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ABSTRACT 
Agent Oriented Software Engineering (AOSE) is a software 
paradigm that has grasped the attention of researchers the last few 
years. As a result, many different methods have been introduced 
to enable developers develop multi-agent systems. However, so 
far, security requirements have been mainly neglected, and the 
common approach towards the inclusion of security within a 
system is to identify security requirements after the definition of 
the system. This approach has provoked the emergence of 
computer systems afflicted with security vulnerabilities. In this 
paper we propose an analysis, based on the measures of criticality 
(how critical an actor of the system is) and complexity (represents 
the effort required by the actors of the system to achieve the 
requirements that have been imposed to them), which aims to 
identify possible bottlenecks of a multi-agent system with respect 
to security. An integrated agent-based health and social care 
information system is used as a case study throughout this paper.  

Keywords 
Security analysis, multi-agent systems analysis, agent-oriented 
software engineering. 

1. INTRODUCTION 
In a world that becomes more and more reliant on software 

systems, security is an important concern. Private information is 
stored in computer systems and without security, organizations 
are not willing to share information or even use the technology.  
In addition, possible security breaches can cost huge amount of 
time and money.  

Following the wide recognition of multi-agent systems, agent-
oriented software engineering has been introduced as a major field 
of research. Many agent-oriented software engineering 
methodologies have been proposed [1,2] each one of those 
offering different approaches in modeling multi-agent systems. 
However, only few attempts [3] have been made to integrate 
security issues within the development stages of agent-oriented 
methodologies.  

Security requirements are generally difficult to analyse and 
model. It is difficult to analyse because many times security 
requirements conflict with functional requirements and many 
trade offs are required. Performing such trade offs can be painful 
and time-consuming and it requires software and security 
engineering expertise. In addition, there is lack of developers’ 
acceptance and expertise for secure software development.  

Usually the goal will be to provide as much security as possible 
trading sometimes security concerns with other functional and 
non-functional requirements. To better achieve this goal, agent-
oriented software engineering methodologies must help 
developers, through a systematic approach, to determine how 
complex is for each part (actor) of the system to achieve the 
security requirements, and also identify the most critical actors of 
the system with respect to security. Such an approach will help 
developers to perform trade offs between security and other 
functional and non-functional requirements based on quantitative 
measurements and thus minimizing the risks of putting in danger 
the security of the system. 

Within a multi-agent system, more likely, different agents will 
play different roles and, with respect to security, some will be 
more critical than others. In addition, some agents of the system 
might have been overloaded (assigned more security requirements 
than they can handle) and thus fail to satisfy some of the security 
requirements assigned to them.  

Developers must be able to identify, through a systematic 
approach and without much security knowledge, such cases and 
redefine the design of the system in such a way that none of the 
agents of the system are overloaded and all the security 
requirements assigned to the agents of the system are satisfied.  

In this paper we propose an approach based on the concepts of 
criticality and complexity, and we indicate how such a process can 
be integrated within the early requirements analysis stage of the 
Tropos methodology. This work is within the context of the 
Tropos project [2] and our aim is to provide a clear and well-
guided process of integrating security and functional requirements 
throughout the whole range of the development process. Section 2 
provides an overview of Tropos methodology, and also introduces 
the electronic Single Assessment Process (eSAP) system case 
study. In Section 3, we describe the process of analysing the 
complexity and criticality of a system with respect to security, and 
we present an algorithm to reduce the complexity and/or the 
criticality of the “overloaded” actors.  Finally, Section 4 presents 
some concluding remarks and directions for future work. 
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2. TROPOS METHODOLOGY 
Before we can describe our approach, we think it is necessary to 

provide an overview of Tropos methodology and how security can 
be integrated to it.  Tropos is an agent oriented software 
engineering methodology, tailored to describe both the 
organisational environment of a system and the system itself, 
employing the same concepts throughout the development stages. 
The Tropos methodology is intended to support all the analysis 
and design activities in the software development process, from 
the application domain analysis down to the system 
implementation [2]. Using Tropos, developers build a model of 
the system-to-be and its environment that is incrementally refined 
and extended.  

Tropos adopts Yu’s i* model [4] which offers the concepts of 
actors, goals, tasks, resources and social dependencies for 
defining the obligations of actors (dependees) to other actors 
(dependers). Actors have strategic goals and intentions within the 
system or the organisation and represent (social) agents 
(organisational, human or software), roles or positions (represent 
a set of roles). A goal represents the strategic interests of an actor. 
In Tropos we differentiate between hard goals (only goals 
hereafter) and soft goals; the latter having no clear definition or 
criteria for deciding whether they are satisfied or not. A task 
represents a way of doing something. For example a task can be 
executed in order to satisfy a goal. A resource represents a 
physical or an informational entity while a dependency between 
two actors indicates that one actor depends on another to 
accomplish a goal, execute a task, or deliver a resource. 

Tropos covers four stages of software development: Early 
Requirements analysis consists of identifying and analysing the 
stakeholders and their intentions. Stakeholders are modeled as 
social actors, while their intentions are modeled as goals that, 
through a goal-oriented analysis, are decomposed into finer goals, 
which eventually can support evaluation of alternatives. Late 
Requirements analysis consists of analysing the system-to-be 
within its operating environment, along with relevant functions 
and qualities. The system is introduced as an actor and the 
dependencies between the system and the other actors of the 
organization are explicitly modeled. These dependencies define 
the system’s requirements. Architectural Design describes the 
system’s global architecture in terms of subsystems (actors) 
interconnected through data and control flows (dependencies). 
During this stage, new actors are introduced in the system as a 
result of analysis performed at different levels of abstraction. In 
addition, capabilities needed by the actors to fulfill their goals and 
tasks are identified. Detailed Design deals with the specification 
of each architectural component in terms of inputs, outputs, 
control and other relevant information. Tropos faces the detailed 
design stage on the basis of the specifications resulting from the 
architectural design stage and the reasons for a given element can 
be traced back to the early requirements analysis.   

The security process in Tropos consists in analyzing the 
security needs of the stakeholders and the system in terms of 
security constraints [5] imposed to the stakeholders (early 
requirements) and the system (late requirements), identifying 
secure entities [5] that guarantee the satisfaction of the security 
constraints, and assigning capabilities to the system (architectural 
design) to help towards the satisfaction of the secure entities.  

In our work [3, 5] we define security constraints as constraints 
that are related to the security of the system while secure entities 
represent any secure goal/task/resource of the system [5]. Security 

constraints can be categorized into Positive –they influence the 
security of the system positively (e.g., Allow Access only to 
Personal Information) – or negative – they influence the security 
of the system negatively (e.g., Send information plain text).  

   To make the process easier to understand, we consider as an 
example the electronic Single Assessment Process  (eSAP) system 
[6]. An agent-based health and social care system for the effective 
care of older people. Security in such a system, as in any health 
and social care information system, is very important since 
revealing a medical history could have serious consequences for 
particular individuals. Taking into account a substantial part of 
the eSAP, we have defined the following stakeholders for our case 
study: The Older Person actor is the older person (patient) that 
wishes to receive appropriate health and social care. The 
Professional actor represents health and/or social care 
professionals involved in the care of the Older Person.  The DoH 
actor represents the English Department of Health, which is 
responsible for the effective care of the Older Person. The 
Benefits Agency actor is an agency that helps the Older Person 
financially, and the R&D Agency actor represents a research and 
development agency that is interested in obtaining medical 
information.  

During the early requirements analysis stage, the dependencies, 
the goals and the security constraints between these actors can be 
modeled using Tropos actors’ diagram as shown in Figure 11. In 
such a diagram each node represents an actor, and the links 
between the different actors indicate that one depends on another 
to accomplish some goals.  
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Figure. 1. The actor diagram for the  eSAP system  
                                                                 
1 The numbers next to the security constraints represent the 

criticality of the constraint (Section 3). 



In our example, the Older Person depends on the Benefits Agency 
to Receive Financial Support. However, the Older Person worries 
about the privacy of their finances so they impose a constraint to 
the Benefits Agency actor, to keep their financial information 
private. The Professional depends on the Older Person to Obtain 
Information, however one of the most important and delicate 
matters for a patient (in our case the Older Person) is the privacy 
of their personal medical information, and the sharing of it. Thus 
most of the times the Professional is imposed a constraint to share 
this information if and only if consent is achieved.  One of the 
main goals of the R&D Agency is to Obtain Clinical Information 
in order to perform tests and research. To get this information the 
R&D Agency depends on the Professional. However, the 
Professional actor is imposed a constraint (by the Department of 
Health) to Keep Patient Anonymity. 

3. CRITICALITY AND COMPLEXITY 
In the previous section we have briefly described a process of 

analysing the security of an organisational setting taking into 
consideration some security constraints, which are imposed by the 
different stakeholders. However, more likely different security 
constraints are having different impact on the security of the 
system. That is, one constraint might put in danger the security of 
the system in a level that must be satisfied even if it involves a 
trade off with some other functional or non-functional 
requirements, while other constraints might be not as important. 
As a result, different actors of the system impact the security of 
the system differently according to what security constraints have 
been imposed to. Thus, it is important to provide an analysis that 
identifies the impact each actor has on the security of the system. 
In doing so we need to define how critical each security 
constraint is for the overall security of the system. We call this 
measure, security criticality2

 and we define it as follows:  

Security Criticality is the measure of how the security of the 
system will be affected if the security constraint is not achieved.   

Security criticality allows us to evaluate how critical each actor 
of the system is with respect to security. This will help us to 
identify the security bottlenecks of the system, and refine it by 
taking into consideration the different impact that each actor has 
on the security of the system. We differentiate between ingoing 
and outgoing security criticality. Ingoing security criticality is the 
security criticality that an actor assumes when it is responsible for 
achieving a security constraint. The outgoing security criticality 
represents the security criticality of the achievement of a 
constraint for the imposer. 

In order to calculate the criticality of the system, we consider 
the dependencies and we assign a value for each security 
constraint (see numbers next to security constraints in Figure 1). 
These values were assigned after studying close the system’s 
environment and discuss with the stakeholders. In the case of an 
open secure dependency (a dependency that has no security 
constraints attached to it), we assign a value of zero both for the 
ingoing and outgoing criticalities.   

In our analysis we have assumed that criticality obtains integer 
values within the range 1-5, where 1 = very low, 2 = low, 3 = 

                                                                 
2 Criticality has been introduced by E. Yu in [8] 

medium, 4 = high, 5 = very high. However, the range of 
acceptable values can change and it depends on each developer. 

A maximum value of criticality is also defined for each actor 
taking into account, the actor’s abilities, available time, and the 
responsibilities they have in the organization.  

Although, security criticality allows us to evaluate how critical 
each actor of the system is with respect to security, we need to be 
able to evaluate how much effort is required by each actor to 
achieve the security constraints that have been imposed to them. 
To do so, we introduce the concept of security complexity that we 
identify as follows:  

Security Complexity is the measure of the effort required by 
the responsible actor for achieving a security constraint. 

Taking into account security complexity helps to design sub-
systems to support actors that might be in danger not achieving 
some security constraints, and thus put in danger the overall 
security of the system. This means, if an actor is overloaded with 
security responsibilities, some of the security constraints should 
be delegated to another existing actor of the system, or if this 
cannot happen, the developer should introduce another actor and 
delegate some of the security constraints of the “overloaded” 
actor. 

In order to be realistic, we need to take into account both the 
system and security complexity, where System Complexity is 
defined as the measure of the effort required from the dependee 
for achieving the dependum [7]. This is necessary since it might 
be the case that an actor’s security complexity is high, however 
since their system complexity is very low, they are capable of 
achieving all the security constraints. On the contrary an actor’s 
security complexity might be low but their system complexity is 
high and this prevents them from achieving all the security 
constraints imposed to them. Thus, by taking into consideration 
both system and security complexity we can identify more precise 
the degree of achievement of the security complexity.  

In addition, an important factor in (realistically) calculating the 
overall complexity is time. It might be the case that an actor can 
achieve different (secure) goals sequentially, so in this case is not 
realistic to sum up the individual values of complexity in order to 
evaluate the overall complexity of the actor.  Sum up all the 
different complexity values will be realistic only if all the goals 
must be achieved at the same time. However, in the real world this 
will be more likely the case of an organization (department) in 
which different agents work, than the case of a single agent. 

Similar to criticality analysis, we have assumed that complexity 
(system and security) can obtain integer values within the range 1-
5, where 1 = very low, 2= low, 3=medium, 4=high, 5=very high. 
Also similarly to criticality, a maximum value of (overall) 
complexity is defined for each actor. 



 

 

Figure 2. Rationale diagram of the Professional actor 

To be able to precisely assign values for security and system 
complexity, each actor of the system and their security constraints 
and goals respectively must be further analysed. This is necessary 
since the security constraints and the goals modeled in the actors’ 
diagram (figure 1) are quite superficial and it is difficult to 
evaluate their complexity, since many different alternative tasks 
might be considered for their satisfaction, each with different 
complexity value. Thus, we are extending our analysis, by further 
analysing (for each actor involved in our system) the security 
constraints (for the security complexity) and the actor’s goals 
(system complexity), together with the different alternatives that 
can satisfy them. This kind of analysis, apart from helping us to 
define more precisely the values for complexity, it provides a 
basis to choose between different alternatives that can be 
employed for the satisfaction of security constraints and the 
actor’s goals, something very important in justifying the trade offs 
between security and the functional requirements of the system.  

For this analysis, we are employing Tropos rationale diagrams 
[4]. Differently than actors’ diagram, which focuses on the 
external relationships between the actors of the organization, each 
rationale diagram analyses the internal goals, security constraints 
and dependencies of each actor (figure 2). In order to calculate the 
values of security complexity for each actor, different weights 
have been assigned to the different relationships involved in the 
satisfaction of the security constraints (secure goals), that have 
been imposed to the actor, and the actor’s strategic goals. For 
reasons of simplicity in this paper we have assumed weights can 

obtain integer numbers in the range of 1-5 (1 being the lowest 
value with respect to complexity and 5 the highest).   

In addition, in the cases where the dependum is a soft goal, 
minimal system complexity values are assumed. This is the 
minimal effort requested from the depender to achieve the soft 
goal. This has been decided since the concept of a soft goal has no 
clear criteria for whether there are satisfied or not, and as such we 
cannot assign a precise value required for achieving the soft goal. 

For our case study, the rationale diagram of the Professional 
actor is shown in figure 2.  As it can be seen from the figure, 
different alternatives can be considered for the satisfaction of the 
security goals imposed to the actor as well as the actor’s strategic 
goals. For example, to identify problems, the Professional can 
evaluate info manually or use eSAP. For each of those alternatives 
we have assigned a value as shown in figure 2. In addition, the 
contribution of each alternative to the other functional and 
security requirements is shown in figure 2 (as dashed line links). 
To denote the contributions of the different alternatives, we 
employ a quantitative approach presented by Giorgini et al [8]. 
Thus each contribution receives weights between 0 and 1, where 0 
means the alternative puts in maximum danger the security or the 
functional requirement, while 1 means the alternative completely 
satisfies the security or the functional requirement. To keep the 
diagram simple and understandable we denote contributions to the 
Keep Patient Anonymity security constraint, only from the Obtain 
OP Consent secure goal alternatives (figure 2). 



For example, the Share Information Only if Consents Obtained 
security constraint of the Professional actor is satisfied by the 
Obtain OP Consent secure goal. However, this goal can be 
achieved by considering different alternatives, each one of those 
alternatives having a different security complexity weight. Thus, 
the Professional can Visit OP, Use Phone, Use eSAP, or Ask a 
Nurse to obtain the consent of the Older Person.  These tasks have 
been assigned with different weights of complexity according to 
how much effort is required from the Professional to achieve 
them. Thus, in the above-mentioned tasks we have assign weights 
of 5,4,3 and 2 respectively. However, in deciding which task is 
best suited, developers should take other concerns into 
consideration such as how this task affects other requirements of 
the system. For example, although the Ask a Nurse is the less 
complex task for the Professional and the obvious choice from the 
point of view of complexity, it is worth considering that the 
involvement of a nurse could contribute negatively to the Keep 
Patient Anonymity security constraint also imposed to the 
Professional actor.  This could put in danger the privacy of the 
Older Person, an undesired effect for our system. Thus, we have 
decided in this case to choose the Use eSAP task, since it requires 
the less effort (apart from the Ask a Nurse) and also it helps 
towards the older person’s privacy. When all the different options 
have been considered and a choice about which one is best suited 
have been made, the next step is to calculate the overall 
complexity for each actor. This process takes part alongside with 
the calculation of the criticality for each actor. 

In order to analyze the complexity and criticality with respect to 
security, we firstly calculate, for each actor involved, the 
complexity and the criticality. Then, if some actor assumes a 
greater value of complexity and criticality than the maximum 
value they can assume, we want to reassign some security 
constraints to different actors of the system in order to reduce the 
complexity or the criticality of the “overloaded” actors. In other 
words, the problem we want to solve is: "how to reassign one (or 
more) goals of actors whose complexity/criticality is greater that 
their maximum complexity/criticality limit?", that is, how can we 
reconfigure the topology of the actor diagram in order to end up 
with a “balanced” configuration? Of course we would like to 
solve the problem by means of minimal topology modifications. 
In fact, many solutions may be found by radically redesigning the 
diagram, but these shouldn’t be considered as first choice 
solutions.  

To take into account these needs, we propose in Figure 3 the 
Rebalance algorithm that, given a representation of a actor 
diagram and its constraints, is capable to produce a new 
configuration (if it exists), in which the constraints are satisfied. 
For shake of simplicity the algorithm considers only the 
complexity and not the criticality, but it is easy to extend it to 
consider both complexity and criticality. 

Let's assume there are m dependums and n actors, and suppose 
that the fact that different actors may fulfill a dependum is coded 
by means of a cost matrix CoM[1..n,1..m] where, for each 
actor i and dependum j, the cost for i to fulfill j is given. Of 
course this cost may be different for different actors fulfilling  the 
same dependum (not all the actors have the same level of skill) 
and, in particular, it may be infinite (MAXINT) for some actors 
(not all the actors can fulfill a given dependum). The vector 
M_CoV[1..n] provides instead the maximum complexity that 

each actor can hold. These are constant data provided with the 
analysis of the domain. 

The actor diagram topology, instead, is described by means of a 
variable A that is a matrix [1..n,1..m] of boolean where a 
“1” in position (i,j) means that the dependum j (or row in the 
matrix) is assigned at the actor i. Of course, for each dependum j 
there is one and only one "1".  The actor load defined by the 
current topology is computed by the function: 

Compl(i,A)= Sum(for all j)CoM[i,j]A[i,j]) 

The core of the algorithm is given by the Function 
Try_One_Actor that tries to rearrange the matrix A in order to 
accommodate the load of actor i below its maximum complexity 
capacity, starting to analyze dependum j first. It iteratively 
considers possible reassignments for dependum j to other actors 
that can fulfill it without exceeding their maximum capacity 
(tested by the Function: 

 Fits(A,l,j)=Compl(l,A)+ CoM[l,j]≤M_CoV[i])  

Recursivelly the problem is scaled down by considering also 
other dependums (j+1) if the reassignment of the current one (j) 
is not sufficient or not possible. Backtrack is required in case the 
current reassignment of j to l is useless. 

This core function, that considers the case in which only one 
actor is overloaded, can be extended to the case with more 
overloaded actors, as done with Function 
Reballance_Intransitive. Here the recursion with the 
possible backtrack step is done on the Function 
Reballance_Intransitive, only in the case at least one of 
the overloaded actors can be re-balanced. The backtrack allows us 
to iteratively consider all the overloaded actors in turn as the first 
to be processed. In fact, the solution may depend, in general --
even tough very idiosyncratic-- cases, by the processing order. 
The recursion takes care for considering the other overloaded 
actors. 

Finally, if a solution involving the redistribution of dependums 
from actor to actor, requiring that recipient actors have not to be 
re-balanced themselves, cannot be found by means of Function 
Reballance_Intransitive, the Function Rebalance 
consider also the possibility of transitively affect the load of 
recipient actors even over their maximum capacity, by means of 
the Function Try_Transitive. In this case the adjustments 
can be spread all over the matrix, implying radical topology 
redesign. Minimizing modifications became now more difficult 
even to be defined, and, in the current version of the algorithm, no 
particular claim is done, except that termination and the 
production of one solution (if it exists) is generated. Termination 
is guaranteed by the fact that each dependum is reassigned at most 
once (there is no need to reassign it more than once; again, of 
course, the use of backtracking allow ut to test all the re-
assignments). 

 
 
 
 
 
 
 
 
 
 
 



 
CONST m:integer; {# of dependums} 
      n:integer; {# of actors} 
      M_CoV:array[1..n] of real; {max cost for 
each actor} 
      CoM:array[1..n,1..m] od real; {the effort 
for actor i to provide goal j} 
 
GLOBAL VAR VISITED_DEP:set of visited dependums, 
initially empty; 
           A:array[1..n,1..m] of boolean; {the 
assignament matrix properly initialized to reflect 
the diagram topology} 
 
LOCAL VAR SET_OF_UNBALLANCED:set of actors; 
 
 
Function Rebalance(var A : ass_matrix):boolean; 
begin 
   result:=reballance_intransitive(A); 
   if result=fail then 
   begin 
      SET_OF_UNBALLANCED:={i|Compl(i,A)>M_CoV[i]}; 
      copy_of_A:=A;  
      while result=fail and not 
empty(SET_OF_UNBALLANCED) do 
      begin 
  i:=POP(SET_OF_UNBALLANCED); 
  result:=try_transitive(i,A); 
  if result=fail then A:=copy_of_A 
      end 
   end; 
   RETURN result 
end; 
 
 
Function Try_One_Actor(i,j:integer; var A : 
ass_matrix):boolean; 
begin 
   result:=fail; 
   l:=0; 
   if j<=m and A[i,j]=1 then 
      while Compl(A,i)>M_CoV[i] and l<n do 
      begin 
  l++; 
  if l<>i and Fits(A,l,j) then 
  begin 
     copy_of_A:=A;   
     A[l,j]:=1; A[i,j]:=0; 
     if Compl(A,i)>M_CoV[i] then 
     begin 
        result:=try_one_actor(i,j+1,A); 
        if result=fail then A:=copy_of_A 
     end 
     else result:=OK 
  end 
      end; 
   RETURN result 
End 
 

 
 
Function Try_Transitive(i:integer; var A : 
ass_matrix):boolean; 
begin 
   result:=fail; 
   copy_of_A:=A; 
   j:=0; 
   if not empty(VISITED_DEP) then 
      while j<m and result=fail do 
      begin 
  j++; 
  if A[i,j]=1 and not j in VISITED_DEP then 
  begin 
     j --> VISITED_DEP; 
     l:=0; 
     while l<n and (Compl(i,A)>M_CoV[i] or 
result=fail) do 
     begin 
        l++; 
        if l<>i and CoM[l,j]<MAXINT then 
        begin 
    A[l,j]:=1; A[i,j]:=0; 
   result:=reballance(A); 
    if result=fail then A:=copy_of_A  
        end 
     end; 
     if result=fail then 
VISITED_DEP:=VISITED_DEP-{j} 
  end 
      end; 
   RETURN result 
End 
 
 
Function Reballance_Intransitive(var A : 
ass_matrix):boolean; 
begin 
   result:=fail; 
   SET_OF_UNBALLANCED:={i|Compl(i,A)>M_CoV[i]}; 
   if empty(SET_OF_UNBALLANCED) then result:=OK 
   else 
   begin 
      copy_of_A:=A;  
      while result=fail and not 
empty(SET_OF_UNBALLANCED) do 
      begin 
  i:=POP(SET_OF_UNBALLANCED); 
  if try_one_actor(i,j,A)=OK then 
  begin  
     result:=reballance_intransitive(A); 
     if result=fail then A:=copy_of_A 
  end 
      end 
   end; 
   RETURN result 
end; 
 

 

Figure 3. The reassignment algorithm 

 

4. CONCLUSION 
In this paper we have presented an analysis for evaluating the 

degree of complexity and criticality of the actors of the system, 
with respect to security. Such an analysis provides a valuable 
process for the developers of multi-agent systems in order to 
identify possible security bottlenecks. In addition, we have 

proposed an algorithm to reduce the complexity or the criticality 
of the “overloaded” actors.  

Our analysis helps to justify possible trade offs between 
security and functional requirements. By knowing how critical an 
agent is with respect to security a decision can be made. Our aim 
is to provide a clear well guided process of integrating security 
and functional requirements throughout the whole range of the 
development stages. Such a process must use the same concepts 



and notations throughout the development phases. The ability to 
identify the bottlenecks of a multi-agent system with respect to 
security and justify the decisions behind possible trade offs 
between security and functional requirements can definitely help 
towards this aim. 

This work is an ongoing research. The presented analysis 
covers only the requirements stage of the Tropos methodology. 
We are working towards extending our analysis to the next stages 
of the methodology, since such an analysis can help in the later 
stages of the development. For example, criticality and complexity 
can help us decide for different architectural choices during the 
architectural design stage of the methodology, such as the choice 
between mobile and static agents.  

The present version of the algorithm guarantees to find a 
solution that requires the reassignments of dependums of 
overloaded actors only, if it exists. Otherwise, a solution with 
transitive reassignments is in any case provided (if it exists), 
although we cannot at present guarantee it is the best. We believe 
that, possibly after small improvements, the algorithm can provide 
the “best” solution. We foresee to work to prove this fact. Our 
future research plan includes also the study of the complexity of 
the algorithm, and its implementation and test.  

 

5. REFERENCES 
[1] C. Iglesias, M. Garijo, J. Gonzales, “A survey of agent-

oriented methodologies”, Intelligent Agents IV, A. S. 
Rao, J. P. Muller, M. P. Singh (eds), Lecture Notes in 
Computer Science, Springer-Verlag, 1999 

[2] J. Castro, M. Kolp and J. Mylopoulos. “A 
Requirements-Driven Development Methodology,” In 
Proc. of the 13th Int. Conf. On Advanced Information 
Systems Engineering (CAiSE’01), Interlaken, 
Switzerland, June 2001. 

[3] H. Mouratidis, P. Giorgini, G. Manson, “Modelling 
Secure Multiagent Systems”, (to appear) in the 
Proceedings of the 2nd International Joint Conference 
on Autonomous Agents and Multiagent Systems, 
Melbourne-Australia, July 2003  

[4] E. Yu, “Modelling Strategic Relationships for Process 
Reengineering”, PhD thesis, Department of Computer 
Science, University of Toronto, Canada, 1995 

[5] H. Mouratidis, P. Giorgini, G. Manson, I. Philp,  “A 
Natural Extension of Tropos Methodology for 
Modelling Security”, Proceedings of the Agent 
Oriented Methodologies Workshop in OOPSLA 2002, 
Seattle-USA, November 2002 

[6] H. Mouratidis, i. Philp, G. Manson,  “Analysis and 
Design of eSAP: An Integrated Health and Social Care 
Information System”, in the Proceedings of the 7th 
International Symposium on Health Information 
Managements Research (ISHIMR2002), Sheffield, 
June 2002    

[7] M. Garzetti, P. Giorgini, J. Mylopoulos, F. Sannicolo, 
“Applying Tropos Methodology to a real case study: 
Complexity and Criticality Analysis”, in the 
Proceedings of the Second Italian workshop on “WOA 
2002 dagli oggetti agli agenti dall’informazione alla 
conoscenza”, Milano, 18-19 November 2002 

[8] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, R. 
Sebastiani. “Reasoning with Goal Models”, in the 
Proceedings of the 21st International Conference on 
Conceptual Modeling (ER2002), Tampere, Finland, 
October 2002. 

 

 

 


