
From Requirements to Architectural Design –Using Goals and Scenarios

 Lin Liu Eric Yu
 Faculty of Information Studies, University of Toronto
 {liu, yu}@fis.utoronto.ca

Abstract
To strengthen the connection between requirements

and design during the early stages of architectural design,
a designer would like to have notations to help visualize
the incremental refinement of an architecture from
initially abstract descriptions to increasingly concrete
components and interactions, all the while maintaining a
clear focus on the relevant requirements at each step. We
propose the combined use of a goal-oriented language
GRL and a scenarios-oriented architectural notation
UCM. Goals are used in the refinement of functional and
non-functional requirements, the exploration of
alternatives, and their operationalization into
architectural constructs. The scenario notation is used to
depict the incremental elaboration and realization of
requirements into architectural design. The approach is
illustrated with an example from the telecom domain.

1. Introduction

In the context of Requirement Engineering and system
architectural design, goal-driven and scenario-based
approaches have proven useful. In order to overcome some
of the deficiencies and limitations of these approaches
when used in isolation, proposals have been made to
couple goals, scenarios and agents together to guide the
RE to architectural design process. As there are both
overlap and gaps between these approaches, their
interactions are complicate and highly dynamic.

In General, goals describe the objectives that the system
should achieve through the cooperation of agents in the
software-to-be and in the environment. It captures “why”
the data and functions were there, and whether they are
sufficient or not for achieving the high-level objectives
that arise naturally in the requirement engineering process.
The integration of explicit goal representations in
requirement models provides a criterion for requirement
completeness, i.e. the requirements can be judged as
complete if they are sufficient to establish the goal they are
refining.

Scenarios present possible ways to use a system to
accomplish some desired functions or implicit purpose(s).
Typically, it is a temporal sequence of interaction events
between the intended software and its environment
(composed of other systems or humans). A scenario could
be expressed in forms such as narrative text, structured
text, images, animation or simulations, charts, maps, etc.
The content of a scenario could describe either system-
environment interactions or events inside a system.
Purpose and usage of scenarios also varies greatly. It could
be used as means to elicit or validate system requirements,
as concretization of use-oriented system descriptions, or as
basis for test cases. Scenarios have also become popular in
other fields, notably human-computer interaction and
strategic planning.

In this paper, we explore the combined use of goal-
oriented and scenario-based models during architectural
design. The GRL language is used to support goal and
agent oriented modelling and reasoning, and to guide the
architectural design process. The UCM notation is used to
express the architectural design at each stage of
development. The scenario orientation of UCM allows the
behavioral aspects of the architecture to be visualized at
varying degrees of abstraction and levels of detail.

In next section, basic concepts of GRL and UCM are
introduced. In Section 3, we summarized our approach of
using GRL and UCM together to incrementally modelling
requirements and architectural design. In section 4, a case
study in wireless telecommunication domain is used to
illustrate the proposed approach. In section 5, related
works are discussed. Conclusions and future works are in
section 6.

2. GRL and UCM

2.1 GRL

Goal-oriented Requirement Language (GRL) is a language
for supporting goal and agent oriented modeling and
reasoning of requirements, especially for dealing with
Non-Functional Requirements (NFRs)[4][11]. It provides
constructs for expressing various types of concepts that
appear during the requirement and high-level architectural

 2

design process. There are three main categories of
concepts: intentional elements, links, and actors. The
intentional elements in GRL are goal, task, softgoal and
resource. They are intentional because they are used for
models that allow answering questions such as why
particular behaviors, informational and structural aspects
were chosen to be included in the system requirement,
what alternatives were considered, what criteria were used
to deliberate among alternative options, and what the
reasons were for choosing one alternative over the other.

A GRL model can either be composed of a global goal
model, or a series of goal models distributed in several
actors. If a goal model includes more than one actor, then
the intentional dependency relationships between actors
could also be represented and reasoned about. In this
paper, the distributed goal models will not be discussed,
we may have another paper studying the roles of agent-
orientation in requirement and architectural design.

A goal is a condition or state of affairs in the world that the
stakeholders would like to achieve. In General, how the
goal is to be achieved is not specified, allowing
alternatives to be considered. A goal can be either a
business goal or a system goal. A business goal express
goals regarding the business or state of the business affairs
the individual or organization wishes to achieve. System
goal expresses goals the target system should achieve,
which, generally, describe the functional requirements of
the target information system. In GRL graphical
representation, goals are represented as a rounded
rectangle with goal name inside.

A task specifies a particular way of doing something.
When a task is specified as a sub-component of a (higher-
level) task, this restricts the higher-level task to that
particular course of action. Tasks can also be seen as the
solutions in the target system, which will satisfice the
softgoals (called operationalizations in NFR) or achieve
goals. These solutions provide operations, processes, data
representations, structuring, constraints and agents in the
target system to meet the needs stated in the goals and
softgoals. In GRL graphical representation, tasks are
represented as a hexagon with task name inside.

A softgoal is a condition or state of affairs in the world that
the actor would like to achieve, but unlike in the concept
of (hard) goal, there are no clear-cut criteria for whether
the condition is achieved, and it is up to subjective
judgement and interpretation of the developer to judge
whether a particular state of affairs in fact achieves
sufficiently the stated softgoal. Softgoal is used to
represent NFRs in the future system. Non-functional
requirements, such as performance, security, accuracy,
reusability, interoperability, time-to market and cost are
often crucial for the success of a software systems. They
should be addressed as early as possible in a software
lifecycle, and be properly reflected in software architecture

before a commitment is made to a specific
implementation. In GRL graphical representation, A
softgoal, which is “soft” in nature, is shown as an irregular
curvilinear shape with softgoal name inside.

A resource is an (physical or informational) entity, with
which the main concern is whether it is available.
Resources are shown as rectangles in GRL graphical
representation.

Intentional links in GRL includes means-ends,
decomposition, contribution, correlation and dependency.
Means-ends is used to describe how goals are in fact
achieved. Each task connected to a goal by means-ends
link is an alternative means for achieving the goal.
Decomposition defines what other sub-elements needs to
be achieved or available in order for a task to be
performed. Contribution describes how softgoals, tasks,
links contribute to others. A contribution is an effect that is
a primary desire during modelling. Contributions can be
either negative, or positive, can be either sufficient or
partial. Following are the graphical representations for
links.

(a) (b)

(c)

(d)

Figure 1 (a) Means-Ends; (b)Decomposition;
(c) Contribution; (d) Correlation

2.2 UCM

Use Case Maps (UCM)[2][3] provides a visual notation for
scenarios, which is proposed for describing and reasoning
about large-grained behavior patterns in systems, as well
as the coupling of these patterns. A new thing UCM offers
in relation to architecture is that it provides a behavioral
framework for making architectural decisions at a high-
level of design, and also characterizing behavior at the
architectural level once the architecture is decided.

Use Case Maps notation (UCMs) employ scenario paths to
illustrate causal relationships among responsibilities.
Furthermore, UCM provides an integrated view of
behavior and structure by allowing the superimposition of
scenario paths on a structure of abstract components. The

 3

combination of behavior and structure in UCMs enables
architectural reasoning. Scenarios in UCM can be
structured and integrated incrementally. This enables
reasoning about and detection of potential undesirable
interactions of scenarios and components. Furthermore, the
dynamic (run-time) refinement capabilities of the UCM
language allow for the specification of (run-time) policies
and for the specification of loosely coupled systems where
functionality is decided at runtime through negotiation
between components.

The UCM notation is mainly composed of path elements,
and also of components. The basic path notation address
simple operators for causally linking responsibilities in
sequences, as alternatives, and in parallel. More advanced
operators can be used for structuring UCMs hierarchically
and for representing exceptional scenarios and dynamic
behavior. Components can be of different natures,
allowing for a better and more appropriate description of
some entities in a system.

Basic elements of UCMs are start points, responsibilities,
end points and components. Starting points are filled
circles representing pre-conditions or triggering causes.
End points are bars representing post-conditions or
resulting effects. Responsibilities are crosses representing
actions, tasks or functions to be performed. Components
are boxes representing entities or objects composing the
system. Paths are the wiggle lines that connect start points,
responsibilities and end points. A responsibility is said to
be bound to a component when the cross is inside the
component. In this case, the component is responsible to
perform the action, task, or function represented by the
responsibility.

Alternatives and shared segments of routes are represented
as overlapping paths. An OR-join merges two (or more)
overlapping paths while an OR-fork splits a path into two
(or more) alternatives. Alternatives may be guarded by
conditions represented as labels between square brackets.
Concurrent and synchronized segments of routes are
represented through the use of a vertical bar. An AND-join
synchronizes two paths together while an AND-fork splits
a path into two (or more) concurrent segments.

When maps become too complex to be represented as one
single UCM, a mechanism for defining and structuring
sub-maps become necessary. A top level UCM, referred to
as a root map, can include containers (called stubs) for
sub-maps (called plug-ins). Stubs are represented as
diamonds. Stubs and plug-ins are used to solve the
problems of layering and scaling or the dynamic selection
and switching of implementation details.

Other notational elements include: timer, abort, failure
point, and shared responsibilities. Detailed introduction
and example of these concepts can be found in [2] [3].

Although UCM could represent the alternatives of system
architectural design precisely in a high-level way, the
tradeoffs between these alternatives, and the intentional
features of making a design decision could not be
explicitly shown in UCM models. And inevitably, as other
scenario-based approaches, UCM models are partial.

GRL provides support for reasoning about scenarios by
establishing correspondences between intentional GRL
elements and functional components and responsibilities in
scenario models of UCM. Modelling both goals and
scenarios is complementary and may aid in identifying
further goals and additional scenarios (and scenario
fragments) important to architectural design, thus
contributing to the completeness and accuracy of
requirement, as well as quality of architectural design.

3. Modelling Methodology with GRL+UCM

A complete requirement specification should clarify the
objectives of a system to be achieved, the concrete
behaviors and constraints of the system-to-be, and the
entities being responsible for certain functions in that
system.

Goal-based approaches focuses on answering the “why”
questions of requirements (such as “why the system needs
to be redesigned?” “Why a new architecture for TSMA is
necessary?”), the strength of these approaches is that they
could cover not only functional requirements but also non-
functional requirements (in other words, the quality
requirements). Although goal-orientation is highly
appropriate for requirement engineering, goals are
sometimes too abstract to capture at once. Operational
scenarios of using the hypothetical system are sometimes
easier to get in the first place than some goals that can be

made explicit only after deeper understanding of the
system has been gained.

In our approach, GRL models are created, the original
business goals and non-functional requirements are refined
and operationalized, until some concrete design decisions
are launched. These design decisions are then further
elaborated into UCM scenarios. In the scenario authoring
of this step, “how” questions are asked instead of “what”.

At the same time, UCM scenarios are used to describe the
behavioral features and architectures of the intended
system in the restricted context of achieving some implicit
purpose(s), which basically answers the “what” questions,
such as “what the system should do as providing a in-
coming call service?” “What is the process of wireless call
transmitting?” Then, by issuing “why” questions referring
to these scenarios (e.g. “why to reside a function entity in
this network entity instead of the other?”) some implicit
system goals are further dis closed.

 4

Add New Scenarios or update existing in
UCM model

Elaboration of Non-
Functional Requirements
(softgoals) in GRL model

Softgoal Refinement in
GRL model

Softgoal
Operationalization in

GRL model

Intentional Elaboration of
Functional requirements

(goals) in GRL model

Goal Operationalization
in GRL model

Goal Decomposition in
GRL model

Elaboration of Scenario
in UCM model

Draw use case path with
responsibilities in UCM model

Refine UCM model by Factoring,
Stubbing and Layering

Problem descriptions,
Business objectives,
Use cases …

New architectural
design decisions

(tasks in GRL) are
made?

Map “Feasible” Design
Decisions into Scenarios
in UCM model

Yes

No

No

Architectural designDesign rationales

New Requirements
are discovered?

Yes
No

Binding Responsibility with
Components in UCM model

No More Factoring,
Stubbing, Layering?

Yes

No

Add New Requirements into GRL
model (FRs and NFRs)

Add new goals (softgoals)
into GRL model

Yes

All goals & softgoals
are sufficiently refined?

Figure 2. Integration of Goal-Oriented and Scenario-based Modelling

 5

The GRL-UCM combination aims to elicit, refine and
operationalize requirements incrementally until a
satisfying architectural design is launched. The general
steps of the process are illustrated in Figure 2.

4. Illustration with examples

To illustrate the interleaved application of GRL and UCM,
we use an example from the mobile telecommunication
systems domain [9]. A mobile switching center (MSC) is
required to support narrowband and wideband voice, data

and imaging services and so on. We use GRL and UCM
together to trace the process from capturing the original
business objective, to refining and operationalizing this
objective, and to trading off each architectural design
options.

Step 1: GRL Model- Original functional and non-
functional requirements are represented as three floating
nodes in Figure 3. The goal node in the middle represents
the functional requirement on the TDMA that it must
support Narrowband and wideband voice, data and image
services. There are two quality requirements identified at
the very beginning, one is to maximize the call capacity in
the new TDMA architecture, the other is to minimize the
cost of the infrastructure.

Step 2: UCM Model- The essential scenario that
implements the functional goal in above GRL model is
given in Figure 4. The scenario path (denoted by the

wiggle line) represents a causal sequence of
responsibilities (denoted by a cross) that is triggered by an
initial event (denoted by a filled circle), resulting in a
terminating event (denoted by a bar). The responsibilities
are not bound to any components.

Step 3: UCM Model – Binding Responsibilities to
components of the future system.

The following UCM diagram (Figure 5) shows the existing
TDMA architecture. In this architecture, the Decoder of

the Voice Coder is located in the base station. This implies
that the 64-kb/s PCM of decoded voice will be transmitted
out of the cell site to the switch for each call, requiring an
entire Digital Signal level 0 channel (DS0) to support the
64-kb/s signal.

Step 4: GRL Model – Goal Refinement and
Operationalization. In the goal model in Figure 6, the
original functional goal is connected to the task node
representing current solution for TDMA. It can be seen
that current solution can cause some delay per call, which
may negatively influence the voice quality of the call, and
call capacity of the system. This solution does not use
packet switching protocol enough, so cost could not be
saved. Traffic performance between base station and
switch is also low.

With current infrastructure, the efficiency of TDMA is
barely equivalent to that of analog system, which means
the requirements on improving the capacity, quality, cost
and performance are all weakly denied.

Step 5: UCM Model – Change the Binding of
Responsibilities.

As the above design could not satisfy the non-functional
requirements of the infrastructure, other options should be
explored. The UCM model (in Figure 7) describes a new

Figure 4: Unbound use case path with responsibilities

Figure 7: UCM model of another way of binding

Figure 3: Original Goal Model with one functional goal
and two non-functional goals

Figure 5: Bound use case path with functional objects
and physical entities

 6

Figure 8: GRL model evaluating the contribution of the new architecture to NFRs

Figure 10: Goal model evaluating the viability of solution 3

Figure 6: Refined GRL model with one design solution and more non-functional
requirements

 7

architecture to improve the capacity of the TDMA cellular
telecommunications system. In this design, the Decoder of
voice Coder is relocated into the switch instead of the base
station, then for each call the base station would transmit
an 8-kb/s signal – rather than a 64-kb/s signal to the
switch. In such a system, a theoretical maximum of 8×
capacity improvement is possible.

Step 6: GRL Model – Contributions of the new
architecture to the non-functional requirements. The GRL
model (in Figure 8) shows that the new TDMA
architecture with voice coder relocated in the switch
weakly satisficed the requirements on improving the
capacity, quality, performance, though at the same time the
cost and complexity are negatively influenced. To
minimize call delay somehow increased the complexity
and cost of the architecture (represented in Figure 7 with
correlation links). Compare the two architectures, if a cell
site supported x calls, the previous architecture would need
x DS0s to support those calls. But the Voice Coder
relocation architecture would requirement only x/3 DS0s.
Given the evaluation result, we judged that the new
architecture to be an acceptable design.

GRL supports the evaluation of the satisficing of softgoal
with a qualitative labeling procedure. The label of high-
level model is propagated from the label of low level
nodes, and the contribution from these nodes.

However, before putting this relocating solution into
practice, other possible solutions should also be. The
following is one possible solution without relocating the
Decoder of Voice Coder.

Step 7: UCM Model – In Figure 9, by adding new
functional units without changing the location of Decoder
of Voice Coder, a simplest solution is described. For
increasing call capacity, 32-kb/s adaptive differential pulse
code modulation (ADPCM) equipment is used with voice
decoder still in the base station.

Step 8: GRL Model – Evaluation of new architecture
according to the non-functional requirements, and compare

to other options. The GRL model in Figure 10 shows that
this simplest solution weakly satisficed the requirements
on improving the capacity, performance, low cost and low
complexity. However, voice quality is seriously eroded by
the electrical echo, the delay for the extra cycle of speech
coding, and the information lost produced in this kind of
architecture. While user puts voice quality in a lower
priority, this architecture could also be an acceptable
choice.

Having analyzed the benefits and tradeoffs of these
architectures, we could see that UCM is a natural
counterpart to GRL in the process from requirement to
high-level design, because it provides the concrete model
of each design alternative. Based on the architectural
features in this model, new non-functional requirements of
concern could be detected and added into the GRL model.
At the same time, in the GRL model, new means to
achieve the functional requirement could always be
explored and be embodied in UCM model.

In the case study above, the UCM model are rather
simplistic because we have only tackled the highest level
of architectural design in the wireless telecommunication
protocol. As we go down to the enough detailed design, a
UCM model could be fairly complex, and more modelling
constructs could be used. Figure 11 (From [1]) is a root
map of a mobile system, it illustrates the “big picture” of a
simplified mobile wireless communication system. As
shown in this graph, stubs are used to hide details of
certain sections of a scenario, e.g., the mobility
management functions (MM stub), the communication
management functions (CM stub), the handoff procedures
(HP stub) and handoff failure actions (HFA stub).

A plug-in gives more detail for the stubs. For the limitation
of space we won’t present all of the plug-ins as well as
explain the details of each responsibility. However, one
thing need to be notified is, for each stub (especially a
static stub), there could be more than one ways to refine
the plug-ins. This is a powerful construct to form new
design alternatives by integrating possible designs of
various parts of the system.

Figure 9: UCM model of solution 3: new responsibilities
and functional units added

Figure 11: The Mobile system Root Map[1];

 8

Figure 12 depicts an integrated scenario of establishing a
call between the originating and the terminating parties.
There could be other possible designs, but we won’t
investigate for the limitation of space. Components in

Figure 12 include: Originating Mobile Station (MS-O),
Originating Mobile switching Center (MSC-O), Home
Location Register (HLR), Visitor Location Register
(VLR), Terminating Mobile Station (MS-T), Terminating
Mobile switching Center (MSC-T), Originating and
Terminating Mobile Stations (MS-OT).

Although we used a telecommunication system
architecture example, the approach is applicable to
allocation of responsibility in software systems in general,
where there are usually conflicting goals and tradeoffs.

5. Discussions and related works

As existing scenario-based approaches are serving
different purposes, using different representational
features, and having different analysis capabilities, the
concept of scenario needs to be differentiated according to
these contexts.

In Krutchen’s 4+1 model of software architecture [7],
scenarios are used to show connections across other views
such as logical view, process view, physical view and
development view. The use of a multiple view model of
architecture allows to address separately the concerns of
the various stakeholders of the architecture. However, with
an architecture model composed of several separate views
it is not easy to keep a coherent track of the incremental
design process. As UCM shows the behavioral and
structural aspects together as one view, it is good for
showing incremental elaboration of the design.

The Software Architecture Analysis Method (SAAM) [5,
6] is a scenario-based method for evaluating architectures.
It provides a means to characterize how well a particular

architectural design responds to the demands placed on it
by a particular set of scenarios. Based on the notion of
context -based evaluation of quality attributes, their method
adopts scenarios as the descriptive means of specifying
and evaluating quality attributes. For example, to evaluate
the mo difiability of a user interface architecture Serpent,
two scenarios are considered, one is "changing the
windows system/toolkit", and the other is "adding a single
option to a menu". The similarities between this paper and
SAAM include: both works concerns the quality of
architecture, and both use scenarios to describe
architectures. However, there are obvious differences:
SAAM scenarios are use-oriented scenarios, which are
designed specifically to evaluate certain quaility attributes
of architecture. In GRL vs. UCM, scenarios are more
design-oriented, which is the refinements of system
requirements. The quality of the architectures
corresponding to these scenario are judged based on expert
knowledge rather than simulations or tests as in SAAM.

The combined use of goals and scenarios have been
explored within RE, primarily for eliciting, validating and
documenting software requirements. Van Lamsweerde and
Willement studied the use of scenarios for requirement
elicitation and explored the process of inferring formal
specifications of goals and requirements from scenario
descriptions in [8]. Though they thought goal elaboration
and scenario elaboration are intertwined processes, their
work regarding scenarios in [8] mainly focuses on the goal
elicitation. Our emphasis happens to be on the other way
around, i.e., how to use goal model (especially NFRs) to
direct scenario –based architectural design. The
fundamental point is that both the goal-oriented modeling
in GRL and the scenario-based modeling in UCM run
through requirement process to architectural design, so as
their interactions.

In the CREWS project, Collete Rolland et al. have looked
into the coupling of goal and scenario in RE with CREWS-
L’Ecritoire approach [10]. In CREWS-L’Ecritoire,
Scenarios are used as a means to elicit requirements/goals
of the system-to-be. Their method is semi-formal. Both
goals and scenarios are represented with structured textual
prose. The coupling of goal and scenario could be
considered as a “tight” coupling, as goals and scenarios are
structured into <Goal, Scenario> pairs, which are called
“requirement chunks”. Their work focuses mainly on the
elicitation of functional requirements/goals.

In UCM-GRL, both graphical representations and textual
descriptions (in natural language and XML format) for
goal model and scenario model are provided. The semi-
formal graphical notations are intended to be used during
the early stages of architectural design, to help explore and
prune the space of design more alternatives. They are to be
supplied by for formal notations and analyses in
subsequent stages. The current coupling of goal and
scenario is loose, as goal models and scenario are all

Figure 12: Integration of Scenario Fragments [1]

 9

maintaining their local completeness, and one scenario
may refer to more than one goal, and vice versa. There are
no rigid constraints on the requirement process. That is,
the goal model and scenario model could be developed in
parallel simultaneously, they interact whenever there are
design decisions need to be traded off, or new design
alternatives need to be sought, or new business goals, non-
functional requirements are discovered…. Both functional
and non-functional requirements are considered, and
perhaps even more attentions are devoted to non-
functional requirements. The modelling process involves
both requirements engineering activities and high-level
architecture design.

6. Conclusions and future works

In summary, goal-orientation and scenario-orientation
compensate to each other not only in requirement
engineering but also during the incremental architectural
design process. The combined use of GRL and UCM
enables the description of both functional and non-
functional requirements, both abstract requirements and
concrete system architectural models, both intentional
strategic design rationales, and non-intentional details of
concurrent, temporal features of the future system.

In the future, we hope to look into create visualized the
connections between GRL and UCM to support a more
formal combination of the two notations. Thus, the
mapping and interacting between the two kinds of models
would not rely so much on the human behaviors how they
are used.
Another direction would be the accumulation of domain
knowledge as well as software design knowledge
represented in GRL and UCM. We would say that GRL
and UCM are actually the container of knowledge, and it is
the knowledge that can be reused, and to guide the future
design process.

7. Acknowledgements

The work of this paper is motivated by an original
submission to ITU-T study group 10 on the topic of User
Requirements Notation (URN). The kind cooperation of
people from Mitel Networks, Nortel Networks and other
institutions is gratefully acknowledged.

8. References
[1] Andrade, R. and Logripo, L. Reusability at the Early

Development Stages of Mobile Wireless Communication
Systems. In Proceedings of the 4th World Multiconference
on Systemics, Cybernetics and Informatics (SCI 2000) , 12,
Computer Science and Engineering: Part I, July 2000.
Orlando, Florida, 11-16.

[2] Amyot, D. Use Case Maps Quick Tutorial Version 1.0. On -
line at:
http://www.usecasemaps.org/pub/UCMtutorial/UCMtutorial
.pdf.

[3] Buhr, R.J.A. and Casselman, R.S. Use Case Maps for Object
Oriented Systems, Prentice-Hall, USA, 1995.

[4] Chung, L., Nixon, B.A., Yu, E.and Mylopoulos, J. Non-
Functional Requirements in Software Engineering. Kluwer
Academic Publishers, 2000.

[5] Kazman, R. Using Scenarios in Architecture Evaluations.
SEI Interactive, June 1999. On -line at
http://interactive.sei.cmu.edu/Columns/The_Architect/1999/
June/Architect.jun99.htm

[6] Kazman, R., Bass, L., Abowd, G. and Webb, M. SAAM: A
Method for Analyzing the Properties of Software
Architectures. In Proceedings of the 16 th International
Conference on Software Engineering . May 1994. Sorrento,
Italy. 81-90.

[7] Kruchten, P. The 4+1 view Model of Software Architecture.
IEEE Software, 12, 6 (November 1995). 42-50.

[8] Lamsweerde, A.V., Willemet, L. Inferring Declarative
Requirements Specifications from Operational Scenarios.
IEEE Transactions on Software Engineering , Special Issue
on Scenario Management, December 1998.

[9] Lee, A.Y. and Bodnar, B.L. Architecture and Performance
Analysis of Packet-Based Mobile Switching Center-to-Base
Station Traffic Communications for TDMA. Bell Labs
Journal. Summer 1997. 46-56.

[10] Rolland, C. , Grosz, G. and Kla, R. Experience With Goal-
Scenario Coupling In Requirements Engineering. In
Proceedings of the IEEE International Symposium on
Requirements Engineering 1998. June 1999. Limerick,
Ireland.

[11] Yu, E. and Mylopoulos, J. Why Goal-Oriented
Requirements Engineering. In Proceedings of the 4th
International Workshop on Requirements Engineering:
Foundations of Software Quality . June 1998, Pisa, Italy. E.
Dubois, A.L. Opdahl, K. Pohl, eds. Presses Universitaires de
Namur, 1998. pp. 15-22.

