
Towards an Agent Oriented approach to Software Engineering

AnnaPeriniandPaoloBresciani
ITC-IRST

Via Sommarive18,38055Povo, Trento,Italy�
perini,bresciani� @irst.itc.it

PaoloGiorgini andFaustoGiunchiglia
Dep.of InformationandCommunicationTech.

Universityof Trento
via Sommarive14,Povo, Trento,Italy�

pgiorgini,fausto� @ict.unitn.it

JohnMylopoulos
Departmentof ComputerScience

Universityof Toronto
M5S 3H5,Toronto,Ontario,Canada

jm@toronto.edu

Abstract

This paperdescribesa methodology for agent oriented
software engineering, called Tropos1. Troposis basedon
threekey ideas. First, the notion of agent and all the re-
lated mentalisticnotions(for instance: goals and plans)
are usedin all phasesof software development,from the
early analysisdownto theactual implementation.Second,
Troposcovers also the very early phasesof requirements
analysis,thusallowing for a deeperunderstandingof the
environmentwhere the software mustoperate, and of the
kindof interactionsthatshouldoccurbetweensoftwareand
humanagents.Third, Troposadoptsa transformationalap-
proach to processartifactsrefinement.Themethodology is
partially illustratedwith thehelpof a casestudy.

1. Introduction

Advancedsoftwareapplicationscall mostoftenfor open
architecturesthat continuouslychangeand evolve to ac-
commodatenew componentsandmeetnew requirements.
More and more, software must operateon different plat-
forms, without recompilation,and with minimal assump-
tions about its operatingenvironmentand its users. One
of the most critical dimensionof complexity of this type
of software is communicationbetweencomponents. In
other words, this type of software applicationsrequireto
deal with aspectsthat traditionally have beenascribedto
multi-agentssystems. Similar considerationscan be pur-

1FromtheGreek“tropé”, whichmeans“easily changeable”,also“eas-
ily adaptable”.

suedat thesystemspecificationlevel. Theseintuitionsmo-
tivatesrecentefforts in adaptingconceptsandmethodolo-
giesfor AgentOrientedProgramming(AOP) to thedevel-
opmentof complex softwaresystems,in analogywith what
happenedwhenconceptsof ObjectOrientedProgramming
(OOP)werediscoveredto beusefulfor theanalysisandde-
signof softwaresystems,independentlyof theuseof OOP
asimplementationtechnology.

To qualify asan agent,a softwareor hardwaresystem
is often requiredto have propertiessuchasautonomy, so-
cial ability, reactivity, proactivity. Otherattributeswhichare
sometimesrequestedaremobility, veracity, rationality, and
soon. Thekey featurethatmakesit possibleto implement
systemswith theabove propertiesis that, in this paradigm,
programmingis doneat a very abstractlevel, more pre-
cisely, following Newell, at theknowledgelevel [12]. Thus,
in agentorientedprogramming,we talk of beliefs instead
of machinestates,of plansandactionsinsteadof programs,
of communication,negotiationandsocialability insteadof
interactionandI/O functionalities,of goals,desires,andso
on. Abstractmentalnotionsareessentialin order to pro-
vide, at least in part, the software with the extra flexibil-
ity neededto dealwith thecomplexity intrinsic in themen-
tionedapplications.Theexplicit representationandmanip-
ulation of goalsandplansallows, for instance,for a run-
time “adjustment”of the systembehavior neededin order
to copewith unforeseencircumstances,or for amoremean-
ingful interactionwith otherhumanandsoftwareagents.

Agent orientedprogrammingis often introducedas a
specializationor asa “natural development”of objectori-
entedprogramming,seefor instance[16, 10, 17]. In our
opinion, the step from object oriented programmingto
agentorientedprogrammingis morea paradigmshift than



eCulture
System

internet use

eCulture

information

taxes well

usable

get cultural

infrastructure

internet

increase

available

System

enjoy visit

available

spent

Visitor

Citizen

PAT

Museum

cCultural
services

provide

goal

goal dependency

softgoalactor

depender dependum dependee

Figure 1. An actor diagram specifying the project stakeholders and their main goal dependencies.

a simple specialization.Also thosefeaturesof agentori-
entedprogrammingwhich canbe found in objectoriented
programminglanguages,for instance,mobility and inher-
itance,take, in our context, a differentand more abstract
meaning.

Severalapproachesto agent-orientedsoftwareengineer-
ing have beendeveloped,rangingfrom structured,infor-
malmethodologies,to formalones,asdescribedin a recent
overview [1] andin [2] , mostof themfocusingbasicallyon
architecturaldesign.

Weproposeasoftwaredevelopmentmethodology,called
Tropos[14], whichwill allow usto exploit all theflexibility
providedby agentorientedprogramming.In a nutshell,the
threekey featuresof Troposarethefollowing:

1. Thenotionof agentandall therelatedmentalisticno-
tions areusedin all phasesof softwaredevelopment,
from thefirst phasesof earlyanalysisdown to theac-
tual implementation.

2. A crucialrole is givento theearlieranalysisof require-
mentsthatprecedesprescriptive requirementsspecifi-
cation.Weconsiderthereforemuchearlierphaseswith
respectto standardobjectorientedmethodologiesas,
for instance,thosebasedontheUnifiedModelingLan-
guage(UML) [6], whereusecaseanalysisis proposed
asanearlyactivity, followedby architecturaldesign.

3. Themethodologyrestsontheideaof building amodel
of the system-to-bethat is incrementallyrefinedand
extendedfrom a conceptuallevel to executablear-
tifacts. This processadoptsa transformationalap-

proach:a setof transformationoperatorswhich allow
theengineerto progressivelydetailthehigherlevel no-
tions introducedin theearlierphasesareproposed.It
must be noticed that, contrarily to what happensin
mostotherapproaches,e.g.,UML basedmethodolo-
gies,thereis nochangeof graphicalnotationfrom one
stepto thenext (e.g.,from usecasesto classdiagrams).
Therefinementprocessis performedin amoreuniform
way.

In thefollowing sectionwe giveanoverview of theTro-
pos methodology, partially illustrated with examplesex-
tractedfrom a case-studydescribedin [14]. Someconclu-
sionsarepresentedin Section3.

2. The Tropos Methodology

The Troposmethodologyis intendedto supportall the
analysisanddesignactivities from thevery earlyphasesof
requirementsengineeringdown to implementation,andor-
ganizestheminto five maindevelopmentphases:early re-
quirementanalysis,laterequirementsanalysis,architectural
design,detaileddesignandimplementation2.

TheTroposmodelinglanguageis derivedfrom theEric
Yu’s � * paradigm[18] which offers actors,goals,andac-
tor dependenciesasprimitiveconceptsfor modelinganap-
plication during early requirementsanalysis. Tropos’ lan-

2Theconceptof phasein Troposdenotesa setof activities of thesoft-
waredevelopmentprocesswith a logical coherence.Elsewherethis con-
ceptis denotedasworkflow, for instancein the RationalUnified Process
(RUP)[5]



own systems

taxes well

museums for

expenses
reasonable

internet

educate
citizens

funding

provide

services

System

increase
internet use

available

eCultural

infrastructure
inexpensive

offer

available

eCulture

infrastructure
good

provide
interesting
systems

services
good cultural

services

spent

build 
eCulture
System

PAT

+

+

+

+

+

Figure 2. A goal diagram for PAT. The analysis shows goal decomposition and softgoal (positive)
contribution.

guageis intendedto supportbothan informal modelspec-
ification anda formal one,allowing for automaticcheck-
ing of modelproperties[15]. A setof diagrammaticrepre-
sentationof the modelareprovided. Eachelementin the
modelhasits own graphicalrepresentation,takenfrom the

� * framework. Two main typesof diagramsareprovided
for visualizing the model: the actor diagram3, wherethe
nodes(theactors)areconnectedthroughdependencies(la-
beledarcs),andthegoaldiagram4, representedasaballoon
labeledwith a specificactornameandcontaininggoaland
plananalysis,conductedfrom thepointof view of theactor.

In the rest of this sectionwe briefly describethe five
Troposphases,specifyingthemainactivities of eachphase
andtheprocessartifacts.Theexampleareextractedfrom a
case-studywhich refersto thedevelopmentof a web-based
brokerof culturalinformationandservices(hereineCulture
system) for theProvinceof Trentino,includinginformation
obtainedfrom museums,exhibitions,andotherculturalor-
ganizations.It is the government’s intention that the sys-
tem be usableby a variety of users,including citizensof
Trentinoandtouristslooking for thingsto do, or scholars

3Seethe i* strategic dependenciesdiagram.
4Seethe i* rationalediagram.

andstudentslooking for materialrelevantto their studies.

2.1. Early Requirements

The mainobjective of the early requirementanalysisin
Troposis the understandingof a problemby studyingan
existing organizationalsetting. During this phase,the re-
quirementengineermodelsthe stakeholdersasactorsand
analyzestheir intentions,thataremodeledasgoalswhich,
througha goal-orientedanalysis,arethendecomposedinto
finer goals, that eventually can supportevaluation of al-
ternatives. Goal analysiscanbe concludedby identifying
plansthat,if performedby theactor, allow for goalachieve-
ment.Theanalysiscanalsoleadto theidentificationof fur-
ther dependencieswith otheractors. Whennecessary, we
distinguishbetweenhardandsoftgoals,thelatterlackinga
clear-cutdefinitionand/orcriteriafor decidingwhetherthey
aresatisfiedor not. Softgoalsareamenableto a morequal-
itative kind of analysisthat, whenmoving to later phases
concerningthe systemdefinition, may leadto the identifi-
cationof non-functionalrequirements.Theresultingmodel
canbedepictedasanactordiagram.

Figure 1 shows the actors involved in the eCul-



temporal
available

System

eCulture

usable

System

eCulture
System

usable
eCulture
System

use internet
technology

scalable

flexible

provide

provide
eCultural
services

eCulture

PAT

cultural infologistic info

portable

System

virtual visits

services

extensible

available

eCulture

educational
services

eCulture System
System

user friendly

eCultural

info

eCulture

provide

+ +
+

+
+

make
reservations

Figure 3. A fragment of the actor diagram including the PAT and the eCulture System and the goal
diagram for the eCulture System.

ture project and their respective goals. In partic-
ular, the actor PAT representsthe local government
and has been representedwith a single relevant goal:
increase internet use. TheactorsVisitor and
Museum have associatedsoftgoals,enjoy visit and
provide cultural services respectively. Theac-
torCitizenwantsto getculturalinformationanddepends
on PAT to fulfill the softgoaltaxes well spent, a
highlevel goalthatmotivatesmorespecificPAT’sresponsi-
bilities, namelyto provide anInternetinfrastructure,to de-
liver on theeCulture system andmake it usabletoo.
Someof the dependenciesin Figure1 arisefrom a refine-
mentof thepreliminarymodelobtainedby performinggoal
analysis,asdepicted,for instance,in Figure2.

2.2. Late Requirements

The late requirementanalysisaims at specifying the
system-to-bewithin its operatingenvironment,alongwith

relevant functionsandqualities.Thesystemis represented
as an actor which have a numberof dependencieswith
the actorsalreadydescribedduring the early requirements
phase.Thesedependenciesdefineall functionalandnon-
functional requirementsfor the system-to-be. The actor
diagram in Figure 3 includes the eCulture System
andshows a setof goalsthat PAT delegatesto it through
goal dependencies.Thesegoals are then analyzedfrom
the point of view of the eCulture System and are
shown in the goal diagramdepictedin the lower part of
Figure 3. In the example we concentrateon the analy-
sis for the goal provide eCultural services
and the softgoal usable eCulture System. The
goal provide eCultural services is decom-
posed(AND decomposition)into four subgoals: make
reservations, provide info, educational
services andvirtual visits. As basiceCultural
service, the eCulture System must provide infor-
mation (provide info), which can be logistic



info� , and cultural info. Softgoal contributions
arethanidentified. So for instance,the softgoalusable
eCulture System has two positive (+) contributions
from softgoalsuser friendly eCulture System
andavailable eCulture System. Theformercon-
tributespositively becausea systemmustbe userfriendly
to be usable, whereasthe latter contributes positively
becauseit makesthesystemportable, scalable, and
availableover time (temporal available).

2.3. Architectural Design

The main objective of the architecturaldesignphaseis
thedefinitionof thesystem’sglobalarchitecturein termsof
subsystems(actors),interconnectedthroughdataandcon-
trol flows (dependencies).Basically, this phaseconsistsof
threesteps:refining the systemactordiagramintroducing
subactorsuponanalysisof functionalandnonfunctionalre-
quirementsandtakinginto accountdesignpatterns(step1);
capturingactor capabilitiesfrom the analysisof the tasks
that actorsand sub-actorswill carry on in order to fulfill
functional requirements(step 2); defining a set of agent
types(components)andin assigningto eachcomponentone
or moredifferentcapabilities(step3). A portionof thear-
chitecturaldesignmodelof the eCultureproject, resulting
from the first step,is representedby the actordiagramin
Figure4.

interfacing

provide

system

educational

Broker

interface

eCulture

Educational

System

services

Broker
Info

Broker

System

Manager

System

Interface

Manager

Interface

User

Manager

make
reservations

virtual

visitsprovide info

interfacing
user

Virtual

VisitReservation

Broker

Figure 4. Actor diagram of the architecture of
the eCulture System (step 1)

2.4. Detailed Design

The detaileddesignphaseaimsat specifyingthe agent
(component)capabilitiesand interactions. At this point,
usually, theimplementationplatformhasalreadybeencho-
senandthis canbetakeninto accountin orderto performa
detaileddesignthatwill mapdirectly to thecode5. So, for
instance,choosinga BDI (Belief DesireIntention) multi-
agentplatformwill requirethespecificationof agentcapa-
bilities in termsof externalandinternaleventsthat trigger
plans,and the beliefs involved in agentreasoning.These
propertiesarespecifiedthrougha setof diagrams.A subset
of theAUML diagramsproposedin [3, 13] areused:theac-
tivity diagrams(capability diagram) to modela capability
(or asetof correlatedcapabilities)from thepointof view of
a specificactor;activity diagrams(plan diagram) to spec-
ify eachplan nodeof a capabilitydiagram;andsequence
diagrams(agent interaction diagram) to model agentsin-
teractionin termsof communicationacts.

2.5. Implementation

The implementationactivity follows step by step the
detaileddesignspecification,accordingto the established
mappingbetweenthe implementationplatform constructs
andthedetaileddesignnotions.In ourcase-study, theJACK
IntelligentAgents[7] platformhasbeenchosenfor imple-
mentation.JACK is a BDI agent-orienteddevelopmenten-
vironmentbuilt on topandfully integratedwith Java,where
agentsareautonomoussoftwarecomponentsthathave ex-
plicit goals(desires)to achieveor eventsto handle.Agents
areprogrammedwith a setof plansin orderto make them
capableof achieving goals.

3. Conclusions

In this paperwe have proposedTropos,a new software
engineeringmethodologywhichallowsusto exploit thead-
vantagesand the extra flexibility (if comparedwith other
programmingparadigms,for instanceOOP)coming from
usingAOP. Two main intuitionsunderlyingTroposarethe
pervasive use,in all phases,of knowledgelevel specifica-
tions,andtheideathatoneshouldstartfrom thevery early
phaseof earlyrequirementsspecification.Thisallowsusto
createacontinuumwhereonestartswith asetof mentalistic
notions(e.g.,beliefs,goals,plans),alwayspresentin (the
why of) early requirements,and to progressively converts
theminto theactualmentalisticnotionsimplementedin an
agentorientedsoftware.Thisdirectmappingfrom theearly
requirementsdown to the actualimplementationallows us

5Notethatagentorientedsoftwareengineeringmethodologiesarerec-
ognizedaspromisingapproachesto thedevelopmentof complex systems
[1], independentlyof theuseof AOPasimplementationtechnology.



to dev� elop software architectureswhich are “well tuned”
with theproblemsthey solve andhave, therefore,theextra
flexibility neededin thecomplex applicationsmentionedin
theintroduction.

Severalopenpointsstill remain.Themostimportantare:
completethedefinitionof theTroposlanguagemetamodel
including useful conceptssuchasbeliefsandevents; for-
malize the transformationalapproachdefining both prim-
itive transformationsandrefinementstrategies[4], provide
themethodologywith acatalogueof architecturalstylesfor
multi-agentsystemswhich adoptconceptsfrom organiza-
tion theoryandstrategic alliancesliterature[11].

References

[1] P. Ciancarini and M. Wooldridge, editors. Agent-
Oriented Software Engineering, volume 1957 of
LNCS. Springer-Verlag,2001.

[2] M. Wooldridge, P. Ciancarini and G. Weiss, orga-
nizers. SecondInternationalWorkshop on Agent-
OrientedSoftware Engineering(AOSE-2001),Mon-
treal,Canada- May 29th2001.

[3] B. Bauer, J. P. Müller, andJ. Odell. Agent UML: A
formalism for specifyingmultiagentinteraction. In
CiancariniandWooldridge[1].

[4] P. Bresciani,A. Perini,P. Giorgini, F. Giunchiglia,and
J. Mylopoulos. Modeling early requirementsin Tro-
pos:a transformationbasedapproach.In Wooldridge
et al. [2].

[5] J.Jacobson,G.Booch,andJ.Rambaugh.UnifiedSoft-
wareDevelopmentProcess. TheAddison-Wesley Ob-
ject TechnologySeries.Addison-Wesley, 1999.

[6] G. Booch,J. Rambaugh,andJ. Jacobson.TheUni-
fied ModelingLanguage User Guide. The Addison-
Wesley Object TechnologySeries.Addison-Wesley,
1999.

[7] P. Busetta,R. Rönnquist,A. Hodgson,and A. Lu-
cas. Jackintelligent agents- componentsfor intelli-
gentagentsin java.AOSTechnicalReporttr9901,Jan.
1999.http://www.jackagents.com/pdf/tr9901.pdf.

[8] L. K. Chung,B. A. Nixon, E. Yu, andJ.Mylopoulos.
Non-FunctionalRequirementsin Software Engineer-
ing. Kluwer Publishing,2000.

[9] A. Dardenne,A. van Lamsweerde,and S. Fickas.
“goal” directedrequirementsacquisition. Scienceof
ComputerProgramming, (20),1993.

[10] N. R. Jennings.Onagent-basedsoftwareengineering.
Artificial Intelligence, 117(2),2000.

[11] M. Kolp, P. Giorgini and J. Mylopoulos. An
Goal-BasedOrganizational Perspective on Multi-
AgentsArchitectures.Eighth InternationalWorkshop
on Agent Theories, architectures,and languages
(ATAL-2001),Seattle,USA, August,2001.

[12] A. Newell. The knowledgelevel. Artificial Intelli-
gence, 18,1982.

[13] B. B. JamesOdell,H. VanDyke Parunak.Represent-
ing agentinteractionprotocolsin UML. In Ciancarini
andWooldridge[1].

[14] A. Perini, P. Bresciani,F. Giunchiglia, P. Giorgini,
andJ.Mylopoulos.A knowledgelevel softwareengi-
neeringmethodologyfor agentorientedprogramming.
AutonomousAgents,MontrealCA, May 2001.

[15] A. Fuxman, M. Pistore, J. Mylopoulos, and
P. Traverso. Model CheckingEarly Requirements
Specificationsin Tropos. Fifth IEEE International
Symposiumon RequirementsEngineering,Toronto,
CA, August2001.

[16] Y. Shoham.Agent-orientedprogramming.Artificial
Intelligence, 60(1),1993.

[17] M. WooldridgeandN. R. Jennings.Intelligentagents:
Theoryandpractice.KnowledgeEngineeringReview,
10(2),1995.

[18] E. Yu. ModelingStrategic Relationshipsfor Process
Reengineering. PhDthesis,Universityof Toronto,De-
partmentof ComputerScience,Universityof Toronto,
1995.


