Evaluating the potential for integrating the OPEN and Tropos
metamodels

B. Henderson-Sellers
Faculty of Information Technology
University of Technology, Sydney

Broadway, NSW, Australia

P. Giorgini
Department of Information and Communication Technology
University of Trento, Trento, Italy

P. Bresciani
ITS-Irst, Povo (Trento), Italy

Abstract Methodologies involves both process el-
ements and product elements. The OPEN Pro-
cess Framework (OPF) focusses largely on pro-
cess elements in the context of object-oriented sys-
tems development. The Tropos metamodel, on the
other hand, focusses on early requirements engi-
neering support for agent-oriented development. In
a project to extend the OPF to support agent-
oriented developments, we investigate the potential
for amalgamation of these two methodological ap-
proaches and their metamodels, describing how the
metamodel integration has been initiated.

Keywords: methodology, agent orientation, object
technology

1 Introduction

Although there is a wide range of usage of the
term “methodology”, here we will use it as a
comprehensive term to describe all elements of
the support needed for people to develop soft-
ware. When one turns to identifying an ap-
propriate metamodel to underpin the method-
ology, there are many similarities, independent
of the development paradigm (e.g. agents or
objects) being used. Details, such as modelling
notations, of course differ significantly but the
process elements are remarkably similar. Con-

sequently, we can investigate the efficacy of
combining the metamodelling elements from
various paradigms — here we restrict oursel ves
to an amalgamation of metamodel elements
from one specific OO-focussed methodological
framework (namely OPEN [3]) and one spe-
cific agent-oriented methodology and its (par-
tial) metamodel (namely Tropos [1]). This pro-
vides a first step in creating a unification of
object-oriented and agent-oriented methodolo-
gies. The challenge to do so is both technical
and political. In addition, it is critical that the
result has industry appeal and is not just an
“academic exercise”.

2 The OPEN Metamodel

OPEN (Object-oriented Process, Environment
and Notation: [3]) is a third-generation object-
oriented methodology which has the character-
ising attribute that it supports method engi-
neering (e.g., [2]) rather than being, per se,
a usable methodology. This support is pro-
vided by means of a process metamodel that
defines all the process elements needed to con-
stitute a workable methodology, primarily for
software development, together with gener-
ated instances of all the classes in this meta-
model. Also included are rules for constructing



project-specific processes/methodologies from
these process/method “chunks” using the prin-
ciples of method engineering [2, 4].

The underpinning metamodel is described
[3] in object-oriented terms i.e. classes and re-
lationships between these classes. The classes
in the metamodel describe process elements
such as Phases, all Work Products and vari-
ous Work Units, such as Activity and Task.
Activity is at the highest level in the sense
that a process consists of a number of Activ-
ities: largescale definitions of what must be
done, used to configure the overall methodol-
ogy. They are not used for project manage-
ment or enactment because they are at too
high an abstraction level. Instead, OPEN of-
fers the concept of Task (in agreement with the
Project Managers’ Body of Knowledge) which
is defined as being the smallest unit of work
that can be project managed.

3 The Tropos Metamodel

Tropos [1] was designed to support agent-
oriented systems development with a partic-
ular emphasis on the early requirements engi-
neering phase. The stated aim was to use agent
concepts in the description and definition of the
methodology rather than using OO concepts in
a minor extension to existing OO approaches.
Tropos takes the BDI (Beliefs, Desires and In-
tentions) model [6], formulated to describe the
internal view of a single agent, and applies
those concepts to the external view in terms
of problem modelling as part of requirements
engineering. In other words, it uses Al-derived
mentalistic notions such as actors, goals, soft-
goals, plans, resources, and intentional depen-
dencies in all the phases of software develop-
ment, from the first phases of early analysis
down to the actual implementation. A crucial
role is given to the earlier analysis of require-
ments that precedes prescriptive requirements
specification. In particular, aside from the un-
derstanding of how the intended system will
fit into the organizational setting, and what
the system requirements are, Tropos addresses

also the analysis of the why the system require-
ments are as they are, by performing an in-
depth justification with respect to the organi-
zational goals.

The published Tropos metamodel [1] fo-
cusses on a metamodel fragment to support
early requirements engineering modelling. It
uses agent notions (of plans, goals etc.) as its
basis for describing the business requirements,
the people involved and the overall problem. It
does not address the scope of process elements
supported in the OPF metamodel.

4 Integrating the Two Meta-
models

The possible points of contact and/or intersec-
tion between the OPF and Tropos metamodels
can now be identified based on study of the two
metamodels (as outlined in the previous two
sections). This can be summarized as follows:

e The need for an additional subclass of
Language in the OPF

e The Tropos Actor and Role classes cf. the
OPF Role and Producer classes

e Tropos Goals and OPF Milestones
e Tropos Means and OPF Tasks
e Tropos Plan and OPF Plan (name clash)

At this stage, these points of intersection are
tentative. We hypothesize here that the above
five issues might give us coupling points be-
tween the two approaches. We now analyze
each of these hypotheses in turn, discussing
each of them in more detail below.

4.1 Overall de nition and the Lan-
guage metaclass

Our analysis of Tropos clearly identifies a miss-
ing class in the original OPF metamodel. The
assumption originally was that only one mod-
elling language kind was necessary for all mod-
elling applications. Tropos [1] has shown how



the main modelling language used in object-
oriented applications (UML [5]) is seriously de-
ficient when applied to early requirements en-
gineering. Consequently, at least with present-
day technology, a different metamodel and no-
tation is required beyond the UML to cater
for the issues addressed by Tropos in early re-
quirements engineering, particularly in terms
of modelling the problem domain — UML is
highly solution domain biased.

4.2 Actors, roles and producers

An Actor in Tropos is defined as an entity
with strategic goals and intentionality within
some context [1] that is a generalization of the
concrete classes of Agent, Role and Position.
A role typically characterizes the behaviour
of an agent. This would therefore appear to
be an identical definition to that in the OPF,
wherein a Role is defined as “a functionally co-
hesive part that may be played by a Person
on a Project” ([3], p50). Thus, the hypothesis
that Role is a point of contact between the two
metamodels appears to be well justified.

4.3 Goals and milestones

A goal in agent-oriented methodologies is usu-
ally associated with the internals of an indi-
vidual agent. However, in Tropos, those agent-
oriented ideas are also applied to the real world
modelling undertaken in early requirements en-
gineering, so that the notion of Goal is intro-
duced as being the goal of an Actor (usually
a person) or the goal of a process as exercised
by a person. Tropos also supports the notion
of subgoals in the sense of goals being achieved
en route towards the final goal. There is thus
some ambiguity at present in Tropos because
goals are said to be both the final state we are
aiming to achieve (the normal meaning of the
word goal) but also a means by which we get
there. In the light of this statement, we must
evaluate the Tropos goal both in terms of the
OPEN’s milestone, which is a final state to be
achieved, and also (in the next subsection) in
the context of it, alternatively, as being the

means to an end such that perhaps an OPEN
Technique more closely models it.

The OPEN Milestone is a point in time at
which something has been achieved or some
task completed. Milestone is said also to be
a kind of “Stage without Duration” [3]: an in-
stance in time at which something is celebrated
as having been achieved. Similarly, goals, when
they are achieved, mark a point in time asso-
ciated with the event of success (or failure).
Goals can thus be represented as states e.g.
in a UML State Transition Diagram. They
are, according to the dictionary definition as
“destination”. Attaining a goal requires a plan
which can describe a set of techniques (“how
t0”), zero or more subgoals that need to be
achieved en route to the final goal and, pos-
sibly, a set of resources. This suggests that
at least the more usual meaning of goal in the
agent-oriented literature and as applied in Tro-
pos to requirements engineering equates to the
OPF’s Milestone and the means to achieve the
goal is equated to a more process-like compo-
nent such as Task or Technique.

4.4 Goals and Techniques

The previous subsection suggested that Tropos
goals and OPF Tasks are very similar. How-
ever, it also raised the thorny issue of a second
definition in which a goal is said to be a means
to achieve a(nother) goal. If goal, in this con-
textual meaning, is to represent a “means” of
achieving, then it is a Stage With Duration
(in OPF parlance) or possibly equated with
an OPF Technique, a Technique being a state-
ment of how something is achieved. However,
this meaning is unlikely to be correct since in
the English language there is no semantic link
between the words “goal” and “technique”. A
typical dictionary definition of goal is that of
“object of effort; destination” whereas tech-
nique is defined as “manner of (artistic) exe-
cution”. Thus, the hypothesis that a Goal is
equivalent to a Technique seems false.



4.5 Plans

In the OPF metamodel, a Plan is a class which
inherits from Document. It is intended to rep-
resent those planning documents needed most
in project management. Its peers are Re-
quirements specification, Schedules, Architec-
ture document and so on. All of these inherit
ultimately from the Work Product metaclass.

In Tropos, a plan is a way of achieving a
goal. It is not dissimilar to the OPF Plan
except that it is more dynamic, representing
a means to achieve a goal rather than being
an end product of some process, activity or
task (depending on your preferred terminol-
ogy). Since a Tropos Plan metaclass is in-
tended to represent not only plans in the busi-
ness world, but also the agent-oriented enact-
ment of these, it appears that there is no equiv-
alence with the OPF Plan. A renaming of
one or other class is therefore required in any
merger of these two metamodels.

5 Goals, Tasks and Plans

An interesting outcome of this analysis is the
need for agent-oriented methodologies (and in-
deed those elements describing internal design
of agents) to be clear about the terminology
being used with respect to the technical terms
of Goal, Task and Plan. In our context, we
have examined Tropos and OPF and find both
to be poorly defined.

An agreed meaning for goal (or milestone in
OPF) is clearly an end point — something to
be achieved e.g. I want to be in Beijing for
the Olympics. It defines a desired state. The
question is how to achieve that state.

The subgoals and actions/activities are part
of a plan to achieve the goal. They recommend
decomposition of a state (the goal) into sub-
states (acceptable) and actions (inappropriate
since the actions effect a change of state; they
are not components of that state). Tropos fol-
lows this BDI approach but depicts Plans and
Goals as peers along with Resources.

A Plan is said [1] to provide an abstract
description of a way of doing something, the

execution of which is one means of achieving
the goal. Attainment of subgoals can also be
viewed using the concept of a pre-condition.

It is thus clear that there is some ambiguity
in both the object-oriented and agent-oriented
literature on the differences between goals as
end states and the means to achieve those goals
and what these means should be named in or-
der to be unambiguous. Such a conclusion only
surfaces when one is forced (by choosing to use
a metamodelling approach) to create a met-
alevel description and tight definition of the on-
tology to be used for (in Tropos) agent-oriented
requirements engineering.

References

[1] Bresciani, P., Giorgini, P., Giunchiglia,
F., Mylopolous, J. and Perini, A.: Tro-
pos: an agent-oriented software develop-
ment methodology. Journal of Autonomous
Multi-Agent Systems (2003) in press

[2] Brinkkemper, S.: Method engineering: en-
gineering of information systems develop-
ment methods and tools. Inf. Software
Technol. 38(4) (1996) 275-280

[3] Firesmith, D.G. and Henderson-Sellers, B.:
The OPEN Process Framework. An In-
troduction, Addison-Wesley, Harlow, UK
(2002) 330pp

[4] Henderson-Sellers, B.: Process metamod-
elling and process construction: exam-
ples using the OPEN Process Framework
(OPF), Annals of Software Engineering, 14
(2002) 341-362

[5] OMG: OMG Unified Modeling Language
Specification, Version 1.4, September 2001,
OMG document formal/01-09-68 through
80 (13 documents) [Online]. Available
http://www.omg.org (2001)

[6] Rao, A.S. and Georgeff, M.P., BDI agents:
from theory to practice, Technical Note 56,
Australian Artificial Intelligence Institute
(1995)



