
Towards Seamless Adaptation: An Agent-Oriented Approach

Nauman A. Qureshi and Anna Perini
Software Engineering Research Unit
Fondazione Bruno Kessler - IRST

Via Sommarive, 18, 38100 Trento, Italy
{qureshi, perini}@fbk.eu

Abstract

Self-adaptive systems are able to autonomously adapt to
changing user requirements and resource variability at run-
time, therefore addressing the problem of software complex-
ity and maintenance. Ongoing research on development
methodologies for Self-adaptive software points out a ne-
cessity for supporting, requirements-time, design-time and
run-time, adaptivity. The main aim of our work is to devise
a development process that enables seamless adaptation of
software systems by exploiting requirements-, design- and
run-time adaptation.

1. Introduction

Today software systems complexity is mainly driven by
the dynamism of user needs and by the heterogeneity in
the operating environment, making software maintenance
a complicated task. This has motivated the proposal of the
autonomic computing paradigm inspired by biological sys-
tems, which employs specialized adaptation and evolution
strategies.

Software systems, which address such problems and are
able to autonomously adapt to changing user requirements
and resource variability at run-time are calledSelf-adaptive
systems. Many different definitions ofSelf-adaptivesys-
tems have been proposed so far [1, 4]. In this work, we
adopt the following definition forSelf-adaptivesystems:
Self-adaptive system is a system, which can modify its be-
haviour at run-time, steered by its ”perception” of current
user’s requirements and operating environment changes,
and by reusing requirements and design artefacts.

Ongoing research on development methodologies for
Self-adaptivesoftware points out a necessity for support-
ing, requirements-time, design-time and run-time adaptiv-
ity. Several interesting work have been realized, which
leverage Architecture Based (Middleware) [2, 4], Service-
Oriented Architectures (SOA) [3], Multi-Agent Systems

(MAS) [7], Requirement Engineering [1] and Goal-oriented
Requirement Engineering [5] paradigms.

Our research develops in the context of the studies on
software engineering methods and techniques to develop
Self-adaptivesoftware. The main aim of our work is to
devise a development process that enablesseamlessadap-
tation of software systems that is the adaptation takes
place without significant system performance compromise.
Requirements-, design- and run-time adaptation mecha-
nisms are considered. We move from an analysis of state-
of-the-art approaches describing the proposed process view,
revisiting and integrating ideas from an Agent-Oriented [6]
and Architecture-based solution [2, 4], and sketch the re-
sulting approach, which is more extensively described in
detail and illustrated with an example in a technical re-
port. 1

The paper is organized as follows. Section 2 presents
our view of the adaptation process, which goes from re-
quirements to run-time. Section 3 provides an experience
summary with discussion. Conclusion and future work is
discussed in Section 4.

2. Self-Adaptive Systems: A Process View

State-of-the-art work onSelf-adaptivesystems devel-
opment introduced the concepts of requirements-, design-
and run-time adaptation, but typically focuses on one from
among the three. In our approach we conceive a devel-
opment process, called3TProcess that considers all these
three aspects with their mutual relationships as shown in
Fig. 1. We believe thatseamlessadaptation should built
on top of these mutual dependent elements using an agent-
oriented approach.

Requirement-Time: Goal models are the key artefact at
this stage. They are used to capture the variability in user
preferences and resource needs, and to represent alterna-
tive ways to meet those needs, providing input for a high-

1N. A. Qureshi and A. Perini. Towards seamless adaptation:An agent-
oriented approach. Technical report, (FBK-IRST), 2008



Figure 1. 3TProcess View

variability design. Quality of Service (QoS) parameter val-
ues and conditions which may affect goal achievement are
identified at this stage and specified (parameterized goals)
for monitoring purposes.

Design-Time: Focus at this time is on defining a QoS
models including evaluation policies that can be action-,
goal-, utility-based. Different architecture configurations
(compositions) with respect to low-level components and
agents are design together with the specific mapping to their
implementation platform (architecture model). This archi-
tecture model is linked to the QoS model that will drive the
architecture selection at run-time.

Run-Time: Main artefact here is environment monitor-
ing data. During the operational course of the system, real-
time observed QoS values are re-evaluated along with user
preferences to generate code (adaptation scripts), here the
aim is to make the system to adaptseamlesslyto the new
situations by enforcing the generated code without signifi-
cant performance compromise.

Adaptation-loop: It exploits artefacts of each edge and
the automation is managed by employing agents. Context
data, together with user input (if any) are classified accord-
ing to the requirements goal tree in order to verify alignment
of system behaviour to current users goals. The design-time
QoS model, which drives the configuration selection, is in-
stantiated with respect to the data collected during monitor-
ing. At run-time, the process of monitoring and evaluation
is revisited by finally generating a code artefact, which se-
lects a configuration variant, making the system to adapt.

3. An Experience Summary

In order to illustrate our intended approach, we have
adopted and simplified an example i.e. Personal Media
Server used for video streaming [4]. In this example we
develop a goal model and analyze how agents exploit them
by providing an externalized adaptation mechanism. With
further refinement, using [6] approach, we will see how we
can achieve high-variability design. In this scenario, we

consider different strategies, which motivates the need for
having an externalized adaptation mechanism.

We instantiate our process view by integrating methods
and ideas from existing requirements driven approaches [5]
and architecture-based approaches [2, 4]. In particular, we
use the TROPOS methodology [6], to derive a Late Re-
quirements and Architectural Design model in which we
have decomposed the system in terms of agents. Following
are the modelling steps, according to our proposed process
view. [Step 1]: Defining the Goals,[Step 2]: Analyzing
AND / OR Decomposition,[Step 3]: Impact of Contribu-
tions on Soft Goals,[Step 4]: Parameterizing Goals,[Step
5]: Deciding Alternate Architecture,[Step 6]: Apply Cho-
sen Architecture. Details of our modelling experience and
approach followed can be found in a technical report.1

4. Conclusions

In this paper, We discussed how the agent paradigm pro-
vides effective concepts to represent users’ goals and prefer-
ences and support an externalizing adaptation mechanism,
providing, overall seamless adaptation. In particular, we
focused on the development process forSelf-adaptivesys-
tems, an aspect that has been only partially addressed by
previous work. In our approach, the development process
should consider requirements-, design and run-time adapta-
tion as complementary views of aSelf-adaptivesystem.

References

[1] D. M. Berry, B. H. Cheng, and J. Zhang. The four levels of re-
quirements engineering for and in dynamic adaptive systems.
In REFSQ05, pages 95–100, 2005.

[2] S.-W. Cheng, A.-C. Huang, D. Garlan, B. R. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self-adaptation
with reusable infrastructure. InICAC, pages 276–277. IEEE
Computer Society, 2004.

[3] G. Denaro, M. Pezz̀e, and D. Tosi. Designing self-adaptive
service-oriented applications. InICAC, page 16. IEEE Com-
puter Society, 2007.

[4] E. Gjørven, F. Eliassen, K. Lund, V. S. W. Eide, and
R. Staehli. Self-adaptive systems: A middleware managed
approach. In A. Keller and J.-P. Martin-Flatin, editors,Self-
Man, volume 3996 ofLecture Notes in Computer Science,
pages 15–27. Springer, 2006.

[5] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, and S. M.
Easterbrook. Configuring common personal software: a
requirements-driven approach. InRE, pages 9–18. IEEE
Computer Society, 2005.

[6] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. High vari-
ability design for software agents: Extending tropos.TAAS,
2(4), 2007.

[7] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal,
I. Whalley, J. O. Kephart, and S. R. White. A multi-agent
systems approach to autonomic computing. InAAMAS, pages
464–471. IEEE Computer Society, 2004.


