
Information Systems Development through Social
Structures

Manuel Kolp
IAG - Information Systems Unit,

University of Louvain
1348 Louvain-La-Neuve, Belgium

1, Place des Doyens
+32 10 47 83 95

kolp@isys.ucl.ac.be

Paolo Giorgini
Dept of Information & Communication

Technology, University of Trento,
38100 Trento, Italy
14 Via Sommerive
+39 0461 88 2052

paolo.giorigni@dit.unitn.it

John Mylopoulos
Dept of Computer Science,

University of Toronto, M5S 3H5
Toronto, Canada

6 King’s College Road
+1 416 978 5180

jm@cs.toronto.edu

ABSTRACT
Information systems for organizations such as e-business and
knowledge management systems must continually evolve to adapt
to their operational environment. Unfortunately, current
development methodologies do not support system evolution well,
making software an obstacle to organizational changes. The paper
describes a framework that develops and evolves seamlessly a
system-to-be within its organizational environment. We adopt a
set of social structures – organizational styles and social patterns
– based on concepts of organization theory and agent approaches,
as a foundation to model early and late requirements as well as
architectural and detailed design. We illustrate the use of the
social structures through a case study, and we specify one of the
styles in Formal Tropos language. This research has been
conducted within the context of the Tropos project.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
elicitation methods, languages, methodologies; D.2.11 [Software
Engineering]: Software Architectures – data abstraction, patterns;
K.6.1 [Management of Computing and Information systems]:
Project and People Management – systems analysis and design;
K.6.3 [Management of Computing and Information systems]:
Software Management – software development.

General Terms
Design, Languages, Management.

Keywords
Requirements Engineering, i* Framework, Tropos Methodology

1. INTRODUCTION
We are interested in narrowing the semantic gap between
requirements analysis and system design. On one hand,
requirements analysis techniques have been recognizing the

modeling of the social and intentional context, within which a
system will eventually operate, as an important part of the
analysis process (e.g., [4, 7, 22]). On the other hand, software
design techniques have traditionally been inspired and driven by
the programming paradigm of the day (e.g., [3, 20]). This
impedance mismatch between analysis and design is one of the
main factors for the poor quality of system development projects.
One way to reduce this gap is adopting as much as possible the
same concepts for all phases of the development process. In this
paper, we propose a set of social structures – organizational styles
and social patterns – as a foundation to model early and late
requirements as well as architectural and detailed design. These
social structures use primitives from i* [22], a modeling
framework for early requirements founded on the notions of actor,
goal and social dependency.
This work continues the research in progress within the Tropos
project [5, 10] and relies on material detailed in previous papers.
In [5], we have presented Tropos, an information system
development framework, which is requirements-driven in the
sense that it adopts concepts used during early requirements
analysis, especially those offered by i*. The Tropos framework
has also been applied for developing multi-agent systems [10].
Tropos spans four phases of software development:
• early requirements analysis, concerned with the understanding
of a problem by studying an organizational setting - the output is
an organizational model which includes relevant actors, their
goals and inter-dependencies;
• late requirements analysis, where the system-to-be is described
within its operational environment, along with relevant functions
and qualities;
• architectural design, where the system’s global architecture is
defined in terms of subsystems, interconnected through data,
control and other dependencies;
• detailed design, where behavior of each architectural component
is defined in further detail.
In [8] we have detailed a social ontology for Tropos that views
information systems as social structures. The ontology is
described at three levels of granularity. At the lowest (finest
granularity) level, Tropos adopts concepts offered by the i*
framework. At a second, coarser-grain, level the ontology
includes possible social patterns, such as mediator, broker and
embassy. At a third, more macroscopic level the ontology offers a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SEKE ’02, July 15-19, 2002, Ishia, Italy.
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

set of organizational styles inspired by organization theory and
strategic alliances literature.
In [13], we have described how to use our Tropos social ontology
to design multi-agent architectures. As a matter of fact, multi-
agent systems can be considered structured societies of
coordinated autonomous agents that interact one another to
achieve particular, possible common goals.
We argue that the development of methodologies for
organizational information systems, like ERP, Knowledge
Management, groupware and e-business systems, need to
integrate organizational models and software system designs. This
allows systems to better match their operational context. In this
paper, we propose to reduce the impedance mismatch between
phases of the development process by using social structures as
building blocks all along the system life-cycle.
The paper is organized as follows. In Section 2, we present some
of our social structures, firstly organization-inspired styles, and
secondly social patterns based on agent approaches; then, we
illustrate how social structures can be evaluated. Section 3
presents a case study in which social structures are used all along
the information system life-cycle. It also proposes the Formal
Tropos specification of one of our styles. Finally, Section 4
summarizes the contributions of the paper and points to further
work.

2. SOCIAL STRUCTURES
For a detailed presentation of our organizational styles and social
patterns, see [8, 13].

2.1 Organizational Styles
Organization theory (e.g., [14, 17]) and strategic alliances (e.g.,
[11, 19, 21]) study alternatives to model (business) organizations.
An organizational style represents a possible way to structure the
stakeholders – individuals, physical or social systems – of an
organization in order to meet its strategic goals.
The structure of an organization defines the roles of the various
components (actors), their responsibilities for tasks and goals, the
way in which the resources are allocated, and the strategies that
must be adopted. Moreover, the structure defines how to
coordinate the activities of the various actors and how they
depend on each other. Dependencies can involve both actors of
the organization and actors of the environment in which the
organization is located (e.g., partners, competitors, clients, etc.).
An organizational style offers also a set of design parameters that
can be selected and turned in order to influence the division of
labor and the coordinating mechanisms, thereby affecting how the
organization functions. Design parameters include, among others,
tasks assignment, standardization, supervision and control. The
organization designer can use these parameters in order to deal
with, so called, situational or contingency factors, namely
organizational states or conditions that are associated with the use
of certain design parameters. Contingency factors can involve age
and size of the organization, the technical system it uses, and
various aspects of the environment, such as stability, complexity,
diversity, and hostility.
We propose a catalogue adopting (some of) the styles offered in
organization theory for developing information systems. In the

following, we present briefly some of these styles using the
strategic dependency model of i*.
A strategic dependency model is a graph, where each node
represents an actor (an agent, a position, or a role within an
organization) and each link between two actors indicates that one
actor depends on another for a goal to be fulfilled, a task to be
carried out, or a resource to be made available. We call the
depending actor of a dependency the depender and the actor who
is depended upon the dependee. The object around which the
dependency centers (goal, task or resource) is called the
dependum. The model distinguishes among four types of
dependencies – goal-, task-, resource-, and softgoal-dependency –
based on the type of freedom that is allowed in the relationship
between depender and dependee. Softgoals are distinguished from
goals because they do not have a formal definition, and they are
amenable to a different (more qualitative) kind of analysis [6].
For instance, in Figure 1, the Technostructure, Middle Agency and
Support actors depend on the Apex for strategic management.
Since the goal Strategic Management does not have a precise
description, it is represented as a softgoal (cloudy shape). The
Middle Agency depends on the Technostructure and Support
respectively through goal dependencies Control and Logistics
represented as oval-shaped icons. The Operational Core is related
to the Technostructure and Support actors through the
Standardize task dependency and the Non-operational Service
resource dependency, respectively.

Apex

Standardize

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non−operational

Logistics SupportControl
Structure
Techno−

 Figure 1. Structure-in-5

The structure-in-5 (Figure 1) is a typical organizational style. At
the base level, the Operational Core takes care of the basic tasks
— the input, processing, output and direct support procedures —
associated with running the organization. At the top lies the Apex,
composed of strategic executive actors. Below it, sit the
Technostructure, Middle Agency and Support actors, who are in
charge of control/standardization, management and logistics
procedures, respectively. The Technostructure component carries
out the tasks of standardizing the behavior of other components,
in addition to applying analytical procedures to help the
organization adapt to its environment. Actors joining the apex to
the operational core make up the Middle Agency. The Support

component assists the operational core for non-operational
services that are outside the basic flow of operational tasks and
procedures.

The joint venture style (Figure 2) is a more decentralized style
that involves an agreement between two or more principal
partners in order to obtain the benefits derived from operating at a
larger scale and reusing the experience and knowledge of the
partners. Each principal partner can manage and control itself on a
local dimension and interact directly with other principal partners
to exchange, provide and receive services, data and knowledge.
However, the strategic operation and coordination is delegated to
a Joint Management actor, who coordinates tasks and manages
the sharing of knowledge and resources.

Resource
Exchange

Contractual
Agreement

Support

Business
Processes

Strategic
Decision
Making

Corporate

Operational

Coordination

Management
Joint

Activities

Knowledge
Sharing

Partner_1 Partner_2

Partner_3 Partner_n

Figure 2. Joint Venture

The vertical integration style merges, backward or forward,
several actors engaged in achieving or realizing related goals or
tasks at different stages of a production process.
An Organizer merges and synchronizes interactions/dependences
between participants, who act as intermediaries. Figure 3 presents
a vertical integration style for the domain of goods distribution.
Provider is expected to supply quality products, Wholesaler is
responsible for ensuring their massive exposure, while Retailer
takes care of the direct delivery to the Consumers.
For a more detailed presentation of organizational styles we have
defined (takeover, hierarchical contracting, bidding, arm’s-length,
pyramid, flat structure, co-optation, …), see [8].

2.2 Social Patterns
A social pattern defines the actors (together with their roles and
responsibilities) and the social dependencies that are necessary for
the achievement of a goal. Considerable work has been done in
software engineering for defining software patterns (see e.g., [9]),
but unfortunately, they do not place emphasis on social aspects.
On the other hand, proposals of patterns that address social issues
(see e.g., [2]) are not intended to be used at an organizational
level, but rather during implementation phases by addressing
issues such as agent communication, information gathering from
information sources, or connection setup.
In the following, we present two of the social patterns that focus
on social mechanisms recurrent in multi-agent and cooperative
systems literature (e.g., [12]): mediator and embassy pattern.

Wholesaler

Provider

Consumer

Organizer

Products

Market
Evaluation

Supply

Retailer

Acquire

Detect
Products

Products

Products Products

Products
Deliver

Massive
Supply

Directives

Direct Access

Quality Wide Access
to Market

to Consumer

Interest in

Figure 3. Vertical Integration

A mediator (Figure 4a) mediates interactions among different
actors. An initiator addresses the mediator in place of asking
directly another colleague, the performer. It has acquaintance
models of colleagues and coordinates the cooperation between
them. Inversely, each colleague has an acquaintance model of the
mediator. While a broker simply matches providers with
consumers, a mediator encapsulates interactions and maintains
models of initiators and performers behaviors over time.

Map
Performer

MediatorInitiator

Performer

Route

Service
Performs

Service
Requested

Route

Translate

Service
Requested

Access

Foreigner Embassy

Performative

Requested
Service

Native

Figure 4. Mediator (a) and Embassy (b)

An embassy (Figure 4b) routes a service requested by a foreign
actor to local ones and handles back the response. If the access is
granted, the foreign actor can submit messages to the embassy for
translation. The content is translated in accordance with a
standard ontology. Translated messages are forwarded to target

local actors. The results of the query are passed back out to the
foreign actor, translated in reverse.
For a more detailed presentation of the social patterns we have
defined (broker, matchmaker, contract-net, facilitator, wrapper,
…), see [13].

2.3 Evaluating Social Structures
Strenghts and weaknesses of styles and patterns can be evaluated
and compared through quality attributes (or non-functional
requirements) analysis. Quality attributes like coordinativity,
predictability, failability-tolerance and adaptability have been
found relevant for organizational constructs [18].
Coordinability: actors must be able to coordinate with other actors
of the social structure to achieve a common purpose or simply
their local goals.
Predictability: actors can have a high degree of autonomy in the
way they undertake actions and communication in their domains.
It can be then difficult to predict individual characteristics as part
of determining the behavior of the system at large.
Failability-Tolerance: a failure of one actor does not necessarily
imply a failure of the whole structure. The structure then needs to
check the completeness and the reliability of data, information
and transactions. To prevent failure, different actors can, for
instance, assume replicated capabilities.
Adaptability: actors must to adapt to modifications in their social
environment. They may allow changes to the communication
protocol, dynamic introduction of a new kind of actors previously
unknown or manipulations of existing ones.
Due to the lack of space, we only consider the structure-in-5 and
the joint venture with respect to the four qualities described
above. Table 1 summarizes their strengths and weaknesses.

Table 1. Strengths and Weaknesses of some Social Structures

 Coordinat. Predictab. Failab-Tol. Adaptab.

S-in-5 + + ++ +-
Joint-

Venture +- + +- +-

The structure-in-5 improves coordinativity among components
by differentiating the data hierarchy - supported by the support
component – from the control hierarchy - supported by the
operational core, technostructure, middle agency and strategic
apex. The existence of different levels of abstraction in the
structure-in-5 addresses the need for managing predictability.
Besides, higher levels are more abstract than lower levels: lower
levels only involve resources and task dependencies while higher
ones propose intentional (goals and softgoals) relationships.
Checks and control mechanisms can be integrated at different
levels of abstraction assuming redundancy from different
perspectives and increase considerably failability-tolerance. Since
the structure-in-5 separates data and control hierarchies, integrity
of these two hierarchies can also be verified independently. The
structure-in-5 separates independently the typical components of
an organization, isolating them from each other and allowing then
dynamic adaptability. But since it is restricted to no more than 5

major components, more refinement has to take place inside the
components.
The joint venture supports coordinativity in the sense that each
partner interacts via the joint manager for strategic decisions.
Partners indicate their interest, and the joint manager either
returns them the strategic information immediately or mediates
the request to some other partners. However, since partners are
usually heterogeneous, it could be a drawback to define a
common interaction background. The central position and role of
the joint manager is a means for resolving conflicts and
preventing unpredictability. Through its joint manager, the joint-
venture proposes a central communication controller. How the
joint venture style addresses failability-tolerance, notably
reliability, is less clear. However, exceptions, wiretapping,
supervising, and monitoring can improve it. Manipulation of
partners can be done easily to adapt the structure by registering
new ones to the joint manager. However, since partners can also
communicate directly with each other, existing dependencies
should be updated as well. The joint manager cannot be removed
due to its central position.
To cope with these quality attributes and select the appropriate
structure, more refined analysis and decomposition can be done
with frameworks like KAOS [7] or the NFR framework [6]. In the
NFR framework, we go through a means-ends refining of the
identified quality attributes in more precise sub-attributes, and
then, as shown partially in Figure 5, we evaluate the social
structures against such sub-attributes.
The analysis is intended to make explicit the space of alternatives
for fulfilling the top-level attributes. The social structures are
represented as operationalized attributes (saying, roughly, “makes
the structure structure-in-5, joint-venture, vertical-integration-
based, …”).

Other Styles

... ...

... ...!

!

! Completness
Reliability

Coordinativity

Redundancy

Participability

+

Failability-Tolerance Other Quality Attributes

Claim
["External Agents

can spoof
the system"]

Joint Venture Structure in 5

Distributivity

+

++

+

+

-
+

-

++

+

Commonality

Figure 5. Partial Evaluation for Organizational Styles

The evaluation results in contribution relationships from the social
structures to the quality attributes, labeled “+”, “++”, “-”, “--” that
mean partially satisfied, satisfied, partially denied and denied,
respectively. Design rationale is represented by claims drawn as
dashed clouds. They make it possible for domain characteristics
such as priorities to be considered and properly reflected into the
decision making process. Exclamation marks are used to mark
priority attributes while a check-mark “ ” indicates an accepted
attribute and a cross “ ” labels a denied attribute.

Relationships types (AND, OR, ++, +, -, and --) between quality
attributes are formalized to offer a tractable proof procedure. For
each attribute we consider two different variables: S for the
satisfiability and D for the deniability. Such variables can assume
three values: null (−) , partial (p), and total (t). For instance, when
S=t, an attribute is totally satisfied, when S=t it is partially
satisfied, and when S=− there is no evidence to say something
about its satisfiability (analogously for D).
S and D are not required to be logically exclusive since there may
be contradictory contributions, e.g., a softgoal is satisfied and
partially denied. Table 2 shows propagation rules for ++, +, -, and
-- relationships with respect to satisfiability (S). Notice that the
null value does not produce any effect in the propagation. A dual
table is given for the deniability and the partial deniability.

Table 2: Propagation rules for Satisfiability
S ++ + - --

t S=t S=p D=p D=t

p S=p S=p D=p D=p

Under the assumption that − < p < t, we use min-value and max-
value functions respectively for AND and OR relationships. The
basic algorithm for the labels propagation is presented in Figure 6.
Initially, all the nodes are initialized with the available evidence,
a null value is assigned to the nodes for which we do not have
evidence. At each step the value of the two variables S and D of
each node is calculated using the nodes’ value of the previous
step. The final value for D and S is given by the maximum value
of all contributions of the incoming relations. The algorithm
terminates when all the current nodes’ values are the same of
those calculated at the previous step. The use of the maximum
value function guarantees the termination of the algorithm.

1 Initialize NODES’
2 do
3 NODES ← NODES’
4 foreach node ni
5 foreach incoming relation Aij
6 Dj ← ComputeD(Aij)
7 Sj ← ComputeS(Aij)
8 ni.D’ ← Maxj(Dj)
9 ni.S’ ← Maxj(Sj)
10 while(NODES≠NODES’)

Figure 6. Basic propagation algorithm
We are currently working on a second approach to goal analysis,
where numerical intervals are used to define the degree of
satisfiability and deniability of a goal. Here, we are working
along two different directions: one based on probability theory
and the other on the Dempster-Shafer theory (see, e.g, [Par94]).

3. INFORMATION SYSTEM LIFE CYCLE
WITH SOCIAL STRUCTURES
In order to illustrate the use of our social structures, we consider
a business-to-business setting describing a typical media industry.
Media Retailer is a specialized store selling and shipping different
kinds of media items such as books, newspapers, audio CDs,

videotapes, and the like. Media Retailer is supplied with the latest
releases by Media Supplier. At the production level, Editor is
specialized in the press and book business, Movie Studio makes
movies while Record Label works in the music industry and
Games Design creates video and computer games. All these actors
have agreed to develop Media System, an internet-based
information system supporting business-to-business capabilities to
facilitate and improve business interactions, and to reduce costs
and delays of traditional information and communication means.
Customers will also be able to use the Media System to browse the
catalogue, query the item database, and order on-line items.

3.1 Early Requirements
Early requirements analysis is concerned with the understanding
of a problem by studying an organizational setting; the output is
an organizational model which includes relevant actors, their
goals and inter-dependencies. Like several media companies,
Media Producer could be organized as a joint venture (Figure 7).

& Script
Scenario

Movie
Studio

Production
Cpy

Editor

Record
Soundtrack

Design
Game

Record
Label

Game Scenario

Media
Producer

Scores
Edit

Handle Press
Business

Provide
Films

Management)
(Joint

Manage
Record Deals

Develop
Games

Figure 7. Media Producer using the Joint Venture Style

Each partner actor composing Media Producer is specialized in
one or several specific media production areas: Editor handles
press business and contributes to provide film scenarios and script
ideas, Movie Studio makes films and video clips for Record Label,
which handles record deals and records soundtracks for Movie
Studio and Game Design. This last actor develops games and
relies on Movie Studio for game plots. Each actor is responsible
for its own business management. However, only the joint
management actor, Production Cpy, handles the corporate
strategic management.

3.2 Late Requirements
Late requirements analysis describes the system-to-be as an actor
within its operational environment, along with relevant functions
and qualities. We introduce the Media System as a full-fledged
social actor contributing to the fulfillment of stakeholder goals,
along with other actors from the system’s operational
environment.
We use our organizational styles to guide the modeling of the
system inside its organizational environment. For instance, the
late requirements model of the system interacting with its
environment might be represented as a vertical integration as
shown in Figure 8. With respect to the vertical integration
structure presented in Figure 3, the Customer takes the role of

Consumer, Media Producer assumes the position of Provider, and
Media System the role of Organizer. Media Producer is expected
to provide quality products, Media Supplier ensures massive
exposure of media items while Media Retailer interacts with the
Customer. The information system is introduced as a full-fledged
organizational actor, and each of the human stakholders uses the
Media system for her particular needs and goals. For instance,
Media Producer wants to find information about the media
market and stakeholders; Media Supplier wants to find and
promote new ideas, projects and talents to increase her market
share, while Media Retailer needs to be provided with e-
commerce facilities to satisfy customers. Finally, Customer wants
to consult product catalogues and place orders.

Customer

Packages

Supply
Products

Supply
Direct Access

Quality

Media
Producer

Massive
Exposure

Supplier

Find
Information

about
Media actors

Media

to Custumer
Continuous

Retailer
Media

Process
Order

Order
Place

Catalogue
Browse

User Needs
Find

Customers
Satisfied

Business
Long-term

Products
Interest in

Discover
New Talents

Media
System

Figure 8. Introducing the system with the Vertical Integration

3.3 Architectural Design
Architectural design defines the system’s global architecture in
terms of subsystems, interconnected through data, control and
other dependencies. We aim to apply our social structures not
only to requirements models, but also to all levels of software
design. In our example, the joint venture style is used to produce
an architectural description of the Media System. A detailed
description of this particular architecture can be found in [Kol01].
Figure 9 suggests a possible assignment of system responsibilities
for the business-to-consumer (B2C) part of the Media System.
Following the joint venture style, the architecture is decomposed
into three principal partner actors (Store Front, Order Processor
and Back Store). They control themselves on a local dimension
for exchanging, providing and receiving services, data and
resources with each other.
Each of the three system actors delegates authority to and is
controlled and coordinated by the joint management actor (Joint
Manager), managing the system on a global dimension. Store
Front interacts primarily with Customer and provides her with a
usable front-end Web application. Back Store keeps track of all

Web information about customer orders, product sales, bills and
other data of strategic importance to Media Retailer. Order
Processor is in charge for the secure management of orders and
bills, and other financial data. Joint Manager manages all of them
handling Security gaps, Availability bottlenecks and Adaptability
issues. These three software quality attributes (as well as sub-
attributes Authorization, Integrity, Usability, Updatability and
Maintainability) required for business-to-consumer applications
are identified and evaluated in detail for the Media system
example in [13].

Browser
Item

Item
Detail

Profiler
Customer

Customer
DataShopping

Cart

Integrity

Updatability

Usability
Security
Checker

Order
Processor

Check
Out

Authori-
zation

Front
Store

Database
Product

Consult
Catalogue

Item
Select

ability
Adapt-

Manager

Avail-
ability

Manager

Joint
Manager

Maintain-
ability

Back
Store

Information
Order

Figures
Ratings &

Figure 9. System Architecture with the Joint Venture Style.

All the system actors of Figure 9 will eventually be further
specified into subactors, and delegated with specific
responsibilities. For instance, in the Store Front, Item Browser is
delegated the task of managing the catalogue navigation;
Shopping Cart, the selection and customization of items;
Customer Profiler, the tracking of customer data and the
production of client profiles; and Product Database, the
management of media items information. Similarly, to cope with
Security, Availability and, Adaptability, Joint Manager is further
refined into three new system sub-actors Security Checker,
Availability Manager and Adaptability Manager.

3.4 Detailed Design
Detailed design is concerned with the definition in further detail
of the behavior of each component identified during architectural
design. Figure 10 shows a possible use of our social patterns in
the e-business system shown in Figure 9. In particular, it shows
how to solve the goal of managing catalogue navigation that the
Store Front delegates to the Item Browser. The goal is
decomposed into subgoals and solved with a combination of
social patterns.
The broker pattern is applied to the Info Searcher, which satisfies
requests of searching information by accessing Product Database.
The Source Matchmaker applies the matchmaker pattern locating
the appropriate source for the Info Searcher, and the monitor
pattern is used to check any possible change in the Product
Database. Finally, the mediator pattern is applied to mediate the
interaction among the Info Searcher, the Source Matchmaker, and
the Wrapper, while the wrapper pattern makes the interaction

between the Item Browser and the Product Database possible. Of
course, other patterns can be applied. For instance, we could use
the contract-net pattern to select a wrapper to which delegate the
interaction with the Product Database, or the embassy to route
the request of a wrapper to the Product Database.

Searcher
Info

Locate
Source

Source
Matchm.

Route Info
Request

Monitor

Provide
Information

change
Notify

Information
Hits

Processor
Statistics

Database
Product

Translate
Response

Profile
Customer Mediator

Wrapper
Query

Information
Source

Info
Ask for

Advertising

Item
Browser

Fwd source
change

Figure 10. Social Patterns for Item Browser

3.5 Formalizing Social Structures
Formal Tropos [8] offers all the primitive concepts of i* (such as
actors, goals and dependencies), but supplements them with a rich
specification language inspired by KAOS [7]: it provides a textual
notation for i* models and allow us to describe dynamic
constraints among the different elements of the specification in a
first order linear-time temporal logic. It has also a precisely
defined semantics that is amenable to formal analysis. In the
following we present a part of the Formal Tropos formalization of
the Media Producer depicted in Figure 6. In particular, we focus
on the Production Cpy goal of applying a movie and game
strategy.
In the following, we specify that there will be just one
ProductionCpy, which has the goals of drawing up a Game Movie
Contract and applying the Game Movie Strategy. The goal
DrawUpGameMovieContract is fulfilled when there is a contract
signed by a Movie Studio actor and a Game Design actor. The
goal of applying the game movie strategy is fulfilled when for
each action movie there is a game about the movie, which will be
delivered within a month from the date of the movie delivery.
Entity Movie
 Attribute constant type:{action, love, thriller, comedy ,
drama, sciences-fiction}, delivery_date : Date;
Entity Game
 Attribute constant movie_ref : Movie, delivery_date: Date;
Entity Scenario
 Attribute constant movie_ref : Movie, game_ref: Game;
Entity GameMovieContract
 Attribute constant conditions: Conditions, ms :
MovieStudio, gd : GameDesign, signature_date :Date

Actor ProductionCpy
 Creation condition ¬∃ pCpy: ProductionCpy

 Goal DrawUpGameMovieContract
 Mode maintain
 Fulfilment definition
 ∃ contract: GameMovieContract(
 ∃ ms:MovieStudio(contract.ms=ms) ^
 ∃ gd:GameDesign(contract.gd=gd))
 Goal ApplyGameMovieStrategy
 Mode maintain
 Fulfilment
 condition
 Fulfilled(DrawUpGameMovieContract)
 definition
 ∀movie:Movie (movie.type=action →
 (∃ game:Game(game.movie_ref=movie ^
 game.delivery_date≥movie.delivery_date ^
 game.delivery_date ≤ (1 month +
 movie.delivery_date)))

The following describes a goal and a resource dependency. The
DevelopGame dependency is created when there is a new action
movie for which there is no games, and it is fulfilled when there
will be at least one game for such a movie.

Dependency DevelopGame
Type goal
Mode Achieve
Depender ProductionCpy
Dependee GameDesign
Attribute constant movie: Movie, contract: GameMovieContract
Creation condition
 movie.type=action ^ ¬∃ game:Game(game.movie_ref=movie) ^
 contract.gd=dependee
 trigger JustCreated(movie)
Fulfilment
 condition for depender
 ∃ game:Game(game.movie_ref=movie)

Here, the GameScenario dependency applies when a new game
has to be developed and no scenario for such game exists. The
dependency is fulfilled when the Movie Studio provides the
scenario.

Dependency GameScenario
Type resource Mode maintain
Depender GameDesign
Dependee MovieStudio
Attribute constant game: Game, scenario: Scenario,

contract: GameMovieContract
Creation condition
¬∃ scenario: Scenario(scenario.game_ref=game) ^
(contract.gd=depender ^ contract.ms=dependee)
trigger JustCreated(game)
Fulfilment condition for depender

 scenario.game_ref=game

4. CONCLUSION
We have emphasized that the design of information systems
should be based on the same organization concepts and models
used in requirements analysis. This should help to reduce the
impedance mismatch between analysis and design. Within the
context of Tropos, a development methodology inspired by early

requirements modeling techniques, we have proposed to use
social structures not only for early but also late requirements
analysis as well as architectural and detailed design. These social
structures rely on concepts from organization theory and agent
approaches [15].
We are continuing to work on the formalization of our
organizational styles and social patterns. The idea is defining
formally organization structures as metastructures that can be
instantiated for particular information system designs. Moreover,
we want to study and formalize when a particular design is an
instance of such a metastructure. We are also contrasting our
structures to conventional styles [18] and patterns [9] proposed in
the software engineering literature. As mentioned, we are defining
algorithms to propagate evidences of satisfaction and denial of
each conventional or social structure with respect to a set of non-
functional requirements. These should allow us to evaluate and
compare more precisely the structures against them within the
NFR framework.

5. REFERENCES
[1] A. I. Anton, “Goal-Based Requirements Analysis”, In

Proceedings of the Second International Conference On
Requirements Analysis (ICRE’96), pp.136-144, 1996.

[2] Y. Aridor and D. B. Lange. “Agent Design Patterns: Elements
of Agent Application Design” In Proceedings of the Second
International Conference on Autonomous Agents (Agents’98),
New York, USA, May 1998.

[3] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified
Modeling Language User Guide, The Addison-Wesley Object
Technology Series, Addison-Wesley, 1999.

[4] J. A. Bubenko, “Next Generation Information Systems: an
Organizational Perspective”, In Proceedings of the
International Workshop on Development of Intelligent
Information Systems, Niagara-on-the-Lake, Ontario, pp. 22-31,
Canada, April 1991.

[5] J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-
Driven Development Methodology”. In Proceedings of the
13th International Conference on Advanced Information
Systems Engineering (CAiSE’01), Interlaken, Switzerland,
June 2001.

[6] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos. Non-
Functional Requirements in Software Engineering, Kluwer
Publishing, 2000.

[7] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal–
directed Requirements Acquisition”, Science of Computer
Programming, 20, pp. 3-50, 1993.

[8] A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos.
“Information systems as social structures”. In Proceedings of

the 2nd International Conference on Formal Ontologies for
Information Systems (FOIS’01), Ogunquit, USA, October
2001.

[9] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

[10]P. Giorgini, A. Perini, J. Mylopoulos, F. Giunchiglia and P.
Bresciani. “Agent-Oriented Software Development: A Case
Study”. In Proceedings of the 13th International Conference
on Software Engineering & Knowledge Engineering
(SEKE01), Buenos Aires, Argentina, June 2001.

[11] B. Gomes-Casseres. The alliance revolution: the new shape
of business rivalry, Harvard University Press, 1996.

[12] S. Hayden, C. Carrick, and Q. Yang. “Architectural Design
Patterns for Multiagent Coordination”. In Proceedings of the
International Conference on Autonomous Agents (Agents’99),
Seattle, USA, May 1999.

[13] M. Kolp, P. Giorgini, and J. Mylopoulos. “An Organizational
Perspective on Multi-agent Architectures”. In Proceedings of
the Eighth International Workshop on Agent Theories,
architectures, and languages (ATAL’01), Seattle, USA,
August 2001.

[14] H. Mintzberg, Structure in fives: designing effective
organizations. Prentice-Hall, 1992.

[15] J. Odell, H. Van Dyke Parunak, and B. Bauer, “Extending
UML for Agents”, In Proceedings of the Agent-Oriented
Information System Workshop at the 17th National Conference
on Artificial Intelligence, pp. 3-17, Austin, USA, July 2000.

[16] S. Parsons, “Some qualitative approaches to applying the
Dempster-Shafer theory”. In Information and Decision
technologies, 19 (1994), pp 321- 337.

[17] W. Richard Scott. Organizations: rational, natural, and open
systems, Prentice Hall, 1998.

[18] M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline, Upper Saddle River, N.J.,
Prentice Hall, 1996.

[19] L. Segil. Intelligent business alliances: how to profit using
today's most important strategic tool, Times Business, 1996.

[20] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing
Object-Oriented Software, Englewood Cliffs, Prentice-Hall,
1990.

[21] M.Y. Yoshino, and U. S. Rangan, Strategic Alliances: An
Entrepreneurial Approach to Globalization, Harvard Business
School Press, 1995.

[22] E. Yu. Modelling Strategic Relationships for Process
Reengineering, Ph.D. thesis, Department of Computer Science,
University of Toronto, Canada, 1995.

