From Entities and Relationships to Social Actors
and Dependencies

John Mylopoulos!, Ariel Fuxman', and Paolo Giorgini?

! Department of Computer Science, University of Toronto,
6 King’s College Road, Toronto, Canada M5S 3H5
{jm, afuxman}@cs.toronto.edu
2 Department of Computer Science, University of Trento,
Via Sommarive 14, 38050, Povo, Italy
pgiorgini@science.unitn.it

Abstract. Modeling social settings is becoming an increasingly impor-
tant activity in software development and other conceptual modeling
applications. In this paper, we review i* [Yu95], a conceptual model
specifically intended for representing social settings. Then, we introduce
Tropos, a formal language founded on the primitive concepts of i*, and
demonstrate its expressiveness through examples. Finally, we give an
overview of a project which uses Tropos to support software develop-
ment from early requirements analysis to detailed design.

Keywords: conceptual models, semantic data models, entity-relationship
model, requirements models, enterprise models, software development
methodologies.

1 Introduction

The Entity-Relationship (hereafter E-R) model was proposed by Peter Chen at
the first VLDB conference [Che75] as a modeling framework for capturing the
meaning of data in a database. Since then, the model has been widely taught
and used during structured information system analysis and design. It was also
extended to support abstraction mechanisms such as generalization and aggre-
gation [BCN92]. Elements from this extended version can be found in various
object-oriented analysis techniques, e.g., OMT [RBPT91], as well as the ever-
popular UML [BRJ99]. Unlike many other concepts in Computer Science that
enjoyed a short lifespan of practical use, the E-R model has had an enduring
impact on software engineering research and practice. Its use spans 25 years,
as well as the two dominant software development methodologies of this period
(structured and object-oriented software development). There are good reasons
for this longevity. The world of software applications has revolved around the
notions of static entities and dynamic processes, and the E-R model offers a
simple, yet powerful means for modeling the former.

We argue in this paper that the notions of social actor and dependency
(among actors) will become increasingly important in software development and



conceptual modeling. In software development, agent-oriented programming is
gaining popularity because agent-oriented software offers (or, at least, promises)
features such as software autonomy, evolvability and flexibility — all of them
much-needed in the days of the Internet and e-commerce. In Requirements En-
gineering, agents and goals are explicitly modeled and analyzed during early
requirements phases in order to generate functional and non-functional require-
ments for a software system (e.g., [DvLF93]). In Conceptual Modeling, more and
more organizations invest in models of their business processes, organizational
structure and organizational function. Enterprise resource Planning (ERP) tech-
nology, as offered by SAP, Oracle, PeopleSoft, Baan et al, includes enterprise
models which serve as blueprints for an organization, as well as a starting points
for customizing ERP systems. For enterprise models and agent-oriented software
alike, the notions of social actor and dependency constitute modeling corner-
stones.

This paper reviews a particular social actor model, i*, originally introduced
in Eric Yu’s PhD thesis [Yu95]. In addition, we propose a formal language, called
Tropos, which extends i* and makes it more expressive and amenable to analysis.
Section 2 reviews the i* model and discusses similarities and differences with E-R
and UML class diagrams. In Section 3, we introduce Tropos and demonstrate its
expresiveness through examples. Finally, Section 4 summarizes the contributions
of this paper and suggests directions for further research.

2 A Model of Distributed Intentionality

i* offers a conceptual framework for modeling social settings. The framework
is founded on the notions of actor and goal. i* (which stands for “distributed
intentionality”) assumes that social settings involve social actors who depend
on each other for goals to be achieved, tasks to be performed, and resources
to be furnished. The i* framework includes the strategic dependency model for
describing the network of relationships among actors, as well as the strategic ra-
tionale model for describing and supporting the reasoning that each actor goes
through concerning its relationships with other actors. These models have been
formalized using intentional concepts from Al, such as goal, belief, ability, and
commitment (e.g., [CL90]). The framework has been presented in detail in [Yu95]
and has been related to different application areas, including requirements engi-
neering [Yu93], business process reengineering [YML96], and software processes
[YM94].

A strategic dependency diagram consists of actors, represented by circles,
and social dependencies, represented as directional links. The actors are the
stakeholders relevant to the social setting being modelled. Every dependency
link has a depender actor, who needs something to be done, and a dependee
actor, who is willing and able to deliver on that something. Thus, dependencies
represent commitments of one actor to deliver on what another actor needs.
There are four types of dependencies: goal, softgoal, task and resource. A goal
dependency implies that one actor wants a goal to be achieved, e.g., RepairCar,



and another actor is willing and able to fulfill this goal. Softgoals are goals
that are not formally definable, such as SecureEmployment, or FairEstimate.
Unlike goals, softgoals do not have a well-defined criterion as to whether they are
fulfilled. A task dependency implies that one actor wants a task to be performed,
e.g., DoAppraisal, and another actor is willing and able to carry it out. Finally,
a resource dependency means that one actor needs a resource, such as Premium,
and another actor can deliver on it.

Figure 1 presents a strategic dependency diagram for insurance claims. The
diagram includes four actors, named respectively BodyShop, Customer, Insu-
ranceCo and Appraiser. These are the relevant stakeholders to the task of
handling insurance claims. The diagram also shows the dependencies among
these actors. For instance, Customer depends on BodyShop to repair her car
(RepairCar, a goal dependency), while BodyShop depends on Customer for the
repairs to be paid (RepairCosts, a resource dependency). In addition, Customer
depends on BodyShop to maximize the repairs done to her car (MaxRepairs),
while BodyShop depends on Customer for keeping her clients (KeepClient).
These are both softgoal dependencies. Turning to the dependencies between the
customer and the insurance company, Customer depends on InsuranceCo to
cover the repairs (CoverRepairs, goal dependency) and pay damage costs (Da-
mageCosts, resource dependency); InsuranceCo depends on Customer to pay
the insurance premium (Premium) and for continued business (ContinuedBusi-
ness, softgoal dependency). Customer also depends on Appraiser for a fair esti-
mate of the damages on her car (FairEstimate). Finally, InsuranceCo depends
on Appraiser to carry out an appraisal (DoAppraisal, task dependency), while
Appraiser depends on InsuranceCo for secure employment (SecureEmploy-
ment).

Superficially, one can view strategic dependency diagrams as variations on
entity and relationship diagrams. After all, they are graph-based and nodes
represent particular kinds of things while edges represent particular kinds of
relationships. However, strategic dependency diagrams come about by asking
entirely different questions about the application being modelled. For E-R dia-
grams the basic question 1s “what are the relevant entities and relationships?”.
For strategic dependency diagrams, on the other hand, the basic questions are
“who are the relevant stakeholders” and “what are their obligations to other
actors?”. During analysis, we might also want to answer questions such as “is it
possible that an insurance claim will never be served?” or “what could possibly
happen during the lifetime of a claim?”.

Similar comments apply in comparing strategic dependency diagrams with
UML class diagrams. However, we do propose to adopt some of the notational
conveniences of class diagrams, such as min/max cardinalities on dependencies
and specialization relationships among actors. For instance, we would like to be
able to declare different kinds of customers: CorporateCustomer, Individual-
Customer, SpecialCustomer, ValuedCustomer, etc. For each of these customer
classes, the insurance company may have different insurance claim handling pro-
cedures in place, and also different expectations.



DamageCosts

RepairCosts \ Premium
podyshen

MaxRepairs
Continued
Business
DoAppraisal
. e Selcure
KeepClient FairEstimate, mployment

Dependencies Appraiser
Goal

Task

Softgoal

py)
. g
8

Fig. 1. Handling insurance claims

3 Formal Specification of i* Diagrams

The diagram of Figure 1 only provides a sketch of the social setting being mod-
eled. Tn order to produce analyzable models, we propose a (new) specification
language, called Tropos, founded on the primitives of i*. The language provides
constructs for the specification of actors, social dependencies, entities, relation-
ships and actions. Some of its features are inspired by the formal requirements
specification language KAOS [DvLF93]. However, KAOS is based on different
primitive concepts; in particular, it does not support the notion of social depen-
dency.

The language is structured in two layers. The outer layer declares concepts
and has an entity-relationship flavour; the inner layer expresses constraints on
those concepts in a typed first-order temporal logic with real time constructs
[Koy92]. The notation for temporal operators is summarized in Figure 2.

To begin the formal specification of our example, we note that many of the
dependencies of Figure 1 relate to a particular claim. Claim, therefore, is an
important entity of our model, and can be formulated as follows:

Entity Claim
Has claimId: Number, date: Date, claimant: Customer, quote[0..n]: Quote,
insP: InsPolicy
Invariant
date < insP.expirDate



P P holds in the current state
e P holds in the previous state
oFP P holds in the next state
P P holds in current or some past state
OP P holds in current or some fulure state
WP P holds in current and all past states
OP P holds in current and all future states

Fig. 2. Temporal operators

This entity has a number of attributes, such as identification number (claim-
Id),date, claimant and a list of quotes from the bodyshops. It is also associated
to a valid insurance policy (... “no valid policy, no claim” your friendly insurance
agent would say...):

Entity InsPolicy
Has insNo: Number, expirDate: Date, car: Car, customer: Customer,
policyType: PolicyType, premiumAmount: Currency

Actors are defined in terms of their attributes, their initial goals and the
actions they are capable of. For instance, the specification for Customer is:

Actor Customer
Has name: Name, addr: Address, phone: Number
Capable of MakeClaim, Pay
Goal
Vel : Claim(el.claimant = sel f

= (Jeover : Cover Repairs[cl](O Ful fil(cover))))

This actor can perform the actions MakeClaim and Pay. Its goal is that all
its claims be eventually covered by the insurance company. There are several de-
tails to note about the specification. First, the style is “object-oriented”, in the
sense that Customer is considered a class and self refers to one of its instances.
Second, the variable cover is quantified over the set CoverRepairs[cl], which
defines the set of all instances of the goal dependency CoverRepairs that have
the entity instance c1 among their attributes. Finally, Fulfil is a special pred-
icate that states that a goal has been achieved; we will explain it shortly when
we introduce the notion of goal modalities.

Similarly, the actor InsuranceCo is defined as follows:



Actor InsuranceCo
Has name: Name, addr: Address, phone: Number
Capable of AcceptClaim, Pay
Goal Yeustomer : Customer, 3business : Continued Business
(business.Dependee = customer A Ful fil(business))

The goal of this actor is that all its clients continue their business with the
company. Therefore, the softgoal dependency ContinuedBusiness should be
fulfilled for all the customers. Note that it is possible to refer to a depender or
a dependee just as if they were any other attribute of a dependency.

Goal dependencies are defined in terms of their modality, attributes, involved
agents and constraints. The most important goal dependency in our example is
CoverRepairs: the customer depends on the insurance company to cover the
cost of repairing her car.

GoalDependency CoverRepairs
Mode Fulfil
Depender Customer
Dependee InsuranceCo
Has cl: Claim
Defined
Claim(cl) A e=Claim(cl) A O <emoRunsOk(cl.insP.car)
Necessary -
Jrepair : RepairCar[cl](Ful fil(repair))
ddamage : DamageCost[cl] = (Ful fil(damage)
A(eost : RepairCost[el](Ful fil(cost)
= damage.amount > cost.amount)))

The modality of this dependency is Fulfil, which means that it should
be achieved at least once. There are other modalities in our language, such as
Maintain (continuing fulfilment) and Avoid (continuing prevention of a goal
from being fulfilled). The Defined clause gives a formal definition of the goal;
Necessary specifies necessary conditions for it to be achieved. According to its
modality, we interpret the definition of CoverRepairs as

Fulfil(self) < #(Claim(cl) A e=Claim(cl) A O<emoRunsOk(cl.insP.car))

This definition states that the customer expects that the car should start
running OK in no more than 6 months after the claim is made. We capture the
moment in which the claim is made (Claim(cl) A e = Claim(cl)) by using a
fluent Claim(cl) that is true if and only if ¢l is an instance of the class Claim
at a particular point in time. The first necessary condition can be interpreted as

Fulfil(self) = #(3repair : RepairCar[cl|(Ful fil(repair)))



It states that the car must be repaired by a bodyshop before the customer
considers that the claim has been covered. The second necessary condition states
that the customer expects to receive the damage costs from the insurance com-
pany, and they should be enough to pay the repair costs to the bodyshop.

Resource dependencies are specified in a similar way. The following are the
definitions for the resources DamageCosts and Premium:

ResourceDependency DamageCosts

Mode Fulfil

Depender Customer

Dependee InsuranceCo

Has cl: Claim, amount: Currency

Necessary

Japp : DoAppraisal[cl], Imin : MinEstimatelapp](Ful fil(app)
AFulfil(min)A3quote : Quote(quote € cl.quote
Aquote.amount < app.amount))

ResourceDependency Premium
Mode Fulfil
Depender InsuranceCo
Dependee Customer
Has insP: insurancePolicy, dueDate: Date
Necessary
Vel : Claim(3cover : Cover Repairs|el]
(clinsP = insP = Fulfil(cover)))

The necessary condition of DamageCosts states that InsuranceCo will deliver
the resource only if there is an appraisal that minimizes the estimate on the cost
of the damages. Furthermore, there must be a quote from a bodyshop that is
lower or equal than the value appraised. In the second dependency, the Customer
will only pay the Premium if all its claims have been covered by the insurance
company.

As softgoal dependencies cannot be formally defined, we only attempt to
characterize them with necessary conditions. For instance, the following is the
specification for MinEstimate:

Soft GoalDependency MinEstimate
Mode Fulfil
Depender InsuranceCo
Dependee Appraiser
Has appraisal : DoAppraisal
Necessary
—Jother App : DoAppraisal[appraisal.cl)
(other App.amount < appraisal.amount)



We state that the insurance company expects that the estimate be minimized,
in the sense that there should be no other appraisal for the same claim estimating
a lower amount. Note that this condition does not fully characterize the softgoal
since we are actually not quantifying over all possible appraisals, but rather on
the appraisals that exist in our system. Another important softgoal dependency
in our example is ContinuedBusiness:

Soft GoalDependency ContinuedBusiness
Mode Maintain
Depender InsuranceCo
Dependee Customer
Necessary
dpr : Premium(pr.Dependee = sel f. Dependee
Apr.insP.expir Date > now)

This softgoal has a different modality from the dependencies presented so far.
The necessary condition, which states that the insurance company expects the
customer to always be up to date with her payments, is interpreted as follows:

M aintain(sel f)
= 3t : Time(Ms, (Ipr : Premium(pr.Dependee = sel f.Dependee
Apr.insP.expir Date > now))

Finally, actions are input-output relations over entities. They are character-
ized by pre- and post-conditions; action applications define state transitions. For
instance, the action MakeRepair performed by the bodyshop defines a transition
from a state in which the car is not working well to another state in which it
starts running;:

Action MakeRepair
Performed By BodyShop
Refines RepairCar
Input cl : Claim
Output cl : Claim
Pre Claim(cl) A “RunsOK (cl.insP.car)
Post RunsOK (cl.insP.car)

4 Conclusions and Directions for Further Research

We have presented a formal model of actors and social dependencies, intended
for modeling social settings. We have also argued that models of social settings
will become increasingly important as agent-oriented software becomes more
prevalent, and organizational models become more widely used in corporate
practice.

We are currently working on a software development methodology which is
founded on the Tropos model. The methodology supports the following phases:



— Farly requirements, concerned with the understanding of a problem by study-
ing an existing organizational setting; the output of this phase is an orga-
nizational model which includes relevant actors and their respective depen-
dencies;

— Late requirements, where the software system-to-be is described within its
operational environment, along with relevant functions and qualities; this
description models the system as a (small) number of actors which have a
number of dependencies with actors in their environment; these dependencies
define the system’s functional and non-functional requirements;

— Architectural design, where the system’s global architecture is defined in
terms of subsystems, interconnected through data and control flows; within
our framework, subsystems are represented as actors and data/control inter-
connections are represented as (system) actor dependencies;

— Detailed design, where each architectural component is defined in further de-
tail in terms of inputs, outputs, control, and other relevant information; our
framework adopts elements of AUML [OPB99] to complement the features
of 1*;

— Implementation, where the actual implementation of the system is carried
out, consistently with the detailed design; we use a commercial agent pro-
gramming platform, based on the BDI (Beliefs-Desires-Intentions) agent ar-
chitecture for this phase.

[MC00] and [CKMO00] present the motivations behind the Tropos project and
offer an early glimpse of how the methodology would work for particular exam-
ples. We are also exploring the application of model checking techniques [CGP99]
in analyzing formal specifications such as those presented in this paper. For ex-
ample, we are studying the possibility of “simulating” formal specifications in
order to establish that certain properties will hold for all possible futures, or
some future. We are also looking at analysis techniques which can facilitate the
discovery of deviations between a formal specification and the modeller’s under-
standing of what is being modelled.

Acknowledgements. We are grateful to our colleagues Eric Yu, Jaelson
Castro, Manuel Kolp, Raoul Jarvis (University of Toronto), Yves Lesperance
(York University), Fausto Giunchiglia (University of Trento), and Marco Pistore,
Paolo Traverso, Paolo Bresciani and Anna Perini (IRST) for contributing ideas
and helpful feedback to this research.

This work is funded partly by the Communications and Information Technol-
ogy Ontario (CTTO) and the Natural Sciences and Engineering Research Council
(NSERC) of Canada. Also, by the University of Trento, and the Institute of Re-
search in Science and Technology (IRST) of the province of Trentino, Italy.

References

[BCN92] C. Batini, S. Ceri, and S. Navathe. Database Design: An Entity- Relationship
Approach. Benjamin/Cummings, 1992.



[BRJOY]

[CGPY9)
[Che75]

[CKMO0]

[CL90]
[DVLF93]
[Koy92]

[MC00]

[OPB99]

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Lan-
guage User Guide. The Addison-Wesley Object Technology Series. Addison-
Wesley, 1999.

E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
P. Chen. The Entity-Relationship model: Towards a unified view of data. In
D. Kerr, editor, Proceedings of the International Conference on Very Large
Data Bases, September 1975.

J. Castro, M. Kolp, and J. Mylopoulos. Developing agent-oriented infor-
mation systems for the enterprise. In Second International Conference on
Enterprise Information Systems, July 2000.

P. Cohen and H. Levesque. Intention is choice with commitment. Artificial
Intelligence, 32(3), 1990.

A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal directed requirements
acquisition. Science of Computer Programming, 20:3-50, 1993.

R. Koymans. Specifying message passing and time-critical systems with
temporal logic. In Springer-Verlag LNCS 651. Springer-Verlag, 1992.

J. Mylopoulos and J. Castro. Tropos: A framework for requirements-driven
software development. In J. Brinkkemper and A. Solvberg, editors, Informa-
tion Systems Engineering: State of the Art and Research Themes. Springer-
Verlag, 2000.

J. Odell, H. Van Dyke Parunak, and B. Bauer. Representing agent interac-
tion protocols in UML. To be published, 1999.

[RBP*91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-

[YM94]

[YML96]

[Yu93]

[Yu95]

Oriented Modelling and Design. Prentice Hall, 1991.

E. Yu and J. Mylopoulos. From E-R to A-R — modeling strategic actor
relationships for business process reengineering. In P. Loucopoulos, editor,
Proceedings Thirteenth International Conference on the Entity- Relationship
Approach. Springer-Verlag, December 1994.

E. Yu, J. Mylopoulos, and Y. Lesperance. Al models for business process
reengineering. [FEE Fzxpert, 1996.

E. Yu. Modelling organizations for information systems requirements engi-
neering. First IEEE Int. Symposium on Requirements Engineering, January
1993.

E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD
thesis, University of Toronto, Toronto, Canada, 1995.



