
Engineering Adaptive Requirements

Nauman A. Qureshi
Fondazione Bruno Kessler - IRST

Via Sommarive, 18, 38050
Trento, Italy

qureshi@fbk.eu

Anna Perini
Fondazione Bruno Kessler - IRST

Via Sommarive, 18, 38050
Trento, Italy

perini@fbk.eu

Abstract

Challenges in the engineering of self-adaptive software
have been recently discussed and summarized in a semi-
nal research road map. Following it, we focus on require-
ments engineering issues, with a two-fold, long term ob-
jective. The first objective is to support the system analyst
to engineer adaptive requirements at requirements-time, the
second is to make software able to reason on requirements
at run-time in order to enable a goal-oriented adaptation.

Along the first objective, in this position paper we pro-
pose a characterization of adaptive requirements. More-
over, we investigate how available techniques aimed at elic-
iting and specifying domain properties, stakeholders goals
and preferences, can provide a practical support to the an-
alyst while capturing adaptive requirements.

1. Introduction

The emerging software technology and the growth of
the Internet have spawned the complexity and the mainte-
nance problem for current distributed software applications.
Moreover, users require quick and efficient interfacing to
the software systems to fulfil their evolving needs.

These problems motivated the proposal of the autonomic
computing paradigm [6] that stimulates research to de-
velop software with so called self-* properties, namely self-
managing, self-configuring, self-healing, self-optimizing,
and self-protecting. A property that is considered transver-
sal to them is self-adaptivity, which, according to B. Cheng
et al. in [1], can be defined as follows.
Self-adaptive systems can configure and reconfigure them-
selves, augment their functionality, continually optimize
themselves, protect themselves, and recover themselves,
while keeping most of their complexity hidden from the user
and administrator.

Most of the research works address design-time solu-
tions to provide run-time adaptation [7, 2]. Conversely, re-

quirements engineering for self-adaptive software systems
has received less attention so far, as also argued in a recent
software engineering research road map for developing self-
adaptive software systems [1]. Following this research road
map, we focus on requirements engineering issues, with a
two-fold, long term objective. First of all our objective is
to support the system analyst to engineer adaptive require-
ments at requirements-time. Secondly, we would like to
make software able to reason on requirements at run-time in
order to enable a goal-oriented adaptation. While starting to
address the first objective, in this position paper we propose
a characterization of adaptive requirements. By adaptive
requirements, we mean that a requirement encompasses the
notion of variability in it while elaborating either a func-
tional or quality aspects of the software system. Moreover,
we investigate how available techniques for representing
domain properties and techniques for modelling stakehold-
ers goals and preferences can provide a practical support to
the analyst while capturing adaptive requirements.

The rest of the paper is structured as follows: section
2 recalls basic related works; section 3 proposes a charac-
terisation of the concept of adaptive requirement with the
help of a running example; section 4 investigates how avail-
able knowledge representation and goal-oriented modelling
techniques can provide a practical support to the analyst
while capturing adaptive requirements, along the running
example. Furthermore section 5 discusses future work and
expected results and section 6 concludes.

2. Related Work

A discussion about the nature and the features of re-
quirements for adaptive software can be found in recent
work, such as [16, 13]. Whittle et al. in [16], point out
the need to capture uncertainty due to the variability in the
operational context when specifying requirements for self-
adaptive software. They also analyse how natural language
can be used to express them using modal verbs.

Salifu et al. in [13] argue that, self-adaptive software



needs to monitor, at run-time, the operational context in or-
der to detect requirements violations and to aid the system
to switch to (predefined) variants of its behaviours that al-
lows restoring requirements satisfaction. Their work deals
with the specification of monitoring requirements and of
switching behaviours. We build on the characterization of
requirements for adaptive software proposed in the above
mentioned works, but differently from [13], we focus on
the problem of capturing adaptive requirements that entails
monitoring and adaptation bahaviours, a preliminary step
to using their approach. Moreover, instead of using nat-
ural language or modal logics, as proposed in [16], we
aim at investigating the role of goal-oriented modelling lan-
guages and knowledge representation techniques (ontolo-
gies) to analyse source of variability which motivate the
specification of requirements for adaptive software systems.
A further motivation of our approach is to provide require-
ments artefacts that maybe reasoned about by the software
at run-time.

Relevant to our approach are also variability design
methods based on goal-oriented modelling and research on
the use of ontology techniques for requirements engineer-
ing. We recall them briefly in the following.

Stakeholders goals have been recognized and used as a
useful abstraction to represent the intentional perspective
of the users of a system-to-be, providing the rationale be-
hind functional and non-functional requirements of the sys-
tem, also represented in terms of “system goals” [15, 17].
Goal-oriented requirement engineering approaches, such
as [9, 11, 10], exploit goal OR decomposition for analyzing
variability in the problem (stakeholders) and in the solution
(system) space.

Liaskos et al. in [8] use goal-oriented approach to ad-
dress the problem of variability by analysing high-level user
preferences as goal alternatives and by matching them with
the intended system configuration to derive an automatic
system configuration. This appears to be a very useful ap-
proach to describe the behaviour of self-adaptive software
based on goals.

Focusing on self-configuration, Penserini et al. [11] pro-
pose to model problem/solution space variability by ex-
ploiting goal OR-decomposition, while contribution links to
soft-goals, which represent preferences and quality of ser-
vices, provide the rationale for selecting alternative. An ex-
tension to this work by Morandini et al. in [10] is to cap-
ture the said adaptivity requirements expressed as goal mod-
els that can be mapped to BDI architecture resulting into
an agent-based design framework for self-adaptive agents.
Focusing on the link between requirements- and run-time,
goal-oriented approaches provide basis to monitor require-
ments (violation and refinement) and to reason for run-time
behaviour of a system [3].

This motivates our choice to exploit goal-oriented

method to model variability, in particular we will refer to
the Tropos methodology [11].

Ontologies have been recognized as an expressive tech-
nique to represent knowledge in a particular domain of in-
terest. Ontologies encompass set of concepts, properties
and inference rules expressed using descriptive logic lan-
guages such as ontology web language (OWL)1.

Integration of goal models and ontologies has been re-
cently proposed by Shibaoka et al. in [14]. This approach
employs goal-oriented modelling complemented by knowl-
edge representation technique (ontologies) to solve difficul-
ties in refining goal models, thus facilitating the analyst to
elicit requirements. This approach makes an important step,
thus provides a starting point for our investigation, where
we use goal-models and ontologies to elicit requirements
for self-adaptive software with the further objective to al-
low the software system, at run-time, to reason on them.

3. Adaptive Requirements

Requirements for self-adaptive software reflect uncer-
tainty about run-time conditions due to variability in the op-
erational context and in users needs [1, 16].

Software requirements are usually characterised along
the functional and non-functional classification. While elic-
iting and specifying them, the analyst first attempts to char-
acterise the stakeholders’ needs that may be elicited through
interviews or domain documents, both using natural lan-
guage, along this classification.

I need a user friendly confirmation message after I book
the flight, can be an example of need expressed by the user
of a travel booking software service. Here, we can char-
acterise the requirement according to the functional and
non-functional perspective, answering questions like, What
the system should do and possibly How (well) should it
do. Two functional requirements can be identified (Booking
Flight, and Sending Confirmation Message) and one non-
functional requirement (User Friendly Message).

Adopting a goal-oriented requirements engineering ap-
proach allows us to answer also Why the user wants this;
why in this way questions that result in providing a rationale
(i.e. stakeholders goals) behind functional requirements,
quality constraints and preferences. Further analysis of soft-
ware requirements may lead also to answer questions about
Where and When aspects, leading to a complete specifica-
tion.

To develop self-adaptive software, we need to make ex-
plicit the alternatives in goal achievement, i.e. variability
in What and How, which may be further enhanced by the
variability in Where and When due to the openness of the
operational environment.

1http://www.w3.org/TR/owl-features/



This leads to define requirements that are not only func-
tional or non-functional but also includes monitoring spec-
ification that take into account the variability in the opera-
tional context, evaluation criteria and alternative software
behaviours to be adopted at run-time by the software sys-
tem to ensure the achievement of the intended users’ goals.
We define such requirements as adaptive requirements, de-
fined in short as: Requirements that encompass the notion
of variability associated to either a functionality or a system
quality constraint.

3.1. Running Example

We refer to a scenario from the tourism/travel domain to
help clarifying how the analyst can capture variability and
flexibility that identify adaptive requirements.

Mr. John is a business professional and travels fre-
quently around the world for his business reasons. He uses
his laptop and his PDA to manage his meeting and office
work, while travelling. He usually books his travel tickets
and hotel accommodation in advance using available inter-
net applications and web-services, but many times he needs
an urgent booking, which needs a lot of last minute search
using internet. Moreover, he often encounters problems due
to not being informed timely about delays in checking in for
flights and cancelled flights etc. This puts him in a situa-
tion to bear expensive alternative solutions. In addition, the
software should offer travel and leisure trips information,
which should be readily available on his device based on
his travel.

Mr. John needs a software application, which can man-
age his booking (Itinerary) by monitoring his given pref-
erence (booking reference or schedule etc.) and informing
him about the changes well before. We will call it Travel
Comp from now on. Let’s pick up a simple user need as that
of being informed about confirmed booking. The analyst
may describe it with the following statement and then iden-
tify from it some requirements for the Travel Comp soft-
ware application. A user friendly confirmation message, af-
ter booking is processed, must be communicated to the user
on his current device with proper representation.

In this example, there are four functional requirements
namely book a ticket, send confirmation message, mes-
sage communication to device and format representation of
message (addressing What is required). Whereas one non-
functional requirement i.e. user friendly message (address-
ing How well it should send). The analyst can now make ex-
plicit the variability in user’s devices (implicit in the above
requirement statement) and re-phrase it as follows:
A user friendly confirmation message, after booking is
processed, shall be communicated to the user on his
current device (e.g. PDA/Laptop) by seamlessly observing
(monitor) the user’s context (Profile, Location, Device), in

order to deliver required/personalized contents to his cur-
rent device i.e. PDA/Laptop.

The variability in user’s device (PDA/Laptop) demands
monitoring at run-time to make the software aware of the
current operational context conditions and able to send the
confirmation message in a proper (formatted) way to the
user’s current device, so meeting the original user goals.

Unanticipated events, which may occur with significant
probability, should also be considered, such as message is
not delivered correctly or connection lost. This calls for
adding requirements to the software to make it degrading
gracefully or involving the user to take corrective actions.
To cope with such level of uncertainty (what might happen),
we also need to ensure at requirements-time that apart from
addressing previous questions the requirements shall also
try to address When and Where uncertainty. The above ex-
ample can be re-stated as follows:
A confirmation message for booking is generated as soon
the booking is processed, and required to possibly
communicate the message to the user on his cur-
rent device (e.g. PDA/Laptop) by seamlessly observing
(monitor) the user’s context (Profile, Location, Device),
run-time events and QoS attributes until the message is
delivered in a correct format (by scaling it, size, etc) and
with personalized representation (e.g. SMS, Email) to his
current device i.e. PDA or a different way to notification
is applied.

This allows to address situations in which, at run-time,
the message could not be confirmed as delivered either due
to wrong message delivery or connection lost. Then, using
for instance users’ contact info, the software can either send
an email to his secretary or notify his friends.

In the above example, it is not explicitly made precise
when the message will be delivered or it must be delivered.
That is, flexibility in When aspects is considered. More-
over, variability in users’ devices (Where), users’ prefer-
ences (goals - What, Why), and uncertainty in the opera-
tional context is considered, motivating the explicitation of
different behaviours (plans - How), to achieve the user’ s
original need.

4. Capturing Adaptive Requirements

The overall idea is, on one hand, to elicit stakehold-
ers’ needs and to analyze them in terms of the alternative
ways to meet them, by exploiting goal-oriented methods.
On the other hand, to exploit domain ontologies to express
application domain and operational context assumptions, as
well as to capture variability in them. This domain ontol-
ogy and the goal models are linked together to capture the
essential aspects of the requirements for the adaptive sys-
tem. This is depicted in fig. 1, with reference to the “Travel
Comp”software application. In the right side, an excerpt of
goal-model illustrates the goals of the software system, ex-



Figure 1. Annotating Goal Model with domain properties

pressed in Tropos notation, at the left side, an example of
the domain ontology is shown.

The resulting annotated goal model helps the analyst to
reason about the alternative behaviours of the system, which
takes into account variability in the application domain and
in the operational context. Moreover, linking the concept
properties, from ontology to goal model, facilitates to derive
monitoring specifications and evaluation criteria to drive the
switching among variants of behaviour at run-time, so fol-
lowing the definition of adaptive requirements given in the
previous section.

Goal Modelling. Following the Tropos software devel-
opment methodology [11], we move from a goal-oriented
model of the domain’s stakeholders (including users of the
system-to-be) to the specification of the system require-
ments by delegating users goals to the system. Hard-goals
represent the rationale behind functional requirements (de-
picted as ovals in fig. 1, right side) and soft-goals (cloudy
shape) represent non-functional aspects of the system-to-be.

Elaborating the example introduced in the previous sec-
tion, we analyse the stated requirement in terms of hard-
goals and soft-goals thus addressing the (Why) question
along with the (What).

The goal Booking Confirmed has been delegated by the
user (Mr. John in our scenario) to the system, represented
by the actor ”Travel Comp”, and it is analysed as a sub-
goal of a more general goal of the system, namely Itinerary
Managed, through AND-decomposition.

The other sub-goals, i.e. Itinerary Monitored and User
Context Identified, corresponds to the user needs of be-
ing supported by the software system also while traveling,
so being in a situation in which context and devices may
flexibly change. The analysis of these two additional goals
becomes essential to end up with a specification suitable for
an adaptive system, that is including monitoring conditions
and evaluation criteria for switching behaviour.

Following the details of the Booking Confirmed anal-
ysis, we may found that this goal is achieved through a
plan 〈SendMessage〉, depicted in terms of means-end re-
lation in fig. 1 2. This plan specifies the action of send-
ing a confirmation message to the user device as soon the
booking is processed. This plan can be realized by alterna-
tive behaviuors, namely 〈SendEmail〉 , 〈SendSMS〉 and

2The “Travel Comp” analysis is is not fully described here for space
reasons, we remind the interested reader to [12] for further details. So, for
instance, it is not reported here how the ticket booking service is realized.



//Plan Model(〈SendMessage〉) to accomplish Goal (BookingConfirmed)
begin procedure Plan Model(〈SendMessage〉)
do triggerGoals [UserContextIdentified,ItineraryManaged];

begin
for Goal [UserContextIdentified]
do executePlan 〈DetectDevice〉; //@param: phone type, phone setting
return; //@result: device

end;
begin

for Goal [ItineraryManaged]
do executePlan 〈DetectChanges〉; //@param: msg delivery err, conn err
return;//@result: eventMessage

end;
decision = decision on AltP lans(device, eventMessage);
case decision:

- Select case:〈SendSMS〉; //if device = PDA, eventMessage = null
- Select case:〈SendEmail〉; //if device = Laptop, eventMessage = null
- default case: 〈SendFax〉; //if device = null, eventMessage = null

ifnot [decision]
then lookupContact; //@param: cust name, contact info

alt decision = decision on AltP lans(cust name, contact info);
case alt decision:

- Select case: 〈SendEmail〉; //contact info
- default case: 〈SendFax〉; //contact info

end procedure;

Figure 2. Example of Plan description

〈SendFax〉, represented by the plan OR-decomposition.
These three alternative plans address the variability in the
operational context, which affect (How) the goal of con-
firming booking can be achieved by the software system.
Criteria for selecting the right alternative are represented
by contribution relationships (arrows labeled with “+” or
“-”) to soft-goals. For instance, the selection of the plan
〈SendSMS〉 should be performed when the user’s device
is a PDA, as it contributes (++) positively to the users’ soft-
goal {Convenience} as compared to 〈SendFax〉, which
contributes (–) negatively to it.

Information needed to drive the plan selection are col-
lected at run-time by the system following monitoring re-
quirements expressed in the analysis of the goals Itinerary
Monitored and User Context Identified. For instance the
plan 〈DetectEvent〉 that is part of the means-end analy-
sis of the Itinerary Monitored goal contains specification
of how to detect unforeseen events, as message delivery er-
ror or connection lost, and provide criteria for the system to
switch to a behaviour in which Mr. John contact info are
used to inform colleagues or friends about the confirmed
booking.

Domain Modelling. Representing the knowledge about
the domain using ontology provides a way to elicit domain
assumptions. We model application domain and operational
context properties in the ontology as shown on the left side
of the fig. 1. For example, in the ontology we identify the
common concepts used in travel domain such as Itinerary,
Accommodation, Means of transportation (by plane or
by train etc.). After identifying the concepts, we define re-
lationships between these concepts. It helps in understand-
ing the said domain assumptions that remains true in a do-
main of interest. To express these assumptions we use con-

cept properties and inference rules, which represents them.
For example, one possible domain assumption can be: Cus-
tomer’s itinerary is valid not before and not after the depar-
ture date. Moreover, concepts that describe the operational
context are represented in our ontology, such as Context,
Device, Event having a property (Message deliver error)
and Customer having a concept property such as (Contact
Info) etc.

Linking Ontology to Goal Model. The links between
domain concepts and their properties represented in the on-
tology to the plans and goals represented in the goal model
are shown in the fig. 1 (see label 1 to 5). For instance, the
concept Phone Device in the ontology is linked with the
plan Detect Device in the goal model (with the label 2 and
3). These labels associate the properties phone type (Mo-
bile Phone, PDA etc.) and phone setting (e.g. Operating
system, memory etc.) with the plan Detect Device to pro-
vide an additional information to the plan’s specification.
Similarly, the concept Event is associated with plan Detect
Events, which provides the plan to detect events such as
msg delivery err as shown in the fig. 1 as label 4.

This helps analysts in detailing software behaviours that
encompass not only the actions to satisfy (functional) goals,
but also monitoring and evaluation actions. Fig. 2 describes
the plan 〈SendMessage〉, which provides the means to
achieve the (functional) goal BookingConfirmed. This
plan requires to trigger monitoring goals that are pursued
in parallel, providing data for the evaluation actions that
drive the selection of the right alternative e.g.〈SendSMS〉
to send confirmation message to the users’ device (assum-
ing the device is identified as PDA).

5. Discussion

The requirements specification problem has been re-
cently redefined in [5] in terms of a planning problem, aim-
ing at specifying what a software system should do to meet
users goals, quality constraints and preferences, under a
given set of domain assumptions.

In our research we are applying this definition to the case
of requirements for adaptive software with the aim to pro-
pose a methodology for the analyst to specify these require-
ments. Here the analysis of the sources for variability plays
a crucial role. First variability in the application domain
and the operational context needs to be identified, second
the alternative software behaviours, that may take place in
the different context conditions, to achieve users goals and
preferences have to be found. A basic assumption underly-
ing our work is that users goals are stable (e.g. I want to re-
ceive confirmation after booking has been processed) since
they relate to concrete needs, while the context in which the
user wants these goals to be achieved may vary (i.e. moving
with a PDA, using his laptop, etc.). User preferences (e.g. I



prefer SMSs) and quality constraints may also be relaxed to
allow for gracefully degrading behaviours.

In this position paper we are investigating the usefulness
of knowledge representation and modelling techniques to
support the analysis of this variability, and to represent vari-
ants of software behaviours which assume context monitor-
ing and evaluation steps that allow to realize an adaptive
system. Among the reasons for using ontologies, also the
fact that a number of domain ontologies are available for re-
use on the Internet, 3 so mitigating the risk of an additional
modelling effort when performing requirements analysis.
Concerning goal-oriented modelling, considerable work is
showing its effectiveness as a method for high variability
design. In addition, existing versions of goal-oriented mod-
eling language using first-order linear time temporal logic
may provide more expressive way to represent temporal in-
formation [4].

Further work is required to consolidate this analysis, es-
pecially with real scenarios, and to define a step by step
analysis process.

The role of these requirements artefacts (goal models
plus ontology) to enable adaptation at run-time needs also
additional investigation. A related work, along this direc-
tion, can be considered the approach proposed by Moran-
dini et al. [10] in which goal models including variants of
behaviour are implemented into BDI agents. Differently, in
our work, we would like to address other implementation
platforms and middleware based architectures.

6. Conclusions

In this position paper, we presented a characterisation of
requirements for adaptive systems. Moreover, we investi-
gated the usefulness of the knowledge representation tech-
niques and goal-oriented modelling to support the analysis
of variability, a key step towards understanding the adaptive
requirements for self-adaptive software systems.

References

[1] B. H. C. Cheng, H. Giese, P. Inverardi, J. Magee, and
R. de Lemos. Software engineering for self-adaptive
systems: A research road map. In B. H. C. Cheng,
R. de Lemos, H. Giese, P. Inverardi, and J. Magee, edi-
tors, Software Engineering for Self-Adaptive Systems, vol-
ume 08031 of Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum fuer Infor-
matik (IBFI), Schloss Dagstuhl, Germany, 2008.

[2] S.-W. Cheng, A.-C. Huang, D. Garlan, B. R. Schmerl,
and P. Steenkiste. Rainbow: Architecture-Based Self-
Adaptation with Reusable Infrastructure. In ICAC, pages
276–277. IEEE Computer Society, 2004.

3A useful ontology search service is available at:
http://swoogle.umbc.edu

[3] M. S. Feather, S. Fickas, A. V. Lamsweerde, and C. Ponsard.
Reconciling system requirements and runtime behavior. In
IWSSD ’98: Proceedings of the 9th international workshop
on Software specification and design, page 50, Washington,
DC, USA, 1998. IEEE Computer Society.

[4] A. Fuxman, L. Liu, J. Mylopoulos, M. Roveri, and
P. Traverso. Specifying and analyzing early requirements
in tropos. Requir. Eng., 9(2):132–150, 2004.

[5] I. Jureta, J. Mylopoulos, and S. Faulkner. Revisiting the core
ontology and problem in requirements engineering. Interna-
tional Requirements Engineering, 2008. RE ’08. 16th IEEE,
pages 71–80, Sept. 2008.

[6] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41–50, 2003.

[7] J. Kramer and J. Magee. Self-managed systems: an archi-
tectural challenge. Future of Software Engineering, 2007.
FOSE ’07, pages 259–268, May 2007.

[8] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and S. M.
Easterbrook. Configuring common personal software: a
requirements-driven approach. In RE, pages 9–18. IEEE
Computer Society, 2005.

[9] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J. Mylopou-
los. On goal-based variability acquisition and analysis. In
Proceedings of the 14th IEEE International Conference on
Requirements Engineering (RE’06). IEEE Computer Soci-
ety, September 2006.

[10] M. Morandini, L. Penserini, and A. Perini. Towards goal-
oriented development of self-adaptive systems. In Pro-
ceedings of (SEAMS ’08)Workshop on Software engineering
for adaptive and self-managing systems, pages 9–16. ACM,
2008.

[11] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. High
variability design for software agents: Extending Tropos.
TAAS, 2(4), 2007.

[12] N. A. Qureshi and A. Perini. Engineering adaptive require-
ments. Technical report, 2008.

[13] M. Salifu, Y. Yu, and B. Nuseibeh. Specifying monitor-
ing and switching problems in context. Requirements Engi-
neering Conference, 2007. RE ’07. 15th IEEE International,
pages 211–220, Oct. 2007.

[14] M. Shibaoka, H. Kaiya, and M. Saeki. GOORE: Goal-
Oriented and Ontology Driven Requirements Elicitation
Method. In Advances in Conceptual Modeling - Foundations
and Applications, pages 225–234, Auckland, New Zealand,
Nov. 2007. Springer. LNCS 4802.

[15] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: A guided tour. In 5th IEEE International Symposium on
Requirements Engineering (RE), page 249. IEEE Computer
Society, 2001.

[16] J. Whittle, P. Sawyer, N. Bencomo, and B. H. Chen.
Reassessing Languages for Requirements Engineering of
Self-Adaptive Systems. In 4th International Workshop on
Service-Oriented Computing Consequences for Engineering
Requirements (SOCCER’08), 2008.

[17] E. Yu and J. Mylopoulos. Understanding why in software
process modelling, analysis, and design. Software Engineer-
ing, 1994. Proceedings. ICSE-16., 16th International Con-
ference on, pages 159–168, May 1994.


