 style (Figure 1), the
coordination, middle agency and support actors depend on
the apex for strategic management purposes. Since the
goal Strategic Management is not well-defined, it is
represented as a softgoal (cloudy shape). The middle
agency actor depends on both the coordination and
support actors respectively through goal dependencies
Control and Logistics represented as oval-shaped icons.
The operational core actor is related to the coordination
and support actors respectively through the Standardize
task dependency and the Non-operational service resource
dependency.

In the sequel we briefly discuss ten common
organizational styles.

The structure-in-5 (Figure 1) style consists of the
typical strategic and logistic components generally found
in many organizations. At the base level one finds the
operational core where the basic tasks and operations --
the input, processing, output and direct support
procedures associated with running the system -- are
carried out. At the top of the organization lies the apex
composed of strategic executive actors.

Apex

Standardize

Coordination

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non-operational

Logistics SupportControl

Figure 1. Structure-in-5.

Below it sit the control/standardization, management

components and logistics, respectively coordination,
middle agency and support. The coordination component

carries out the tasks of standardizing the behavior of other
components, in addition to applying analytical procedures
to help the system adapt to its environment. Actors joining
the apex to the operational core make up the middle
agency. The support component assists the operational
core for non-operational services that are outside the basic
flow of operational tasks and procedures.

Figure 2 specifies the structure-in-5 style in Telos [9].
Telos is a language intended for modeling requirements,
design, implementation and design decisions for software
systems. It provides features to describe metaconcepts that
can be used to represent the knowledge relevant to a
variety of worlds – subject, usage, system, development
worlds - related to a software system. Our styles are
formulated as Telos metaconcepts, primarily based on the
aggregation semantics for Telos presented in [8].

The structure-in-5 style is then a metaclass -
StructureIn5MetaClass - aggregation of five (part)
metaclasses: ApexMetaClass, CoordinationMetaClass,
MiddleAgencyMetaClass, SupportMetaClass and
OperationalCoreMetaClass, one for each actor
composing the structure-in 5 style depicted in Figure 1.
Each of these five components exclusively belongs
(exclusivePart) to the composite (StructureIn5MetaClass)
and their existence depend (dependentPart) on the
existence of the composite. A structure-in-5 specific to an
application domain will be defined as a Telos class,
instance of StructureIn5MetaClass (See Section 4).
Similarly each structure-in-5 component specific to a
particular application domain will be defined as a class,
instance of one of the five StructureIn5Metaclass
components.

TELL CLASS StructureIn5MetaClass

IN Class WITH /*Class is here used as a MetaMetaClass*/
attribute

 name: String
part, exclusivePart, dependentPart

 ApexMetaClass: Class
 CoordinationMetaClass: Class
 MiddleAgencyMetaClass: Class
 SupportMetaClass: Class
 OperationalCoreMetaClass: Class

END StructureIn5MetaClass

Figure 2. Structure-in-5 in Telos.

Figure 3 formulates in Telos one of these five
structure-in-5 components: the coordination actor.
Dependencies are described following Telos
specifications for i* models [17]. The coordination actor
is a metaclass, CoordinationMetaclass. According to
Figure 1, the coordination actor is the dependee of a task
dependency StandardizeTask and a goal dependency
ControlGoal, and the depender of a softgoal dependency
StrategicManagementSoftGoal.

TELL CLASS CoordinationMetaclass
IN Class WITH /*Class is here used as a MetaMetaClass*/

attribute
name: String

taskDepended
 s:StandardizeTask

WITH depender
OperationalCoreMetaClass: Class

END
goalDepended

 c:ControlGoal
WITH depender

MiddleAgencyMetaClass: Class
END

softgoalDepender
 s:StrategicManagementSoftGoal

WITH dependee
ApexMetaClass: Class

END
END CoordinationMetaclass

Figure 3. Structure-in-5 coordination actor in Telos.

The flat structure has no fixed structure and no

control of one actor over another is assumed. The main
advantage of this architecture is that it supports autonomy,
distribution and continuous evolution of an actor
architecture. However, the key drawback is that it requires
an increased amount of reasoning and communication by
each participating actor.

The pyramid style is the well-known hierarchical
authority structure exercised within organizational
boundaries. Actors at the lower levels depend on actors of
the higher levels. The crucial mechanism is direct
supervision from the apex. Managers and supervisors are
then only intermediate actors routing strategic decisions
and authority from the apex to the operating level. They
can coordinate behaviors or take decisions by their own
but only at a local level. This style can be applied when
deploying simple distributed systems.

Moreover, this style encourages dynamicity since
coordination and decision mechanisms are direct, not
complex and immediately identifiable. Evolvability and
modifiability can thus be implemented in terms of this
style at low costs. However, it is not suitable for huge
distributed systems like multi-agent systems requiring
many kinds of agents. Even tough, it can be used by these
systems to manage and resolve crisis situations. For
instance, a complex multi-agent system faced with a non-
authorized intrusion from external and non trustable
agents could dynamically, for a short or long time, decide
to migrate itself into a pyramid organization to be able to
resolve the security problem in a more efficient way.

The joint venture style (Figure 4) involves agreement
between two or more principal partners to obtain the
benefits of larger scale, partial investment and lower
maintenance costs. Through the delegation of authority to
a specific joint management actor that coordinates tasks
and operations and manages sharing of knowledge and

resources they pursue joint objectives and common
purpose. Each principal partner can manage and control
itself on a local dimension and interact directly with other
principal partners to exchange, provide and receive
services, data and knowledge. However, the strategic
operation and coordination of such a system and its
partner actors on a global dimension are only ensured by
the joint management actor. Outside the joint venture,
secondary partners supply services or support tasks for the
organization core.

Delegation
Authority

Partner_1
Principal

Principal
Partner_n

Ressource
Exchange

Principal
Partner_2

Partner_1
Secondary Secondary

Partner_n

Knowledge
Sharing

Management
Joint

Support

Coordination
Added
Value

Contractual
Agreement

Supplying
Services

Figure 4. Joint Venture.

The takeover style involves the total delegation of

authority and management from two or more partners to a
single collective takeover actor. It is similar in many ways
to the joint venture style. The major and crucial difference
is that while in a joint venture identities and autonomies of
the separate units are preserved, the takeover absorbs
these critical units in the sense that no direct relationships,
dependencies or communications are tolerated except
those involving the takeover.

The arm’s-length style implies agreements between
independent and competitive but partner actors. Partners
keep their autonomy and independence but act and put
their resources and knowledge together to accomplish
precise common goals. No authority is delegated or lost
from a collaborator to another.

The bidding style (Figure 5) involves competitivity
mechanisms and actors behave as if they were taking part
in an auction. The auctioneer actor runs the show,
advertises the auction issued by the auction issuer,
receives bids from bidder actors and ensure
communication and feedback with the auction issuer.

The auctioneer might be a system actor that merely
organizes and operates the auction and its mechanisms. It
can also be one of the bidders (for example selling an item
which all other bidders are interested in buying). The
auction issuer is responsible for issuing the bidding.

Start Bid
at the lowest

price

Run
Auction

Bidder_1 Bidder_2

Bid Higher No Higher
Bid

Bidder_n

Auctioneer

Issuer

Best

Bid
PossibleService/

Product

Figure 5. Bidding.

The hierarchical contracting style (Figure 6)

identifies coordinating mechanisms that combine arm’s-
length agreement features with aspects associated with
pyramidal authority. Coordination mechanisms developed
to manage arm’s-length (independent) characteristics
involve a variety of negotiators, mediators and observers
at different levels handling conditional clauses to monitor
and manage possible contingencies, negotiate and resolve
conflicts and finally deliberate and take decisions.
Hierarchical relationships, from the executive apex to the
arm’s-length contractors (top to bottom) restrict autonomy
and underlie a cooperative venture between the
contracting parties. Such dual and admittedly complex
contracting arrangements can be used to manage
conditions of complexity and uncertainty deployed in
high-cost-high-gain (high-risk) applications.

Controller

Negociator Deliberator

Routing Brokering

Observer

Executive

Mediator

Conflict
Solving

Contractor_1 Contractor_2 Contractor_3 Contractor_n

Authority
Strategic
Decisions

Coordinate

Monitoring Matching

Raw
Data

Figure 6. Hierarchical Contracting.

The vertical integration style merges, backward or

forward, one or more system actors engaged in related
tasks but at different stages of a production process. A
merger synchronizes and controls interactions between
each of the participants that can be considered
intermediate workshops. Vertical integrations take place
between exchange partners, actors symbiotically related.

The co-optation style (Figure 7) involves the
incorporation of representatives of external systems into
the decision-making or advisory structure and behavior of
an initiating organization. By co-opting representatives of
external systems, organizations are, in effect, trading
confidentiality and authority for resource, knowledge
assets and support. The initiating system, and its local
contractors, has to come to terms with what is doing on its
behalf; and each co-optated actor has to reconcile and
adjust his own views with the policy of the system he has
to communicate.

Knowledge
Sharing

Support

Cooptated_1

Contractor_1 Contractor_n

Services
Foreign

Provides
Assets Cooptated_2 Cooptated_n

Ressource
External

Figure 7. Cooptation.

3. Evaluating Architecture

The organizational styles defined in Section 2 can be

evaluated and compared using the following software
quality attributes identified for architectures involving
coordinated autonomous components (e.g., Web, internet,
agent or peer-to-peer software systems) :

1 - Predictability [15]. Autonomous components like
agents have a high degree of autonomy in the way that
they undertake action and communication in their
domains. It can be then difficult to predict individual
characteristics as part of determining the behavior of a
distributed and open system at large.

2 - Security. Autonomous components are often able
to identify their own data sources and they may undertake
additional actions based on these sources [15]. Protocols
and strategies for verifying authenticity for these data
sources by individual components are an important
concern in the evaluation of overall system quality since,
in addition to possibly misleading information acquired by
components, there is the danger of hostile external entities

spoofing the system to acquire information accorded to
trusted domain components.

3 - Adaptability. Components may be required to
adapt to modifications in their environment. They may
include changes to the component’s communication
protocol or possibly the dynamic introduction of a new
kind of component previously unknown or the
manipulations of existing components.

- Coordinability. Autonomous components are not
particularly useful unless they are able to coordinate with
other components. This can be realized in two ways:

4 - Cooperativity. They must be able to coordinate
with other entities to achieve a common purpose.

5 - Competitivity. The success of one component
implies the failure of others.

6 - Availability. Components that offer services to
other components must implicitly or explicitly guard
against the interruption of offered services. Availability
must actually be considered a sub-attribute of security [2].
Nevertheless, we deal with it as a top-level software
quality attribute due to its increasing importance in multi-
agent system design.

7 - Integrity. A failure of one component does not
necessarily imply a failure of the whole system. The
system then needs to check the completeness and the
accuracy of data, information and knowledge transactions
and flows. To prevent system failure, different
components can have similar or replicated capabilities and
refer to more than one component for a specific behavior.

8 - Modularity [14] increases efficiency of task
execution, reduces communication overhead and usually
enables high flexibility. On the other hand, it implies
constraints on inter-module communication.

9 - Aggregability. Some components are parts of
other components. They surrender to the control of the
composite entity. This control results in efficient tasks
execution and low communication overhead, however
prevents the system to benefit from flexibility.

 1 2 3 4 5 6 7 8 9

Flat -- -- - + + ++ -

Struct-5 + + + - + ++ ++ ++

Pyramid ++ ++ + ++ - + -- -

Joint-Vent + + ++ + - ++ + ++

Bid -- -- ++ - ++ - -- ++

Takeover ++ ++ - ++ -- + + +

Arm’s-Lgth - -- + - ++ -- ++ +

Hierch Ctr + + + + + +

Vert Integr + + - + - + -- -- --

Coopt - - ++ ++ + -- - --

Table 1. Correlation catalogue.

Table 1 summarizes the correlation catalogue for the
organizational patterns and top-level quality attributes we
have considered. Following notations used by the NFR
(non functional requirements) framework [2], +, ++, -, --,
respectively model partial/positive, sufficient/positive,
partial/negative and sufficient/negative contributions.

4. Examples

To motivate our organizational styles, we consider two
application domains where distributed and open
architectures (e.g., Web, internet, agent or peer-to-peer
software systems) are becoming increasingly important:
mobile robots and e-business systems.

We first consider the mobile robot example presented
in [13]. That case study describes notably the layered
architecture (Figure 8) implemented in the Terregator and
Neptune robots and used more recently to design the
architecture of the Xavier office delivery robot [11].

Figure 8. Classical mobile robot layered architecture.

According to [13] at the lowest level, reside the robot

control routines (motors, joints,...). Levels 2 and 3 deal
with the input from the real world. They perform sensor
interpretation (the analysis of the data from one sensor)
and sensor integration (the combined analysis of different
sensor inputs). Level 4 is concerned with maintaining the
robot's model of the world. Level 5 manages the
navigation of the robot. The next two levels, 6 and 7,
schedule and plan the robot's actions. Dealing with
problems and replanning is also part of the level-7
responsibilities. The top level provides the user interface
and overall supervisory functions.

The following software quality attributes are relevant
for the robot's architecture [13]: Cooperativity,
Predictability, Adaptability, Integrity. Take for instance,
consider Cooperativity and Predictability.

Cooperativity: the robot has to coordinate the actions
it undertakes to achieve its designated objective with the
reactions forced on it by the environment (e.g., avoid an
obstacle). The idealized layered architecture (Figure 8)
implemented on some mobile robots does not really fit the
actual data and control-flow patterns [13]. The layered
architecture style suggests that services and requests are
passed between adjacent layers. However, data and
information exchange is actually not always straight-
forward. Commands and transactions may often need to
skip intermediate layers to establish direct
communication. A structure-in-5 proposes a more
distributed architecture allowing more direct interactions
between component.

Another recognized problem is that the layers do not
separate the data hierarchy (sensor control, interpreted
results, world model) from the control hierarchy (motor
control, navigation, scheduling, planning and user-level
control). Again the structure-in-5 could better differentiate
the data hierarchy - implemented by the operational core,
and support components - from the control structure –
implemented by the operational core, middle agency and
strategic apex as will be described in Figure 9.

Adaptability: application development for mobile
robots frequently requires customization, experimentation
and dynamic reconfiguration. Moreover, changes in tasks
may require regular modification. In the layered
architecture, the interdependencies between layers prevent
the addition of new components or deletion of existing
ones. The structure-in-5 style separates independently
each typical component of an organizational structure but
a joint venture isolating components and allowing
autonomous and dynamic manipulation should be a better
candidate. Partner components, except the joint manager,
can be added or deleted in a more flexible way.

Figure 9 depicts a mobile robot architecture following
the structure-in-5 style from Figure 1. The control
routines component is the operational core managing the
robot motors, joints, etc. Planning/Scheduling is the
coordination component scheduling and planning the
robot’s actions. The real world interpreter is the support
component composed of two sub-components: Real world
sensor accepts the raw input from multiple sensors and
integrates it into a coherent interpretation while World
Model is concerned with maintaining the robot’s model of
the world and monitoring the environment for landmarks.
Navigation is the middle agency component, the central
intermediate module managing the navigation of the
robot. Finally, the user-level control is the human-oriented
strategic apex providing the user interface and overall
supervisory functions.

Planning/
Scheduling

Coordination

Control
Routines

User-level
Control

Navigation

Feedback

Real world
Sensor

World

World Inputs
Handle Real

Real World
Interpretor

DirectPilot

Real-time
Navigation

Adjustments

Human
Control

Model

Synchronize

Assignation
Mission

Mission
Configuration

Parameters

Figure 9. A structure-in-5 mobile robot architecture.

Figure 10 formulates the media robot structure-in-5 in

Telos. MobileRobotClass is a Telos class, instance of the
StructureIn5Metaclass specified in Figure 2. This
aggregation is composed of five exclusive and dependent
parts ControlRoutinesClass, RealWorldInterpreterClass,
NavigationClass, PlanningClass and UserLevelControl-
Class, each of them is instance of one metaclass,
component of StructureIn5MetaClass.

TELL CLASS MobileRobotClass

IN StructureIn5MetaClass WITH
attribute
 name: String
part, exclusivePart, dependentPart
 ControlRoutinesClass: OperationalCoreMetaClass
 RealWorldInterpreter: SupportMetaClass
 NavigationClass: MiddleAgencyMetaClass
 PlanningClass: CoordinationMetaClass
 UserLevelControl: ApexMetaClass

END MobileRobotClass

Figure 10. Mobile robot structure-in-5 architecture in Telos.

Our second example is a user-to-online-buying

application. E-business systems are designed to implement
“virtual enterprises”. By now, software architects have
developed catalogues of web architectural styles (e.g.,
[3]). Some most common styles are the Thin Web Client,
Thick Web Client and Web Delivery. These architectural
styles focus on web concepts, protocols and underlying
technologies but not on business processes nor non
functional requirements of the application. As a result, the
organization of the architecture is not described nor the
conceptual high-level perspective of the e-business
application. The following requirements for a business-to-
consumer architecture could be stated according [1]:
Security, Availability and Adaptability.

Adaptability (decomposed into Updatability and
Maintainbility) deals with the way the system can be
designed using generic mechanisms to allow web pages
and user interfaces to be dynamically and easily changed.
Indeed, information content and layout need to be
frequently refreshed and updated to give correct
information to customers or simply be fashionable for
marketing reasons.

Availability (decomposed into Usability, Integrity and
Response Time): Network communication may not be
very reliable causing sporadic loss of the server. There
should be concerns with the capability of the e-business
system to do what needs to be done, as quickly and
efficiently as possible: in particular with the ability of the
system to respond in time to client requests for its
services. It is also important to provide the customer with
a usable application to be usable, i.e., comprehensible at
first glimpse, intuitive and ergonomic. Equally strategic to
usability concerns is the portability of the application
across browser implementations and the quality of the
interface.

Security (decomposed into Authorization and
Confidentiality): Clients, especially those on the internet
are, like servers, at risk in web applications. It is possible
for web browsers and application servers to download or
upload content and programs that could open up the client
system to crackers and automated agents all over the net.
JavaScript, Java applets, ActiveX controls, and plug-ins
all represent a certain degree of risk to the system and the
information it manages.

Figure 11 suggests a possible assignment of system
responsibilities, based on the joint venture architectural
style for such a e-business application. The system is
decomposed into three principal partners (Store Front,
Billing Processor and Back Store) controlling themselves
on a local dimension and exchanging, providing and
receiving services, data and resources with each other.

Each of them delegates authority to and is controlled
and coordinated by the joint management actor (Joint
Manager) managing the system on a global dimension.
Store Front interacts primarily with Customer and
provides her with a usable front-end web application.
Back Store keeps track of all web information about
customers, products, sales, bills and other data of strategic
importance to Media Shop. Billing Processor is in charge
of the secure management of orders and bills, and other
financial data; also of interactions to Bank Cpy. Joint
Manager manages all of them controlling security gaps,
availability bottlenecks and adaptability issues.

To accommodate the responsibilities of Store Front,
we introduce Item Browser to manage catalogue
navigation, Shopping Cart to select and custom items,
Customer Profiler to track customer data and produce
client profiles, and On-line Catalogue to deal with digital
library obligations. To cope with the identified software

quality attributes (Security, Availability and Adaptability),
Joint Manager is further refined into four new system sub-
actors Availability Manager, Security Checker and
Adaptability Manager each of them assuming one of the
main softgoals (and their more specific subgoals) and
observed by a Monitor. Further refinements are shown
on Figure 11.

Browser
Item

Item
Detail

Profiler
Customer

Customer
DataShopping

Cart

Information
Cart

Delivery
Processor

Processor
Statistics

Integrity

Usability

Order
Processor

Confiden-
tiality

Detail
Delivery

Information
Billing

Profile
Customer

Selected
Items

Ratings

Updatability

Accounting
Processor

Check
Out

Authori-
zation

Security
Checker

Response
time

Payment
Request

Front
Store

Catalogue
On-line

Consult
Catalogue

Item
Select

Invoice
Processor

ability
Adapt-

Manager

Avail-
ability

Manager

Processor
Billing

Store
BackJoint

Manager

Invoice
Process

Maintain-
ability

Monitor

Observe

Figure 11. An e-commerce system joint venture

architecture.

5. A Requirements-Driven Methodology

This research is conducted in the context of Tropos
[1], a software system development methodology which is
founded on the concepts of actor and goal. Tropos is
intended as a seamless methodology which describes in
terms of the same concepts the organizational
environment within which a system will eventually
operate, as well as the system itself. The proposed
methodology supersedes traditional development
techniques, such as structured and object-oriented ones in
the sense that it is tailored to systems that will operate
within an organizational context and is founded on
concepts used during early requirements analysis. To this
end, we adopt the concepts offered by i* [17], a modeling
framework offering concepts like actor, agent, position
and role, as well as social dependencies among actors,
including goal, softgoal, task and resource ones.

Tropos spans four phases of software development:

- Early requirements, concerned with the
understanding of a problem by studying an organizational
setting; the output is an organizational model which
includes relevant actors, their goals and dependencies.

- Late requirements, in which the system-to-be is
described within its operational environment, along with
relevant functions and qualities.

- Architectural design, in which the system's global
architecture is defined in terms of subsystems,
interconnected through data, control and dependencies.

- Detailed design, in which behaviour of each
architectural component is defined in further detail.

6. Conclusion

The paper proposes a set of concepts for specifying
software architectures which is inspired by requirements
modeling research. As such, we believe that our proposal
narrows the gap between a requirements specification and
the software architecture to be produced from it. The
software architectures produced within our framework are
intentional in the sense that components have associated
goals that are supposed to fulfil. The architectures are also
social in the sense that each component has
obligations/expectations towards/from other components.
Obviously, such architectures are best suited to open,
dynamic and distributed applications, such as those that
are becoming prevalent with Web, internet, agent, and
peer-to-peer software technologies.

The research reported here is still in progress. We are
working on formalizing precisely the styles that have been
identified, as well as formalizing the sense in which a
particular architecture is an instance of such a pattern.

The organizational styles we have described will
eventually define a software architectural macrolevel. At a
micro level we will be focusing on the notion of patterns.
Many existing patterns can be incorporated into system
architecture, such as those identified in [4]. For distributed
and open systems characteristics, patterns like the broker,
matchmaker, embassy, mediator, wrapper are more
appropriate [6, 15]. Another direction for further work is
to relate the architectural styles proposed in this work to
extentional, classical architectural components such as
(software) components, ports, connectors, interfaces,
libraries and configurations [12].

References

[1] J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-
Driven Development Methodology”, To appear in Proc. of the
13th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’01), Interlaken, Switzerland, June 2001.

[2] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos. Non-
Functional Requirements in Software Engineering, Kluwer
Publishing, 2000.

[3] J. Conallen. Building Web Applications with UML, Addison-
Wesley, 2000.

 [4] E. Gamma., R. Helm, R. Johnson and J. Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995

[5] B. Gomes-Casseres. The alliance revolution : the new shape
of business rivalry, Cambridge, Mass., Harvard University
Press, 1996.

[6] S. Hayden, C. Carrick and Q. Yang. “Architectural Design
Patterns for Multiagent Coordination” In Proceedings of the
International Conference on Agent Systems '99 (Agents'99),
Seattle, WA, May 1999.

[7] H. Mintzberg. Structure in fives : designing effective
organizations, Englewood Cliffs, N.J., Prentice-Hall, 1992.

[8] R. Motschnig-Pitrik. “The Semantics of PartsVersus
Aggregates in Data/Knowledge Modeling”, In Proc. of the 5th
Int. Conference on Advanced Information Systems Engineering
(CAiSE’93), Paris, June 1993, pp 352-372.

[9] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis.
“Telos: Representing Knowledge About Information Systems”
in ACM Trans. Info. Sys., 8 (4), Oct. 1990, pp. 325 – 362.

[10] W. Richard Scott. Organizations : rational, natural, and
open systems, Upper Saddle River, N.J., Prentice Hall, 1998.

[11] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J.
O'Sullivan. “A modular architecture for office delivery robots”.
In Proc. Of the 1st Int. Conf. on Autonomous Agents (Agents
’97), Marina del Rey. CA, Feb 1997, pp.245 - 252.

[12] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G.
Zelesnik. “Abstractions for software architecture and tools to
support them.” In IEEE Transactions on Software Engineering,
21(4), pp. 314 - 335, 1995.

[13] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline, Upper Saddle River,
N.J., Prentice Hall, 1996.

[14] O. Shehory. Architectural Properties of Multi-Agent
Systems, Technical report CMU-RI-TR-98-28, Carnegie Mellon
University, 1998.

[15] S. G. Woods and M. Barbacci. Architectural Evaluation of
Collaborative Agent-Based Systems. Technical Report,
CMU/SEI-99-TR-025, SEI, Carnegie Mellon University, PA,
USA, 1999.

[16] M.Y. Yoshino and U. Srinivasa Rangan. Strategic
alliances: an entrepreneurial approach to globalization,
Boston, Mass., Harvard Business School Press, 1995.

[17] E. Yu. Modelling Strategic Relationships for Process
Reengineering, Ph.D. thesis, Department of Computer Science,
University of Toronto, Canada, 1995.

