
On Security Requirements Analysis for
 Multi-Agent Systems

Paolo Bresciani
ITC-irst

via sommarive, 18
I-38050 – Povo -Trento - Italy

bresciani@itc.it

Paolo Giorgini
Department Information and
Communication Technology

University of Trento
I-38050 – Povo -Trento - Italy

paolo.giorgini@dit.unitn.it

Haralambos Mouratidis
Department of Computer Science

University of Sheffield
England

h.mouratidis@dcs.shef.ac.uk

ABSTRACT
Agent Oriented Software Engineering (AOSE) is a software
paradigm that has grasped the attention of researchers the last few
years. As a result, many different methods have been introduced
to enable developers develop multi-agent systems. However, so
far, security requirements have been mainly neglected, and the
common approach towards the inclusion of security within a
system is to identify security requirements after the definition of
the system. This approach has provoked the emergence of
computer systems afflicted with security vulnerabilities. In this
paper we propose an analysis, based on the measures of criticality
(how critical an actor of the system is) and complexity (represents
the effort required by the actors of the system to achieve the
requirements that have been imposed to them), which aims to
identify possible bottlenecks of a multi-agent system with respect
to security. An integrated agent-based health and social care
information system is used as a case study throughout this paper.

Keywords
Security analysis, multi-agent systems analysis, agent-oriented
software engineering.

1. INTRODUCTION
In a world that becomes more and more reliant on software

systems, security is an important concern. Private information is
stored in computer systems and without security, organizations
are not willing to share information or even use the technology.
In addition, possible security breaches can cost huge amount of
time and money.

Following the wide recognition of multi-agent systems, agent-
oriented software engineering has been introduced as a major field
of research. Many agent-oriented software engineering
methodologies have been proposed [1,2] each one of those
offering different approaches in modeling multi-agent systems.
However, only few attempts [3] have been made to integrate
security issues within the development stages of agent-oriented
methodologies.

Security requirements are generally difficult to analyse and
model. It is difficult to analyse because many times security
requirements conflict with functional requirements and many
trade offs are required. Performing such trade offs can be painful
and time-consuming and it requires software and security
engineering expertise. In addition, there is lack of developers’
acceptance and expertise for secure software development.

Usually the goal will be to provide as much security as possible
trading sometimes security concerns with other functional and
non-functional requirements. To better achieve this goal, agent-
oriented software engineering methodologies must help
developers, through a systematic approach, to determine how
complex is for each part (actor) of the system to achieve the
security requirements, and also identify the most critical actors of
the system with respect to security. Such an approach will help
developers to perform trade offs between security and other
functional and non-functional requirements based on quantitative
measurements and thus minimizing the risks of putting in danger
the security of the system.

Within a multi-agent system, more likely, different agents will
play different roles and, with respect to security, some will be
more critical than others. In addition, some agents of the system
might have been overloaded (assigned more security requirements
than they can handle) and thus fail to satisfy some of the security
requirements assigned to them.

Developers must be able to identify, through a systematic
approach and without much security knowledge, such cases and
redefine the design of the system in such a way that none of the
agents of the system are overloaded and all the security
requirements assigned to the agents of the system are satisfied.

In this paper we propose an approach based on the concepts of
criticality and complexity, and we indicate how such a process can
be integrated within the early requirements analysis stage of the
Tropos methodology. This work is within the context of the
Tropos project [2] and our aim is to provide a clear and well-
guided process of integrating security and functional requirements
throughout the whole range of the development process. Section 2
provides an overview of Tropos methodology, and also introduces
the electronic Single Assessment Process (eSAP) system case
study. In Section 3, we describe the process of analysing the
complexity and criticality of a system with respect to security, and
we present an algorithm to reduce the complexity and/or the
criticality of the “overloaded” actors. Finally, Section 4 presents
some concluding remarks and directions for future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

2. TROPOS METHODOLOGY
Before we can describe our approach, we think it is necessary to

provide an overview of Tropos methodology and how security can
be integrated to it. Tropos is an agent oriented software
engineering methodology, tailored to describe both the
organisational environment of a system and the system itself,
employing the same concepts throughout the development stages.
The Tropos methodology is intended to support all the analysis
and design activities in the software development process, from
the application domain analysis down to the system
implementation [2]. Using Tropos, developers build a model of
the system-to-be and its environment that is incrementally refined
and extended.

Tropos adopts Yu’s i* model [4] which offers the concepts of
actors, goals, tasks, resources and social dependencies for
defining the obligations of actors (dependees) to other actors
(dependers). Actors have strategic goals and intentions within the
system or the organisation and represent (social) agents
(organisational, human or software), roles or positions (represent
a set of roles). A goal represents the strategic interests of an actor.
In Tropos we differentiate between hard goals (only goals
hereafter) and soft goals; the latter having no clear definition or
criteria for deciding whether they are satisfied or not. A task
represents a way of doing something. For example a task can be
executed in order to satisfy a goal. A resource represents a
physical or an informational entity while a dependency between
two actors indicates that one actor depends on another to
accomplish a goal, execute a task, or deliver a resource.

Tropos covers four stages of software development: Early
Requirements analysis consists of identifying and analysing the
stakeholders and their intentions. Stakeholders are modeled as
social actors, while their intentions are modeled as goals that,
through a goal-oriented analysis, are decomposed into finer goals,
which eventually can support evaluation of alternatives. Late
Requirements analysis consists of analysing the system-to-be
within its operating environment, along with relevant functions
and qualities. The system is introduced as an actor and the
dependencies between the system and the other actors of the
organization are explicitly modeled. These dependencies define
the system’s requirements. Architectural Design describes the
system’s global architecture in terms of subsystems (actors)
interconnected through data and control flows (dependencies).
During this stage, new actors are introduced in the system as a
result of analysis performed at different levels of abstraction. In
addition, capabilities needed by the actors to fulfill their goals and
tasks are identified. Detailed Design deals with the specification
of each architectural component in terms of inputs, outputs,
control and other relevant information. Tropos faces the detailed
design stage on the basis of the specifications resulting from the
architectural design stage and the reasons for a given element can
be traced back to the early requirements analysis.

The security process in Tropos consists in analyzing the
security needs of the stakeholders and the system in terms of
security constraints [5] imposed to the stakeholders (early
requirements) and the system (late requirements), identifying
secure entities [5] that guarantee the satisfaction of the security
constraints, and assigning capabilities to the system (architectural
design) to help towards the satisfaction of the secure entities.

In our work [3, 5] we define security constraints as constraints
that are related to the security of the system while secure entities
represent any secure goal/task/resource of the system [5]. Security

constraints can be categorized into Positive –they influence the
security of the system positively (e.g., Allow Access only to
Personal Information) – or negative – they influence the security
of the system negatively (e.g., Send information plain text).

 To make the process easier to understand, we consider as an
example the electronic Single Assessment Process (eSAP) system
[6]. An agent-based health and social care system for the effective
care of older people. Security in such a system, as in any health
and social care information system, is very important since
revealing a medical history could have serious consequences for
particular individuals. Taking into account a substantial part of
the eSAP, we have defined the following stakeholders for our case
study: The Older Person actor is the older person (patient) that
wishes to receive appropriate health and social care. The
Professional actor represents health and/or social care
professionals involved in the care of the Older Person. The DoH
actor represents the English Department of Health, which is
responsible for the effective care of the Older Person. The
Benefits Agency actor is an agency that helps the Older Person
financially, and the R&D Agency actor represents a research and
development agency that is interested in obtaining medical
information.

During the early requirements analysis stage, the dependencies,
the goals and the security constraints between these actors can be
modeled using Tropos actors’ diagram as shown in Figure 11. In
such a diagram each node represents an actor, and the links
between the different actors indicate that one depends on another
to accomplish some goals.

Legend

Figure. 1. The actor diagram for the eSAP system

1 The numbers next to the security constraints represent the

criticality of the constraint (Section 3).

In our example, the Older Person depends on the Benefits Agency
to Receive Financial Support. However, the Older Person worries
about the privacy of their finances so they impose a constraint to
the Benefits Agency actor, to keep their financial information
private. The Professional depends on the Older Person to Obtain
Information, however one of the most important and delicate
matters for a patient (in our case the Older Person) is the privacy
of their personal medical information, and the sharing of it. Thus
most of the times the Professional is imposed a constraint to share
this information if and only if consent is achieved. One of the
main goals of the R&D Agency is to Obtain Clinical Information
in order to perform tests and research. To get this information the
R&D Agency depends on the Professional. However, the
Professional actor is imposed a constraint (by the Department of
Health) to Keep Patient Anonymity.

3. CRITICALITY AND COMPLEXITY
In the previous section we have briefly described a process of

analysing the security of an organisational setting taking into
consideration some security constraints, which are imposed by the
different stakeholders. However, more likely different security
constraints are having different impact on the security of the
system. That is, one constraint might put in danger the security of
the system in a level that must be satisfied even if it involves a
trade off with some other functional or non-functional
requirements, while other constraints might be not as important.
As a result, different actors of the system impact the security of
the system differently according to what security constraints have
been imposed to. Thus, it is important to provide an analysis that
identifies the impact each actor has on the security of the system.
In doing so we need to define how critical each security
constraint is for the overall security of the system. We call this
measure, security criticality2

 and we define it as follows:

Security Criticality is the measure of how the security of the
system will be affected if the security constraint is not achieved.

Security criticality allows us to evaluate how critical each actor
of the system is with respect to security. This will help us to
identify the security bottlenecks of the system, and refine it by
taking into consideration the different impact that each actor has
on the security of the system. We differentiate between ingoing
and outgoing security criticality. Ingoing security criticality is the
security criticality that an actor assumes when it is responsible for
achieving a security constraint. The outgoing security criticality
represents the security criticality of the achievement of a
constraint for the imposer.

In order to calculate the criticality of the system, we consider
the dependencies and we assign a value for each security
constraint (see numbers next to security constraints in Figure 1).
These values were assigned after studying close the system’s
environment and discuss with the stakeholders. In the case of an
open secure dependency (a dependency that has no security
constraints attached to it), we assign a value of zero both for the
ingoing and outgoing criticalities.

In our analysis we have assumed that criticality obtains integer
values within the range 1-5, where 1 = very low, 2 = low, 3 =

2 Criticality has been introduced by E. Yu in [8]

medium, 4 = high, 5 = very high. However, the range of
acceptable values can change and it depends on each developer.

A maximum value of criticality is also defined for each actor
taking into account, the actor’s abilities, available time, and the
responsibilities they have in the organization.

Although, security criticality allows us to evaluate how critical
each actor of the system is with respect to security, we need to be
able to evaluate how much effort is required by each actor to
achieve the security constraints that have been imposed to them.
To do so, we introduce the concept of security complexity that we
identify as follows:

Security Complexity is the measure of the effort required by
the responsible actor for achieving a security constraint.

Taking into account security complexity helps to design sub-
systems to support actors that might be in danger not achieving
some security constraints, and thus put in danger the overall
security of the system. This means, if an actor is overloaded with
security responsibilities, some of the security constraints should
be delegated to another existing actor of the system, or if this
cannot happen, the developer should introduce another actor and
delegate some of the security constraints of the “overloaded”
actor.

In order to be realistic, we need to take into account both the
system and security complexity, where System Complexity is
defined as the measure of the effort required from the dependee
for achieving the dependum [7]. This is necessary since it might
be the case that an actor’s security complexity is high, however
since their system complexity is very low, they are capable of
achieving all the security constraints. On the contrary an actor’s
security complexity might be low but their system complexity is
high and this prevents them from achieving all the security
constraints imposed to them. Thus, by taking into consideration
both system and security complexity we can identify more precise
the degree of achievement of the security complexity.

In addition, an important factor in (realistically) calculating the
overall complexity is time. It might be the case that an actor can
achieve different (secure) goals sequentially, so in this case is not
realistic to sum up the individual values of complexity in order to
evaluate the overall complexity of the actor. Sum up all the
different complexity values will be realistic only if all the goals
must be achieved at the same time. However, in the real world this
will be more likely the case of an organization (department) in
which different agents work, than the case of a single agent.

Similar to criticality analysis, we have assumed that complexity
(system and security) can obtain integer values within the range 1-
5, where 1 = very low, 2= low, 3=medium, 4=high, 5=very high.
Also similarly to criticality, a maximum value of (overall)
complexity is defined for each actor.

Figure 2. Rationale diagram of the Professional actor

To be able to precisely assign values for security and system
complexity, each actor of the system and their security constraints
and goals respectively must be further analysed. This is necessary
since the security constraints and the goals modeled in the actors’
diagram (figure 1) are quite superficial and it is difficult to
evaluate their complexity, since many different alternative tasks
might be considered for their satisfaction, each with different
complexity value. Thus, we are extending our analysis, by further
analysing (for each actor involved in our system) the security
constraints (for the security complexity) and the actor’s goals
(system complexity), together with the different alternatives that
can satisfy them. This kind of analysis, apart from helping us to
define more precisely the values for complexity, it provides a
basis to choose between different alternatives that can be
employed for the satisfaction of security constraints and the
actor’s goals, something very important in justifying the trade offs
between security and the functional requirements of the system.

For this analysis, we are employing Tropos rationale diagrams
[4]. Differently than actors’ diagram, which focuses on the
external relationships between the actors of the organization, each
rationale diagram analyses the internal goals, security constraints
and dependencies of each actor (figure 2). In order to calculate the
values of security complexity for each actor, different weights
have been assigned to the different relationships involved in the
satisfaction of the security constraints (secure goals), that have
been imposed to the actor, and the actor’s strategic goals. For
reasons of simplicity in this paper we have assumed weights can

obtain integer numbers in the range of 1-5 (1 being the lowest
value with respect to complexity and 5 the highest).

In addition, in the cases where the dependum is a soft goal,
minimal system complexity values are assumed. This is the
minimal effort requested from the depender to achieve the soft
goal. This has been decided since the concept of a soft goal has no
clear criteria for whether there are satisfied or not, and as such we
cannot assign a precise value required for achieving the soft goal.

For our case study, the rationale diagram of the Professional
actor is shown in figure 2. As it can be seen from the figure,
different alternatives can be considered for the satisfaction of the
security goals imposed to the actor as well as the actor’s strategic
goals. For example, to identify problems, the Professional can
evaluate info manually or use eSAP. For each of those alternatives
we have assigned a value as shown in figure 2. In addition, the
contribution of each alternative to the other functional and
security requirements is shown in figure 2 (as dashed line links).
To denote the contributions of the different alternatives, we
employ a quantitative approach presented by Giorgini et al [8].
Thus each contribution receives weights between 0 and 1, where 0
means the alternative puts in maximum danger the security or the
functional requirement, while 1 means the alternative completely
satisfies the security or the functional requirement. To keep the
diagram simple and understandable we denote contributions to the
Keep Patient Anonymity security constraint, only from the Obtain
OP Consent secure goal alternatives (figure 2).

For example, the Share Information Only if Consents Obtained
security constraint of the Professional actor is satisfied by the
Obtain OP Consent secure goal. However, this goal can be
achieved by considering different alternatives, each one of those
alternatives having a different security complexity weight. Thus,
the Professional can Visit OP, Use Phone, Use eSAP, or Ask a
Nurse to obtain the consent of the Older Person. These tasks have
been assigned with different weights of complexity according to
how much effort is required from the Professional to achieve
them. Thus, in the above-mentioned tasks we have assign weights
of 5,4,3 and 2 respectively. However, in deciding which task is
best suited, developers should take other concerns into
consideration such as how this task affects other requirements of
the system. For example, although the Ask a Nurse is the less
complex task for the Professional and the obvious choice from the
point of view of complexity, it is worth considering that the
involvement of a nurse could contribute negatively to the Keep
Patient Anonymity security constraint also imposed to the
Professional actor. This could put in danger the privacy of the
Older Person, an undesired effect for our system. Thus, we have
decided in this case to choose the Use eSAP task, since it requires
the less effort (apart from the Ask a Nurse) and also it helps
towards the older person’s privacy. When all the different options
have been considered and a choice about which one is best suited
have been made, the next step is to calculate the overall
complexity for each actor. This process takes part alongside with
the calculation of the criticality for each actor.

In order to analyze the complexity and criticality with respect to
security, we firstly calculate, for each actor involved, the
complexity and the criticality. Then, if some actor assumes a
greater value of complexity and criticality than the maximum
value they can assume, we want to reassign some security
constraints to different actors of the system in order to reduce the
complexity or the criticality of the “overloaded” actors. In other
words, the problem we want to solve is: "how to reassign one (or
more) goals of actors whose complexity/criticality is greater that
their maximum complexity/criticality limit?", that is, how can we
reconfigure the topology of the actor diagram in order to end up
with a “balanced” configuration? Of course we would like to
solve the problem by means of minimal topology modifications.
In fact, many solutions may be found by radically redesigning the
diagram, but these shouldn’t be considered as first choice
solutions.

To take into account these needs, we propose in Figure 3 the
Rebalance algorithm that, given a representation of a actor
diagram and its constraints, is capable to produce a new
configuration (if it exists), in which the constraints are satisfied.
For shake of simplicity the algorithm considers only the
complexity and not the criticality, but it is easy to extend it to
consider both complexity and criticality.

Let's assume there are m dependums and n actors, and suppose
that the fact that different actors may fulfill a dependum is coded
by means of a cost matrix CoM[1..n,1..m] where, for each
actor i and dependum j, the cost for i to fulfill j is given. Of
course this cost may be different for different actors fulfilling the
same dependum (not all the actors have the same level of skill)
and, in particular, it may be infinite (MAXINT) for some actors
(not all the actors can fulfill a given dependum). The vector
M_CoV[1..n] provides instead the maximum complexity that

each actor can hold. These are constant data provided with the
analysis of the domain.

The actor diagram topology, instead, is described by means of a
variable A that is a matrix [1..n,1..m] of boolean where a
“1” in position (i,j) means that the dependum j (or row in the
matrix) is assigned at the actor i. Of course, for each dependum j
there is one and only one "1". The actor load defined by the
current topology is computed by the function:

Compl(i,A)= Sum(for all j)CoM[i,j]A[i,j])

The core of the algorithm is given by the Function
Try_One_Actor that tries to rearrange the matrix A in order to
accommodate the load of actor i below its maximum complexity
capacity, starting to analyze dependum j first. It iteratively
considers possible reassignments for dependum j to other actors
that can fulfill it without exceeding their maximum capacity
(tested by the Function:

 Fits(A,l,j)=Compl(l,A)+ CoM[l,j]≤M_CoV[i])

Recursivelly the problem is scaled down by considering also
other dependums (j+1) if the reassignment of the current one (j)
is not sufficient or not possible. Backtrack is required in case the
current reassignment of j to l is useless.

This core function, that considers the case in which only one
actor is overloaded, can be extended to the case with more
overloaded actors, as done with Function
Reballance_Intransitive. Here the recursion with the
possible backtrack step is done on the Function
Reballance_Intransitive, only in the case at least one of
the overloaded actors can be re-balanced. The backtrack allows us
to iteratively consider all the overloaded actors in turn as the first
to be processed. In fact, the solution may depend, in general --
even tough very idiosyncratic-- cases, by the processing order.
The recursion takes care for considering the other overloaded
actors.

Finally, if a solution involving the redistribution of dependums
from actor to actor, requiring that recipient actors have not to be
re-balanced themselves, cannot be found by means of Function
Reballance_Intransitive, the Function Rebalance
consider also the possibility of transitively affect the load of
recipient actors even over their maximum capacity, by means of
the Function Try_Transitive. In this case the adjustments
can be spread all over the matrix, implying radical topology
redesign. Minimizing modifications became now more difficult
even to be defined, and, in the current version of the algorithm, no
particular claim is done, except that termination and the
production of one solution (if it exists) is generated. Termination
is guaranteed by the fact that each dependum is reassigned at most
once (there is no need to reassign it more than once; again, of
course, the use of backtracking allow ut to test all the re-
assignments).

CONST m:integer; {# of dependums}
 n:integer; {# of actors}
 M_CoV:array[1..n] of real; {max cost for
each actor}
 CoM:array[1..n,1..m] od real; {the effort
for actor i to provide goal j}

GLOBAL VAR VISITED_DEP:set of visited dependums,
initially empty;
 A:array[1..n,1..m] of boolean; {the
assignament matrix properly initialized to reflect
the diagram topology}

LOCAL VAR SET_OF_UNBALLANCED:set of actors;

Function Rebalance(var A : ass_matrix):boolean;
begin
 result:=reballance_intransitive(A);
 if result=fail then
 begin
 SET_OF_UNBALLANCED:={i|Compl(i,A)>M_CoV[i]};
 copy_of_A:=A;
 while result=fail and not
empty(SET_OF_UNBALLANCED) do
 begin
 i:=POP(SET_OF_UNBALLANCED);
 result:=try_transitive(i,A);
 if result=fail then A:=copy_of_A
 end
 end;
 RETURN result
end;

Function Try_One_Actor(i,j:integer; var A :
ass_matrix):boolean;
begin
 result:=fail;
 l:=0;
 if j<=m and A[i,j]=1 then
 while Compl(A,i)>M_CoV[i] and l<n do
 begin
 l++;
 if l<>i and Fits(A,l,j) then
 begin
 copy_of_A:=A;
 A[l,j]:=1; A[i,j]:=0;
 if Compl(A,i)>M_CoV[i] then
 begin
 result:=try_one_actor(i,j+1,A);
 if result=fail then A:=copy_of_A
 end
 else result:=OK
 end
 end;
 RETURN result
End

Function Try_Transitive(i:integer; var A :
ass_matrix):boolean;
begin
 result:=fail;
 copy_of_A:=A;
 j:=0;
 if not empty(VISITED_DEP) then
 while j<m and result=fail do
 begin
 j++;
 if A[i,j]=1 and not j in VISITED_DEP then
 begin
 j --> VISITED_DEP;
 l:=0;
 while l<n and (Compl(i,A)>M_CoV[i] or
result=fail) do
 begin
 l++;
 if l<>i and CoM[l,j]<MAXINT then
 begin
 A[l,j]:=1; A[i,j]:=0;
 result:=reballance(A);
 if result=fail then A:=copy_of_A
 end
 end;
 if result=fail then
VISITED_DEP:=VISITED_DEP-{j}
 end
 end;
 RETURN result
End

Function Reballance_Intransitive(var A :
ass_matrix):boolean;
begin
 result:=fail;
 SET_OF_UNBALLANCED:={i|Compl(i,A)>M_CoV[i]};
 if empty(SET_OF_UNBALLANCED) then result:=OK
 else
 begin
 copy_of_A:=A;
 while result=fail and not
empty(SET_OF_UNBALLANCED) do
 begin
 i:=POP(SET_OF_UNBALLANCED);
 if try_one_actor(i,j,A)=OK then
 begin
 result:=reballance_intransitive(A);
 if result=fail then A:=copy_of_A
 end
 end
 end;
 RETURN result
end;

Figure 3. The reassignment algorithm

4. CONCLUSION
In this paper we have presented an analysis for evaluating the

degree of complexity and criticality of the actors of the system,
with respect to security. Such an analysis provides a valuable
process for the developers of multi-agent systems in order to
identify possible security bottlenecks. In addition, we have

proposed an algorithm to reduce the complexity or the criticality
of the “overloaded” actors.

Our analysis helps to justify possible trade offs between
security and functional requirements. By knowing how critical an
agent is with respect to security a decision can be made. Our aim
is to provide a clear well guided process of integrating security
and functional requirements throughout the whole range of the
development stages. Such a process must use the same concepts

and notations throughout the development phases. The ability to
identify the bottlenecks of a multi-agent system with respect to
security and justify the decisions behind possible trade offs
between security and functional requirements can definitely help
towards this aim.

This work is an ongoing research. The presented analysis
covers only the requirements stage of the Tropos methodology.
We are working towards extending our analysis to the next stages
of the methodology, since such an analysis can help in the later
stages of the development. For example, criticality and complexity
can help us decide for different architectural choices during the
architectural design stage of the methodology, such as the choice
between mobile and static agents.

The present version of the algorithm guarantees to find a
solution that requires the reassignments of dependums of
overloaded actors only, if it exists. Otherwise, a solution with
transitive reassignments is in any case provided (if it exists),
although we cannot at present guarantee it is the best. We believe
that, possibly after small improvements, the algorithm can provide
the “best” solution. We foresee to work to prove this fact. Our
future research plan includes also the study of the complexity of
the algorithm, and its implementation and test.

5. REFERENCES
[1] C. Iglesias, M. Garijo, J. Gonzales, “A survey of agent-

oriented methodologies”, Intelligent Agents IV, A. S.
Rao, J. P. Muller, M. P. Singh (eds), Lecture Notes in
Computer Science, Springer-Verlag, 1999

[2] J. Castro, M. Kolp and J. Mylopoulos. “A
Requirements-Driven Development Methodology,” In
Proc. of the 13th Int. Conf. On Advanced Information
Systems Engineering (CAiSE’01), Interlaken,
Switzerland, June 2001.

[3] H. Mouratidis, P. Giorgini, G. Manson, “Modelling
Secure Multiagent Systems”, (to appear) in the
Proceedings of the 2nd International Joint Conference
on Autonomous Agents and Multiagent Systems,
Melbourne-Australia, July 2003

[4] E. Yu, “Modelling Strategic Relationships for Process
Reengineering”, PhD thesis, Department of Computer
Science, University of Toronto, Canada, 1995

[5] H. Mouratidis, P. Giorgini, G. Manson, I. Philp, “A
Natural Extension of Tropos Methodology for
Modelling Security”, Proceedings of the Agent
Oriented Methodologies Workshop in OOPSLA 2002,
Seattle-USA, November 2002

[6] H. Mouratidis, i. Philp, G. Manson, “Analysis and
Design of eSAP: An Integrated Health and Social Care
Information System”, in the Proceedings of the 7th
International Symposium on Health Information
Managements Research (ISHIMR2002), Sheffield,
June 2002

[7] M. Garzetti, P. Giorgini, J. Mylopoulos, F. Sannicolo,
“Applying Tropos Methodology to a real case study:
Complexity and Criticality Analysis”, in the
Proceedings of the Second Italian workshop on “WOA
2002 dagli oggetti agli agenti dall’informazione alla
conoscenza”, Milano, 18-19 November 2002

[8] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R.
Sebastiani. “Reasoning with Goal Models”, in the
Proceedings of the 21st International Conference on
Conceptual Modeling (ER2002), Tampere, Finland,
October 2002.

