
An Agent-based Middleware for Adaptive Systems

Nauman A. Qureshi, Anna Perini
Software Engineering Research Group

Fondazione Bruno Kessler - IRST
Via Sommarive, 18, 38050 Trento, Italy

{qureshi, perini}@fbk.eu

Abstract

New generation distributed software systems are ex-
pected to be able to meet changing user needs and to man-
age the variability of the open environment they operate
in. This motivates current research on developing adaptive
software applications, which recognizes a prominent role to
middleware. In this paper, we discuss requirements for an
agent-based middleware that enables adaptation. We illus-
trate these requirements as a result of modelling an appli-
cation scenario that will be supported by our middleware,
using an agent-oriented methodology. Middleware is con-
ceived as web of agents, to overcome the challenge of run-
time adaptation in an open environment.

1. Introduction

New generation distributed software systems are ex-
pected to be able to autonomously integrate with each other
in various ways, while operating in an open and heteroge-
neous environment. While currently, distributed software
systems are mainly subject to maintenance by human ad-
ministrators, increasing the cost of maintenance, users of
new generation systems require quick and effortless solu-
tions to configure or align them to their current needs.

It is envisioned that these systems could manage them-
selves in the future without human intervention, realizing
the so called autonomic computing paradigm, which is in-
spired from biological system properties [6, 10]. Auto-
nomic software is characterized in terms of a set of prop-
erties, namelyself-configuration, self-optimization, self-
healing, self-protection, collectively proposed asself-
managing or self-* properties. If we envisage systems
as self-managing then a system which can modifies itself
satisfying the above mentioned qualities are said to beSelf-
adaptive.

Many different definitions ofSelf-adaptivesystems have
been proposed so far. According to [1], computer-based

system capable of recognizing that the environment with
which it shares an interface has changed and then of modi-
fying its own behavior for adapting to these changing condi-
tions is called dynamically adaptive systems.Self-adaptive
systems are able to adapt to changing user needs and re-
source requirements at run-time, according to [4]. Systems
adapting themselves toward changing environment provid-
ing dependability and robustness without human interven-
tion are calledSelf-adaptivesystems in [5].

In this work, we adopt the following definition forSelf-
adaptivesystem:
A software system that, at run-time, either maintains its
state or adopts a different behavior with respect to the initial
one as a consequence of change in user needs and operat-
ing environment.
Here, we can assume from our definition, that a distributed
software system may adapt by running a new configuration
variant, in response to user and environmental changes. The
main focus of our work is to define appropriate software en-
gineering methods and techniques complemented by agent
technology to developSelf-adaptivesoftware.

The main idea is to motivate the use of externalized adap-
tation mechanism, following previous proposals in software
architecture research [3], by introducing an agent-based
middleware to develop adaptive systems. Middleware, in
classical sense, is considered to be a software layer that op-
erates between operating system and applications. To usit
is a software layer acting as a mediator between operating
system and user applications as a web of interacting agents.
Having assigned it this role, middleware can provide a so-
lution to the problem of variability in software system us-
age, that is when we have various users with different and
diverse set of skills, and we have to understand their pref-
erences in using a particular software system. In this pa-
per we will focus on adaptivity as a property which enables
softwareSelf-configurability.

High-variability in user preferences with respect to
changing environment may lead to complex system be-
haviors. Goal-oriented requirement engineering [14], has



proved to be suitable to specify the alternative designs
for the software. On the other side, Multi-Agent Sys-
tems [15] offer complementary techniques to take this vari-
ability from design to implementation, by using an agent-
oriented methodology [11, 7].

In this paper we introduce an example to help illustrat-
ing variability in software usage and how it can be ad-
dressed enabling softwareSelf-configuration. Using a suit-
able agent-oriented methodology and goal modelling tech-
niques helps us to understand the requirements for our in-
tended agent-based middleware, as a solution to realize
Self-configuration. The role of this middleware in providing
externalized adaptation mechanism to the modelled system
is further discussed.

The paper is organized as follows. Section 2 presents
related work. Section 3 outlines our motivation for using
agents. Section 4 introduces the example that we use for
highlighting the requirements for a middleware. Section 5
describes the middleware we propose. We then conclude in
Section 6 with some future work.

2. Related work

The middleware we present, inspires from several in-
teresting work realized so far, which leverage Architec-
ture based approaches, Component Based (Middleware),
Multi-Agent Systems (MAS) and Requirements Engineer-
ing paradigms.

For example, requirement engineering approaches
for Self-adaptivesoftware are presented in [1, 8]. By lever-
aging the analysis of goal alternatives, goal-oriented re-
quirements engineering [14] is helpful in capturing the user
need variability and helps in modelling the system as a fam-
ily of products [7]. Moreover, by using the goal-oriented
analysis it is meaningful to map user’s high level prefer-
ences into software agents, which may select goals to be
achieved and switch from a behaviour to a most appropriate
one, accordingly [11].

Architecture based approaches are motivated in [3] -
Rainbow project1, providing an architectural model, which
introduces the concept of externalized adaptation mecha-
nism and reuse of adaptation properties. The idea of separa-
tion of adaptation concerns from the application concerns is
followed in [5] with the focus to use a middleware (QuA)2

to manageSelf-adaptivityby mirror-based reflection.
In [4], MADAM3 middleware is used to reason about

the architectural models generated at run-time. Moreover,
it emphasizes the application’s variants and their proper-
ties by addressing coarse grained and fine grained vari-

1http://www.cs.cmu.edu/ able/research/rainbow/
2http://simula.no/research/networks/projects/QuA
3http://www.ist-music.eu/MUSIC/madam-project/madam

ability. MADAM’s further extension is MUSIC4 - an
open source platform for building mobile applications sup-
ported by tools and middleware. The architecture based ap-
proaches are supported by component based (Middleware)
and uses the concept of (monitoring-evaluating-adapting)
adaptation loop, but the challenge lies in answering ques-
tions like what, why, when and how to perform adaptation.

Following [6], we believe that software agents can pro-
vide a useful paradigm and technology to answer these
questions when realizing autonomic computing systems.

The agent paradigm has been used to define and imple-
ment distributed system architectures called Multi-Agent
Systems (MAS) [15] and as a relevant abstraction for mod-
elling distributed software system.

In [13] the Unity platform for autonomic computing is
an example of how MAS can be used in practice for en-
abling self-* properties. This architectural model adopts
software agents implemented in Java. It is emphasized that
an agent-oriented middleware in systems made of agents is
a suitable choice for seamless integration both at model and
infrastructure level [9]. This paper provides motivation for
our work. More recently, [12] illustrates the suitability of
agents as core artefact. to model system dynamics entailing
a requirements driven approach to develop self organizing
MAS by expressing adaptivity in them.

Main aim of our work, is to find a synergy between soft-
ware engineering methods and agent technology, to model
and develop adaptive systems. We exploit the idea of ex-
ternalizing adaptation mechanism and propose the use of
an agent-based middleware as a solution to run-time adap-
tation, taking into account variability in user and environ-
mental changes.

3. Agents as Adaptation Metaphor

Software agent can be viewed as a social, autonomous,
proactive and reactive computational entity situated in an
environment, capable of performing autonomous actions on
behalf of its user by presenting flexible behaviors to fulfill
the goals for which it has been designed [15].

From the above definition agents can be used as“Adap-
tation Metaphor”. This supports the choice of an agent-
based middleware to enable adaptivity. An agent in our pro-
posed middleware acts as an adaptation mediator to support
the notion of externalized adaptation and reuse.

This idea of agent-based middleware development also
poses a challenge on how to define an appropriate design
process5, which not only supports the development, but also

4http://www.ist-music.eu/
5A preliminary description on design process for developingSelf-

adaptivesystems can be found in a Technical report no. FBK-IRST
TR#080405, Titled asTowards a Design Framework for Self-adaptive Sys-
tems: A Process Viewby Nauman A. Qureshi and Anna Perini



Figure 1. Tropos Late Requirements Model: Antivirus System and Adaptation Middleware

provides an extensible and maintainable mechanism to align
requirements and environmental variability at run-time.

4. Illustrative Example

The scenario mentioned below will help in identifying
potential requirements for detailing the middleware:

Scenario: Mr. Chen is a corporate professional, who is
working as a financial consultant in a firm. Chen is using
a company’s laptop machine for his office and home usage.
He often travels to various places to attend business meet-
ings. Chen has different profile settings for using his lap-
top machine from home, office and elsewhere. At home, his
computer is also sometimes used by his wife and daughter
to browse and check their emails. But at home he has nor-
mal internet connection from a company. How Mr. Chen
can ensure that his important office data and his computer
system is safe from the digital pests i.e. viruses, malwares,
spywares, trojans and worm when his family uses his com-
puter.6

Before further analyzing the scenario, it is important to
consider the quality of service (QoS) parameters, which
an Antivirus system (AVS) and an Adaptation Middleware

6This scenario is not taken to model the security aspect rather to model
high-variability in user needs and operating environmental changes which
generates the need for externalized adaptation mechanism using middle-
ware.

(AMWare) have to meet. For simplicity we consider only
three of the following parameters:

1. Bandwidth: Either increase/decreased, it is required
to update the antivirus components;

2. System Performance: Antivirus operations may be
resource consuming, so this factor fluctuates letting the
AMware to decide which among alternative configura-
tions, better fit the current system performance needs;

3. Flexibility : Taking into account the user working con-
text and preferences, AMware selects the best applica-
tion configuration.

4.1 Goal-oriented Modelling

This section, illustrates a goal-oriented analysis of the
scenario, which has been performed using theTropos
methodology [2]. Late requirements analysis inTroposfo-
cuses mainly on the system-to-be (in our case: AMware,
shown as an actor).

In Figure 1, the Antivirus System (AVS) is modelled as
an actor (depicted as a circle), whom the user delegates a
high level goal, namelyHave Secure System. The AVS
hard and soft goals are analyzed from the point of view
of the AVS itself, in the diagram balloon (left). In par-
ticular, the delegated goal -Have Secure System, con-
tributes positively to the high level soft goal -Optimum



Safety. The goalHave Secure System is (AND) decom-
posed into three sub goals:Virus to be detected, User
configurations to be checked, and System Software
Permission to be checked. As antivirus programs oper-
ates, the AVS system must prevent the system from external
threats and provide appropriate notification to the user and
detects and repair damaged files.Virus to be detected
is further decomposed into typical goals for an antivirus to
detect viruses using (OR) decomposition (Have system
scanned ... To check interception).

Moreover, theUser configurations to be checked has
further two alternatives:User Bound Setting and Auto-
matic Settings with means-end plans to accomplish them.
The System Software Permission to be checked goal
is (OR) decomposed in two alternatives, namely theRe-
sources to be Monitored and Repair Damaged Files
sub goals, the latter giving (+) positive contribution to the
soft goal Recovery. Here, goalResources to be Moni-
tored is further decomposed subsequently as shown in Fig-
ure 1.

The internal goals of the AMware represents adaptivity
requirements. Goal delegation from the system actor (that
is the AVS application) to AMware represent the external-
ization of basic adaptivity requirements of the AVS appli-
cation itself (Suggest Configurations and Monitor Con-
text goals). These delegated goals are internalized into the
AMware and integrated with its top goal (Provide Adapta-
tion) decomposition, which contributes positively to a high
level soft goal Best Configuration Selection. Further-
more, Monitor Context is decomposed using (OR) de-
composition with sub goals asCheck User Preferences
accomplished by a planCheck users Settings and goal
Check Resource Variations with plan Analyze Envi-
ronment. This Analyze Environment plan is (AND) de-
composed byMonitor Resources and Predict QoS Pa-
rameters. The plan Predict QoS Parameters predicts
the variations in the QoS parameters values as mentioned.

Simultaneously, Suggest Configurations is decom-
posed in three sub goals using (AND) decomposition,
Evaluate Situation with the plan Compare Predicted
QoS and User Settings, Decide Appropriateness with
the plan Calculate Utility of Configuration Variants
and Recommend Alternate Configuration with the plan
Generate Adaptation Script for Selected Variant con-
tributing positively to a soft goalSeamless Adaptation.

Here, AMware is responsible to monitor the context by
predicting the QoS parameters, further evaluations and de-
cision is made on the basis of comparison and calculation
of of the configuration variant by usingUtility functions (
Calculate Utility of Configuration Variants plan). Utility
functions provides, a recursive mechanism to reason about
the alternatives, by determining the ”Best” option. Lastly,
AMware recommends the best configuration for AVS by

generating an adaptation script to be enforced by the AVS
at run-time.

So far, we have analyzed the goal delegation between
AVS and AMware and decomposition of their goals, con-
tributing to high level soft goals. In goal models alternate
goal decomposition helps the architect to better analyze the
variability by addressing theWHY for adaptation. This
leads to high-variability design for run-time adaptation [11].
This modelling experience helped us to derive some re-
quirements which are seminal for our intended agent-based
middleware.

4.2. Identifying Requirements for Middle-
ware

To this stage, we use goal models, which provides
a mechanism to evaluates alternate ways for examining
the user’s requirements and sources of variability. Re-
visiting the existing architecture based (Middleware) ap-
proaches [3, 4, 5] in the light of this modelling experience,
we have derived the following important questions that our
intended middleware should allow to answer:

Q1: What adaptation concerns are to be externalized?

Q2: What to monitor in application and in operating envi-
ronment?

Q3: What adaptation properties can be considered to reuse?

Q4: What level of control an agent can exercise while mon-
itoring and deciding as an external entity?

By decomposing the system in the form of agents - in
our case decomposing the AMware into a web of agents -
we end up with the layered view depicted in Figure 2.

5. Agent-Based Middleware

In this section we sketche the AMware middleware, as a
suitable option for providing externalized adaptation mech-
anism and enabling the seamless mapping of user require-
ments and environmental variability to the run-time needs.
To detail this, we can see that the typical middleware ser-
vices spans from traditional brokerage services to recently
context-aware applications. Here, we present our middle-
ware architecture as web of agents as shown in Figure 3.We
start by defining the agents role to address the (HOW) and
(WHEN) question about adaptation.

In Figure 2, we have decomposed the AMware into three
layers as web of agents. The first layer is a composition of
four main agents namelyContext Monitor Agent, Configu-
ration Selector Agent, Enforcer AgentandVisualizer Agent
simulating the adaptation loop (Monitor-Evaluate-Adapt).
Second layer composes wrapper agents which encapsulate



some monitoring components, providing information about
changes occurring from or to the operating environment. Fi-
nally, the third layer is the agent platform, providing white
and yellow page services to the upper layers. In this pa-

Figure 2. Layered View of Middleware

per, we will discuss the roles and responsibilities of all the
layered agents by referring to the requirements identified
earlier in section 4. Layer 1 agents coordinates with each
others and with layer 2, to provide adaptation mechanism.
Layer 2 agents, provides wrapper agents [9] to mask low
level information components - providing event details for
higher agents to evaluate. Layer 3 agents provides infras-
tructural services to the other two layers. We now further
see the individual roles of these agents.

5.1. Context Monitor Agent

The main aim of the Context Monitor Agent is to observe
the changes in the environment and user needs as configura-
tion settings. For example as shown in Figure 1, this agent
observes the environmental changes by predicting the QoS
parameters and by exploiting the use of wrapper agents as
shown in Figure 3. The wrapper agents are in fact low level
system components, which provides event level informa-
tion about the operating environment to the context monitor
agent. This partially fulfill the requirements (Q2, Q4).

This agent starts monitoring the current context of the
environment by knowing the current state of the system and
application settings using wrapper agents. For example, the
system state can be the current bandwidth, memory usage,
processor performance etc. also user profile settings hav-
ing access rights and user application settings etc. To get
this information at run-time, this agent properly notifies the
configuration selector agent by sending an appropriate mes-
sages about the evaluation and decision about the latest vari-
ations. It keeps record for the latest and run-time variations
to observe some patterns of events.

5.2. Configuration Selector Agent

The goal of this agent is to plan and evaluate. The agent
evaluates by comparing the predicted information provided

by the context monitor agent as shown in Figure 3. To cal-
culate the utilities of the selected configurations for the ap-
plication system as shown in Figure 1. The process of cal-
culating the utility is recursive, hence this agent judges the
selected configuration variants by assigning weights in a re-
cursive manner.

This mechanism helps in reasoning about the alternatives
in more deterministic way. In the end, the configuration
variant having the highest weight will be selected. Here,
our focus is to map and evaluate the user preferences by
re-evaluating the configurations of the application system.

This agent starts knowing the variable configurations that
can be selected under certain circumstances i.e. Configura-
tion selector selects the configurations based on the infor-
mation sent by the context monitor agent and also referenc-
ing to the environment. Exploiting this information by eval-
uating it and plans to inform the enforcer agent to generate
the adaptation script thus satisfying the requirements (Q1,
Q4).

Figure 3. Agent-based Middleware Architec-
ture

5.3. Enforcer Agent

Enforcer Agent provides seamless integration of the se-
lected and evaluated configuration variants. This agent ex-
ploits the information provided by the configuration selector
agent. The main aim includes continued service delivery to
the user by generating a adaptation script as shown in Fig-
ure 1. Based on the configuration variant selected for the
system to adapt. Enforcement mechanism includes twofold
process, one is the generation of automatic script and sec-
ond is to enforce or run the adaptation script during run-time
without compromising the system operations thus partially
fulfilling the requirements (Q3, Q4).



This agent implements the current set-
tings/configurations selected by the configuration selector
i.e. In order to enforce the latest configurations the enforcer
agent uses wrapper agent as shown in the Figure 3 to
enforce the generated adaptation script. This assures that
the system is optimized by shifting to the best selected
configurations. It also ensures the satisfaction of the con-
figurations selection and helps user with proper messages
by publishing notification messages and writing log about
the enforcement process details.

5.4. Visualizer Agent

Visualizer agent holds the minimal role as compared to
other agents, so far the role of this agent is to display the
information for the user to visualize the adaptation pro-
cess, notifications and other information generated during
the whole working of the middleware. This agent gets the
information mainly from the configuration selector agent
but indirectly from other agents as well.

6. Conclusion & Future Work

In this paper, we have discussed an agent-based middle-
ware which meetsSelf-adaptivityrequirements, exemplified
in an illustrative example that we modelled according to a
goal-oriented approach. We claim that using agents as mid-
dleware allows to address reuse and scalability issues. This
provides a way to have many other agents with focused
roles, which can be introduced at needs. The middleware
we have introduced can be generalized to provide an exter-
nalized adaptation mechanism to multiple applications.

As our future research, we will be considering much
finer details about our middleware for developing it and
evaluating with much realistic examples. This will
strengthen our intended approach towardsSelf-adaptive
systems and will enable us to better exploit the design pro-
cess for mapping requirements and environmental variabil-
ity at run-time. As a further extension users can also be
facilitated to specify policies for adaptation at high-level
using our visualizer agent. The user policies can be en-
forced automatically, hence the system will be driven by
automated policies rather then by humans relieving them
from the decision-making processes related to adaptation or
control loop tasks.

References

[1] D. M. Berry, B. H. Cheng, and J. Zhang. The four lev-
els of requirements engineering for and in dynamic adaptive
systems. In11th International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ05),
pages 95–100, 2005.

[2] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and
J. Mylopoulos. Tropos: An agent-oriented software devel-
opment methodology.Autonomous Agents and Multi-Agent
Systems, 8(3):203–236, 2004.

[3] S.-W. Cheng, A.-C. Huang, D. Garlan, B. R. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. InICAC, pages 276–277. IEEE
Computer Society, 2004.

[4] J. Floch, S. O. Hallsteinsen, E. Stav, F. Eliassen, K. Lund,
and E. Gjørven. Using architecture models for runtime
adaptability.IEEE Software, 23(2):62–70, 2006.

[5] E. Gjørven, F. Eliassen, K. Lund, V. S. W. Eide, and
R. Staehli. Self-adaptive systems: A middleware managed
approach. In A. Keller and J.-P. Martin-Flatin, editors,Self-
Man, volume 3996 ofLecture Notes in Computer Science,
pages 15–27. Springer, 2006.

[6] J. O. Kephart and D. M. Chess. The vision of autonomic
computing.IEEE Computer, 36(1):41–50, 2003.

[7] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J. Mylopou-
los. On goal-based variability acquisition and analysis. In
Proceedings of the 14th IEEE International Conference on
Requirements Engineering (RE’06). IEEE Computer Soci-
ety, September 2006.

[8] M. Morandini, L. Penserini, and A. Perini. Towards goal-
oriented development of self-adaptive systems. InPro-
ceedings of (SEAMS ’08)Workshop on Software engineering
for adaptive and self-managing systems, pages 9–16. ACM,
2008.

[9] A. Omicini and G. Rimassa. Towards seamless agent mid-
dleware. InWETICE, pages 417–422. IEEE Computer So-
ciety, 2004.

[10] M. Parashar and S. Hariri. Autonomic computing: An
overview. In J.-P. Ban̂atre, P. Fradet, J.-L. Giavitto, and
O. Michel, editors,UPP, volume 3566 ofLecture Notes in
Computer Science, pages 257–269. Springer, 2004.

[11] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. High
variability design for software agents: Extending tropos.
TAAS, 2(4), 2007.

[12] J. Sudeikat and W. Renz. Toward requirements engineering
for self - organizing multi- agent systems. InSASO, pages
299–302. IEEE Computer Society, 2007.

[13] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Se-
gal, I. Whalley, J. O. Kephart, and S. R. White. A multi-
agent systems approach to autonomic computing. InAA-
MAS, pages 464–471. IEEE Computer Society, 2004.

[14] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: A guided tour. In5th IEEE International Symposium on
Requirements Engineering (RE), page 249. IEEE Computer
Society, 2001.

[15] M. Woolridge. Multi-Agent Systems: An Introduction. John
Wiley & Sons (Chichester, England), 2001.


