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Abstract

Troposis an agent-oriented methodology that covers soft-
ware development from early requirements analysis to de-
tailed design, allowing for a deeper understanding of the
operational environment of the new software system. In
earlier work we have characterized the process of early
requirements analysis in terms of transformation applica-
tions. In this paper we redefine theTroposanalysis pro-
cess in terms of a Graph Transformation System and we
provide an algorithm for driving the process ofTroposdi-
agram generation. An example execution of the algorithm
is also presented.

1 Introduction

Tropos [11, 6] is an agent-oriented software develop-
ment methodology in which AI derived mentalistic no-
tions such asactors, goals, softgoals, plans, resources,
andintentional dependenciesare used in all the phases of
software development, from the first phases of early anal-
ysis down to the actual implementation. A crucial role
is given to the earlier analysis of requirements that pre-
cedes prescriptive requirements specification. In particu-
lar, aside from the understanding ofhowthe intended sys-
tem will fit into the organizational setting, andwhat the
system requirements are, Tropos addresses also the anal-
ysis of thewhy the system requirements are as they are,
by performing an in-deep justification with respect to the
organizational goals.

Therefore, Tropos considers much earlier phases than
those supported in, for instance, OOP software engineer-

ing methodologies, such as those based on UML [7],
where use case analysis is proposed as an early activity,
followed by architectural design [10].

Tropos rests on five main phases for agent based sys-
tems development:early requirements analysis, late re-
quirements analysis, architectural design, detailed de-
sign, and implementation. An incremental and iterative
development process is adopted inside each phase and
among different phases, in particular during early require-
ments analysis and late requirements analysis [4].

Early requirements analysis is concerned the under-
standing of the problem by studying an existing organi-
zational setting: the requirement engineer models and an-
alyzes the desires and the intentions of the stakeholders,
and states their intentional dependencies. Desires, inten-
tions, and dependencies are modeled as goals and as soft-
goals which, through a goal-oriented analysis, provide the
rationale for the specification of the functional and non-
functional requirements of the system-to-be. The output
of this phase is an organizational model which includes
relevant actors and their respective dependencies. Actors
in the organizational setting are characterized by having
goals that each single actor, in isolation, would be un-
able —or not as competent— to achieve. The goals are
achievable in virtue of reciprocal means-end knowledge
and dependencies.

In an earlier work [3], we have proposed a characteriza-
tion of the process of early requirements analysis, defin-
ing it in terms of applying transformations to the model of
the system. In particular, we focused on the definition of
the transformations that can be applied for refining an ini-
tial Tropos model to a final one, working incrementally.
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This is a very basic issue in defining a new methodology,
as for instance proposed in [2] for Entity-Relationship
schema design, in [5] for goal oriented requirements anal-
ysis, and in [8] for functional and non-functional require-
ments analysis.

In the present paper we focus on the redefinition of
the transformation system for early requirements analy-
sis, proposed in [3], in terms of a Graph Transformation
System. This provides the necessary machinery to per-
form precise inspections of the process of early require-
ments analysis, and allows us to distinguish among differ-
ent strategies for the execution of the process.

As well, the definition of a formal and precise Graph
Transformation System for describing the diagram trans-
formation process in Tropos opens the possibility for an
implementation of a Tropos diagram editing tool based
on the use of a Graph Transformation programming lan-
guage.

The paper is organized as follows. In Section 2, we
recall the transformational based approach presented in
[3]. In Section 3 we introduce the basic notions on Graph
Transformation Systems, and show how the transforma-
tional based approach can be rephrased in terms of this
formalism. Some execution algorithms with an exam-
ple of execution are then introduced. Finally, Section 4
presents some conclusion.

2 The Transformational Based Ap-
proach

Tropos rests on the use of a conceptual model of the
system-to-be —and of the organizational environment in
which the system will operate— specified by a model-
ing language based on Eric Yu’si* paradigm [13]. This
paradigm offers actors, goals, and actor dependencies as
primitive concepts for modeling an application during the
requirements analysis. During early requirements anal-
ysis, the requirements engineer models and analyzes the
intentions of the stakeholders. Followingi*, in Tropos
the stakeholders’ intentions are modeled as goals which,
through some form of goal-oriented analysis, eventually
lead to the functional and non-functional requirements of
the system-to-be. The detailed analysis of the system re-
quirements is then dealt with during the late requirement

analysis phase.
Early requirements are assumed to involve social ac-

tors who depend on each other for goals to be achieved,
tasks to be performed, and resources to be provided. Tro-
pos includesactor diagramsfor describing the network
of social dependency relationships among actors, as well
as rationale diagramsfor analyzing and trying to fulfill
goals through a means-ends analysis. These primitives
are formalized using intentional concepts from AI, such
as goal, belief, ability, and commitment. Actor and ra-
tionale diagrams may be combined in order to convey a
global view on the model they describe together. An ex-
ample of actor and rationale diagrams is showed in Fig-
ure 1. An organization analysis is depicted, in which two
relevant actors —theCitizen and thePAT (Autonomous
Province of Trento)— depend upon each other in or-
der to fulfill the citizen’s goal of having a system for
accessing cultural information (system available ) and
the citizen’s softgoal1 of having taxes well spent (taxes
well spent ). One possible analysis of this situation pro-
duced the diagram of Figure 1, as illustrated in [3], where
Citizen is associated with the initial relevant goalget
cultural information , that is then OR-decomposed
into the two subgoalsvisit institution and visit
web site . One means for fulfilling the goalvisit web
site is to have a web cultural information system avail-
able (goalsystem available ). This last goal is then
similarly analyzed from the point of view of the actorPAT,
as well as other goals and softgoals. For example, the pos-
itive or negative contribution of softgoals (only positive
in the example) can be introduced, as well as ISA hier-
archies. A more detailed description of this and related
examples can be found in[11, 6, 3]

Early requirement analysis and late requirement analy-
sis2 are iterative processes, at each step of which details
are incrementally added and rearranged, introducing ini-
tially only few actors, goals, softgoals, and dependencies,
and adding then more and more elements. The details
added at each step are aimed at representing increasing
knowledge and insight on the problem and its environ-

1Softgoals are mainly used for specifying additional qualities or
vague requirements.

2For most of the aspects analyzed in this paper, early requirement
analysis and late requirement analysis can be considered as being carried
on in the same way. Thus, in the next pages we will consider the early
requirement analysis process, only.
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Figure 1: A Tropos actor diagram with rationale analyses for two actors (Citizen andPAT).

ment, and their introduction corresponds to a deeper and
more precise understanding of the requirements. It is rel-
evant to observe that, with regard to the transition from
early requirements to late requirements, this approach is
particularly fruitful. In fact, making the system-to-be re-
quirements correspond to the real state of affairs of the
organizational setting is much more natural, because the
organizational goals are directly linked to the system re-
quirements, so that the later are justified by the former.
It is in this way that not only thehowand thewhatdealt
also by standard Requirement Engineering techniques is
described, but also thewhy.

In this context, for both early and late requirements
analyses [4], the process of conceptual modeling of the

environmental setting can be described in terms of sim-
ple transformations of subsequent versions of the model.
Each of these transformations allows for the progressive
introduction of more structure and details into the model.
In other words, by iterating the application of transforma-
tions, the engineer can progressively move toward the fi-
nal complete model, going through subsequent, more and
more precise and detailed, versions.

In [3], the most relevant transformations have been in-
troduced, and in particular:

1. Goal transformations, which allow us to perform
goal analysis by introducing relationships between
goals, or actors and goals. We distinguish:

� Goal decomposition transformations, which al-

3



low for the decomposition of a goal into and/or
subgoals, such that the achievement of one sub-
goal (for theOR-decomposition) or all subgoals
(for the AND-decomposition) implies the root
goal achievement.

� Precondition goal transformations, which al-
low us to list a set of necessary (but not suf-
ficient) preconditions in terms of other goals.
Precondition goalsenablethe achievement of
the higher level goal. The resulting analysis has
to be somehow completed with more elements
derived from further goal or task analyses, pos-
sibly during later Tropos phases, like the late
requirement analysis.

� Goal delegation transformations, which are
aimed at allowing the model to express the
change of responsibility in goal fulfillment.
The goal delegation transformation can be ap-
plied to a goal and to the actor it is assigned
to.

� Goal generalization transformations, which al-
low us to introduce an ISA hierarchy among
two goals. The same hierarchy must also hold
between the two actors the two goals are as-
signed to, and, when it is the case, the four
actors that participate at the two (goal) depen-
dency relationships.

2. Softgoal transformations, which allow us to per-
form softgoal analysis. They are similar to the goal
transformations (with the exclusion of the precondi-
tion transformation). To deal with the so calledcon-
tribution analysis(see [8, 11]), one additional trans-
formation is used:

� Contribution transformations, which allow us
to specify whether a goal or soft-goal con-
tributes to some other softgoal or, starting from
the other side, whether there is some goal or
soft-goal that contributes positively or nega-
tively to the satisfaction of the softgoal.

3. Actor Transformations: also some Actor Transfor-
mations have been described in [3], but they are not
dealt with in this paper.

Transformations can be considered as the building
blocks of the engineer’s activity, and the way they are used
can be analyzed also with respect to the strategic role they
play in the design process.

Specific (local) strategies can be defined astop-down
or as bottom-up. Applying transformations in a top-
down way allows the engineer to analyze high level con-
ceptual elements (actors, goals, softgoals) by adding de-
tails in terms of relationships (specialization, decompo-
sition, softgoal contribution, etc.) or dependencies with
respect to other conceptual elements. Vice versa, bottom-
up transformation applications allow us to aggregate finer
grain conceptual elements in order to express their contri-
bution —compositional, hierarchical, functional or non-
functional— to other, somehow more generic, conceptual
elements.

A clear definition of transformation applications and of
a way to analyze applications sequences is important in
order to allow us to compare different strategies for the
design process. Of course, engineering activity cannot
be totally reduced in formal steps, considering that it in-
cludes a considerable informal and human contribution.
But separating diagram transformations from other deci-
sional elements is certainly a first step to allow for a better
description and analysis of the process.

In the following sections we present a first attempt to
formalize the diagram transformations listed above and
in [3] in terms of a Graph Transformation Systems. Also,
we provide some first observations than can be derived
from the comparison of the execution of two different al-
gorithms for the process of design development.

Toward this aim, we will refer to the task of developing
the final diagram shown in Figure 1, that is derived from
a case study presented more in detail in [3].

3 The analysis process as a graph
transformation system

In the previous section an intuition of the Tropos early and
late requirement analysis process has been given.

The real focus of this paper is in providing a more for-
mal description of the process. In this section, this will
done by adopting notions of Graph Transformation Sys-
tems as presented in [1].
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Node type restrictions for different types of edges

l1(e) l1(s(e)) l1(t(e))

outgoing-dependency actor goal;so f goal; plan; resource
incomming-dependency goal;so f goal; plan; resource actor

and-decomposition l2(t(e)) goal;so f goal; plan
or-decomposition l2(t(e)) goal;so f goal; plan

precondition goal goal
generalization l2(t(e)) goal;so f tgoal; task;actor

assigment goal;so f tgoal; resource; plan actor
positive-contribution so f tgoal;goal so f tgoal
negative-contribution so f tgoal;goal so f tgoal

aggregation actor actor

Table 1: Restrictions for the edges in a valid Tropos diagram.

A Tropos actor or rationale diagram can be simply seen
as a special case oflabeled directed graph, namely a 5-
tupleG= hN ;E ;s; t; li, whereN is a finite set of nodes,
each pair of which can be connected by one or more edges
of the finite setE ; s andt are two functions:

s; t : E �! N

that assign to each edge the source and the target node,
respectively;l is a labeling function for each node and
edge. For Tropos actor diagrams and rationale diagrams,
it can be assumed that:

l : N [E �! T�L

where T is the set of possible types of nodes and
edges, T=factor, goal, softgoal, resource, plan,
and-decomposition, or-decomposition, precondition,
generalization, assignment, outgoing-dependency,
incoming-dependency, positive-contribution, negative-
contribution, aggregationg3, and L is any set of
desirable identifiers (e.g., generic ASCII strings).
Moreover, it is assumed that for each Tropos actor or
rationale diagramG = hN ;E ;s; t; li4, l2(E) = fεg5,

3The assignment edge is not explicitly visualized in Tropos dia-
grams. Instead, this notion is reproduced either by “attaching” the
goal/softgoal/plan/resouce to the actor, or by placing these nodes inside
a “balloon” that represent the actor’s context.

4In the following, when no ambiguity arise,N ;E ;s;t; l will always
be used as the components ofG.

5l2 selects the second component ofl , namely, the identifier; sim-

l1(N ) �factor, goal, softgoal, resource, plang
and l1(E) �fand-decomposition, or-decomposition,
outgoing-dependency, incoming-dependency, precondi-
tion, generalization, assignment, positive-contribution,
negative-contribution, aggregationg.6 Furthermore, for
G to be avalid Tropos diagram, the restrictions listed in
Table 1, on the types of the nodes connected by an edge,
must be observed.

3.1 Graph transformation system

The notion of agraph transformation ruleallows us to
give a formal account of different kinds of computation
applied to graphs. A simple, yet complete, definition can
be found in [1]. In our case, the following, less general,
notion of graph transformation rule is sufficient.

A graph transformation ruleis a pairr = hL;Ri, where
L and R are graphs with a well defined and non-empty
intersection7, also called left-hand-side (LHS) and right-
hand-side (RHS) of the rule. The application of ruler to
a graphG yields a new graphH obtained as follow.

ilarly, l1 select the first component, namely the type.ε is the empty
string.

6Self-understandable abbreviations will be used when needed.
7A graph intersectionG=G0\G00, whereG0 = hN 0

;E 0
;s0;t 0; l 0i and

G00 = hN 00
;E 00

;s00;t 00; l 00i, is the graphG= hN ;E ;s;t; li, such thatN =
N 0 \N 00, E = E 0 \E 00, ands, t, and l , are eithers0, t 0, and l 0, or s00,
t 0, and l 00 restricted to the domains ofG. Of course, it is required that
s0 = s00, t 0 = t 00, andl 0 = l 00 when applied to any element ofN or E , in
order that the intersection is well defined.
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1. Chose an isomorphism8 i (calledoccurrence isomor-
phism) from L onto a subgraphG0 of G; (a graphG0

is a subgraph of a graphG iff G0 \G is well defined
andG0\G= G0).

2. Delete fromG the images ofL with no counter-
images inL\R, and obtain thecontext graph D=
Gn i(LnR).

3. Add toD the images of the items ofR not already in
D; this yieldsH = D[ i(RnL).

From this definition it follows that the possible rule
application is not always unique for a given rule and a
given graph, because different occurrence isomorphisms
may apply. If a graphH is obtained from graphG by the
application of ruler, we will write:

G
r
) H:

A Graph Transformation Systemis a set P =
fr1; : : : ; rng of graph transformation rules. A graphH is
said to be derivable from graphG by means of a sequence
of applications of rules inP if:

G
r1)G1

r2)G2 : : :

rm�1
) Gm�1

rm) H

with ri 2 P, for 1� i �m.

We will also writeG
P

=) H, or
P
=) H in the caseG is

the empty graph.
Notice that, given a graph transformation systemP and

an initial graphG, the derivation process is non determin-
istic, due to both the occurrence choice (as already noted
above) and the rule choice, at each step. The length of
the derivation is another open parameter. Thus, different
graphs may be derived fromG by P, as well as, supposed

thatG
P
=) H, there may be different possible derivations

of H.
The Tropos actor and rationale diagram definition pro-

cess may be described in term of a graph transformation
system. The Tropos graph transformation system is de-
scribed by the set of rules reported in Table 2.

8More in general, homomorphisms preservings, t, and l could be
considered, but for sake of simplicity only isomorphisms will be consid-
ered in the examples of the present paper.

3.2 The Tropos diagram generation algo-
rithm

Using the graph transformation system given in Table 1,
the generic algorithm for driving the process of Tropos
graph (or Tropos diagram) generation is given in Figure 2.

The ‘chose an applicable rule’ and ‘chose an
occurrence’ steps correspond to the non-deterministic
choices that, as already mentioned, are intrinsic in the
definition of rule-system application. The test‘desired
graph’ is meant to verify when a reasonably detailed di-
agram is obtained. This can be done by combining infor-
mal decision criteria on the satisfiability of single goal,
softgoal, or plan leaf nodes, together with label propaga-
tion algorithm that allows us to compute the satisfaction
of (non-leaf) nodes, starting from the satisfaction of leaf
nodes, as, e.g., described in [9].

Several constraints and heuristics may be introduced in
order tocontrol this kind of non determinism. Among
them we can list:

� assign priority to rules

� assign a precedence ordering among different rules
(that may depend on the context of execution)

� define an absolute ordering among categories of
rules.

As a first attempt, we consider the possibility of distin-
guishing among different categories of rules, and in par-
ticular, we group the rules of Table 2 in three categories.
The first, includingA-I , G-I , andSG-I , is characterized
by the introduction of a new node in the RHS graph. The
second, includingG-DEC-&, G-DEC-OR, SG-C-SG(+),
and so on, is characterized by the introduction of new
edge(s). The last category includes the rulesG-DEL and
SG-DEL, that imply the deletion of an assignment edge
in the LHS graph, and its replacement in the RHS graph
with three new edges: two used to form a chain of the type
actor! dependum! actor9 (wheredependumis either
goal or so f tgoal) and a third to state a new assignment
for the dependum to the second actor, thus completing
the definition of a kind of dependum delegation. We call
these three categoriesintroduction rules, analysis rules,
anddelegation rules, respectively.

9We use an arrow between two nodes (n1 ! n2) to shortly indicate
the presence of an edge between them.
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Graph Transformation System for Tropos diagrams

name:A-I (Actor Introduction) category:introduction
LHS: hfg;fg;fg;fg;fgi

RHS:hfn1g;fg;fg;fg;fn1 7! hACT;�ig

name:G-I (Goal Introduction) category:introduction
LHS: hfn1g;fg;fg;fg;fn1 7! hACt;�igi

RHS:hfn1;n2g;fe1g;fe1 7! n2g;fe1 7! n1g;fn1 7! hACT;�i;n2 7! hG;�ie1 7! hASS;εig
name:SG-I (SoftGoal Introduction) category:introduction

LHS: hfn1g;fg;fg;fg;fn1 7! hACT;�igi

RHS:hfn1;n2g;fe1g;fe1 7! n2g;fe1 7! n1g;fn1 7! hACT;�i;n2 7! hSG;�ie1 7! hASS;εig
name:G-DEC-& (Goal AND Decomposition) category:analysis

LHS: hfn0;n1; : : : ;nng;fg;fg;fg;fni 7! hG;�igi

RHS:hfn0;n1; : : : ;nng;fe1; : : :eng;fei 7! nig;fei 7! n0g;fni 7! hG;�i;ei 7! h&-DEC;εig
name:G-DEC-OR(Goal OR Decomposition) category:analysis

LHS: hfn0;n1; : : : ;nng;fg;fg;fg;fni 7! hG;�igi

RHS:hfn0;n1; : : : ;nng;fe1; : : :eng;fei 7! nig;fei 7! n0g;fni 7! hG;�i;ei 7! hOR-DEC;εig
name:G-P (Goal Precondition) category:analysis

LHS: hfn1;n2g;fg;fg;fg;fni 7! hG;�igi

RHS:hfn1;n2g;fe1g;fe1 7! n2g;fe1 7! n1g;fni 7! hG;�i;e1 7! hPrecond;εig
name:G-G (Goal Generalization) category:analysis

LHS: hfn1;n2g;fg;fg;fg;fni 7! hG;�igi

RHS:hfn1;n2g;fe1g;fe1 7! n2g;fe1 7! n1g;fni 7! hG;�i;e1 7! hISA;εig
name:SG-C-SG(+) (SoftGoal-SoftGoal positive Contribution)category:analysis

LHS: hfn1;n2g;fg;fg;fg;fni 7! hSG;�igi

RHS:hfn1;n2g;fe1g;fe1 7! n2g;fe1 7! n1g;fni 7! hSG;�i;e1 7! hPosContr;εig
name:SG-G (SoftGoal Generalization) category:analysis

LHS: hfn1;n2g;fg;fg;fg;fni 7! hSG;�igi

RHS:hfn1;n2g;fe1g;fe1 7! n2g;fe1 7! n1g;fni 7! hSG;�i;e1 7! hISA;εig
name:G-DEL (Goal Delegation) category:delegation

LHS: hfn1;n2;n3g;fe1g;fe1 7! n2g;fe1 7! n1g;fn1;3 7! hAct;�i;n2 7! hG;�i;e1 7! hAss;εigi
RHS:hfn1;n2;n3g;fe2;e3;e4g;fe2 7! n1;e3;4 7! n2g;fe2 7! n2;e3;4 7! n3g;

fn1;3 7! hActor;�i;n2 7! hGoal;�i;e2 7! hOutDep;εi;e3 7! hInDep;εi;e4 7! hAss;εig
name:SG-DEL (SoftGoal Delegation) category:delegation

LHS: hfn1;n2;n3g;fe1g;fe1 7! n2g;fe1 7! n1g;fn1;3 7! hAct;�i;n2 7! hSG;�i;e1 7! hAss;εigi
RHS:hfn1;n2;n3g;fe2;e3;e4g;fe2 7! n1;e3;4 7! n2g;fe2 7! n2;e3;4 7! n3g;

fn1;3 7! hActor;�i;n2 7! hSo f tGoal;�i;e2 7! hOutDep;εi;e3 7! hInDep;εi;e4 7! hAss;εig

Table 2: Transformation rules: the maps of functionss, t, andl are fully listed. Abbreviations for some type names
are used. The wild-char� stands for any string.
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BEGIN
‘initialize graph’ G (* in general empty *)
REPEAT

‘chose an applicable rule’ r=<L,R> IN P;
‘chose an occurrence isomorphism’ i ‘for the application of’ r;
G := (G \ i(L\R)) UNION i(R\L)

UNTIL G = ‘desired graph’ OR ‘no applicable rules left’;
IF G = ‘desired graph’ THEN RETURN(G)

ELSE FAIL
END

Figure 2: The algorithm for the Tropos graph generation.

The new version of the algorithm is given in Figure 3.
The general idea is to apply first all the applicable rules
of a category, and then proceed with rules of the next cat-
egory. Indeed, it soon turns out that it may be convenient
to allow for simple exceptions. Let’s consider the case of
analysis rules: in many cases their application (especially
for decomposition rules) require the existence of some
nodes (e.g., the subgoals or the sub-softgoals) that may
be not already be present in diagram. In order to avoid
delaying the application of the analysis rule until the next
REPEATloop, it may be preferable to allow for the inter-
leaving of the appropriate introduction rule. In particular,
this may be considered a quite standard case when the
analysis rule is applied in a Top-Down direction.

The outerREPEATloop is necessary because the appli-
cation of rules of one category may make rules of other
categories applicable as well, although they were not so
before.

Below, it is shown the use of the algorithm to produce
the analysis of Figure 1.

Outer REPEAT:

First LOOP:

INTRODUCTION RULES:10

hfg;fgi
A-I
)1 hfn1g;fgi

G-I
)2 hfn1;n2g;fn2 ! n1gi

10In the following derivations, for each generated graph onlyN is
explicitly listed. The elements ofE are not named; instead the two
mapssandt are given in compact form by writing, e.g.,n1 ! n2: in this
case we mean thats(e) = n1 andt(e) = n2. The Functionl can be easily
read on Figure 1.

SG-I
3 ) hfn1;n2;n3g;fn2 ! n1;n3 ! n1gi
A-I
) hfn1;n2;n3;n4g;fn2 ! n1;n3 ! n1gi
G-I
) hfn1;n2;n3;n4;n5g;fn2 ! n1;n3 ! n1;n5 ! n4gi

ANALYSIS RULES:11

G-I2
) hN [fn6;n7g;E [fn6 ! n1;n7 ! n1gi

G-DEC-OR
) hN ;E [fn6 ! n2;n7 ! n2gi

G-I2
) hN [fn8;n9g;Ei

G-P2
) hN ;E [fn8 ! n7;n9 ! n7gi

G-I
) hN [fn10g;Ei

G-P
) hN ;E [fn10! n5gi

G-I2
) hN [fn11;n12g;Ei

G-DEC-OR2
) hN ;E [fn11! n10;n12! n10gi

DELEGATION RULES:
G-DEL
) hN ;fn2 ! n1;n3 ! n1;n5 ! n4;n6 ! n1;n7 !

n1;n6 ! n2;n7 ! n2;n8 ! n1;

n1 ! n9;n9 ! n2;n9 ! n2;n8 ! n7;n9 ! n7;n10 !
n4;n10! n5;n11! n4;n12! n4;

n11! n10;n12! n10gi
SG-DEL
) hN ;fn2 ! n1;n1 ! n3;n3 ! n4;n3 ! n4;n5 !

n4;n6 ! n1;n7 ! n1;n6 ! n2;

n7 ! n2;n8 ! n1;n1 ! n9;n9 ! n2;n9 ! n2;n8 !
n7;n9 ! n7;n10! n4;n10! n5;

11To make our notation more compact, at each transformation step
we will denote the set of nodes so far included in the graph simply with
N , and the set of edge so far included in the graph simply withE ; N
increases always monotonically, thus, only new nodes will be evidenced;
E may be modified non-monotonically, for the effect of some rules (like
delegation): in this case the new set will be fully listed. Also, to skip

some steps, the notationr
2
) r will be used to denote the application of

the ruler twice.
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BEGIN
‘initialize’ graph G (* in general empty *)
REPEAT

WHILE G <> ‘desired graph’ AND
‘there is at least one applicable rule in the INTRODUCTION RULES set’;

DO
‘chose an applicable rule’ r=<L,R> ‘in the INTRODUCTION RULES set’;
‘chose an occurrence isomorphism’ i ‘for the application of’ r;
G := (G \ i(L\R)) + i(R\L)

DONE;

WHILE G <> ‘desired graph’ AND
‘there is at least one applicable rule in the ANALYSIS RULES set’;

DO
‘chose an applicable rule’ r=<L,R> ‘in the ANALYSIS RULES set’;
‘chose an occurrence’ i ‘for the application of’ r;
G := (G \ i(L\R)) + i(R\L)

DONE;

WHILE G <> ‘desired graph’ AND
‘there is at least one applicable rule in the DELEGATION RULES set’;

DO
‘chose an applicable rule’ r=<L,R> ‘in the DELEGATION RULES set’;
‘chose an occurrence’ i ‘for the application of r’;
G := (G \ i(L\R)) + i(R\L)

DONE

UNTIL G = ‘desired graph’ OR ‘no applicable rules left’;
IF G = ‘desired graph’ THEN RETURN(G)

ELSE FAIL
END

Figure 3: Enhanced version of the algorithm for the Tropos Graph generation.
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n11! n4;n12! n4;n11! n10;n12! n10gi
12

END of First LOOP;

As foreseen, after the delegation transformations it may
happens that some further analysis can be done, in partic-
ular, from the point of view of the actorPAT (noden4).

Therefore, the algorithm needs to reenter in the main
loop.

Second LOOP:

INTRODUCTION RULES: nothing applies;

ANALYSIS RULES:
G-DEC-OR

) hN ;E [fn11! n9;n12! n9gi
SG-I
) hN [fn13g;E [fn13! n4gi

SG-C-SG(+)
) hN ;E [fn13! n3gi

SG-I
) hN [fn14g;E [fn14! n4gi

SG-GEN
) hN ;E [fn14! n13gi

SG-C-SG(+)
) hN ;E [fn10! n14gi

DELEGATION RULES: nothing applies;

END of Second LOOP

END of REPEAT

END.

It is interesting to notice that, accordingly with the al-
gorithm, before introducing new nodes in the context of
an actor by delegation —that, as in the example, may al-
low for further analysis— all the currently possible anal-
ysis must be completed. This is not the most natural way
to proceed: in our example, in order to allow for a com-
plete analysis from the point of view ofn4 (PAT), it could
be more convenient to interleave the analyses of the nodes
assigned ton1 (Citizen ) andn4 with the two applications
of delegation rules. Also, it is the case to notice that while

12The (soft)goal delegation implies the replacement of the assignment
edge (namely,n9 ! n1 and n3 ! n1 in the two cases above), with a
corresponding chain of the typeactor! dependum! actor, evidenced
here in bold.

one of the delegated dependums,n3 (tax well spent ),
was available just after the introduction phase, the other,
n9 (system available ), was produced by the analysis
of noden1 . This suggests that switching the order of the
analysis and delegation phases would not be a solution to
the problem.

Furthermore, during the analysis phases in the first
loop, some introduction rules are used. As mentioned pre-
viously, they are strictly functional to the analysis steps:
they introduce the nodes necessary to perform the analysis
itself. This way of proceeding (introduction by need) cor-
responds to a Top-Down approach: when new nodes are
needed to satisfy some “Top” dependum, more specific
nodes are introduced. But introduced nodes may as well
be used in a Bottom-Up fashion, when, during later steps
(see, e.g., the analysis performed in the second loop) they
are recognized to be useful also for dependums different
from those for which they had been initially introduced.
In other examples, more realistic and, thus, dramatically
more rich of initially introduced elements, there are much
more chances to apply a Bottom-Up analysis since the
first steps. Nevertheless, also in these cases more Bottom-
Up analyses can emerge after some delegations.

In our example, not much emphasis is given to the pro-
cess of acquiring the requirements from the stakeholders.
It is simply assumed that the engineer is able to perform
the diagram development (including application of intro-
duction rules), given an initial knowledge on the domain.
In practice this is not the case, and the activity performed
by the requirement engineer may require at a certain point
(e.g., after the outcome of the application of some analysis
rules, or once a point is reached in which no further rules
are applicable, but the resulting diagrams are yet not sat-
isfactory) to acquire new knowledge on the domain, that
is, for example, either new documents or new interviews
with the stakeholders. Of course, this step can provide
insight for the introduction of new nodes in the diagram.
Also in this case, it could be the case that these intro-
ductions are better not to be delayed until after the strict
execution of the main loop.

For all these reasons, we propose, in Figure 4, the fi-
nal version of the algorithm. It is based on an agenda of
applicable rules, which not only allows us to sort rules in
categories, but also to manage exceptions in a more flexi-
ble way.

In this case the crucial point corresponding to the non
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BEGIN
‘initialize graph’ G (* in general empty *)
REPEAT

‘update’ agenda; ‘sort’ agenda;
<<L,R>,i> := POP(agenda);
G := (G \ i(L\R)) UNION i(R\L)

UNTIL G = ‘desired graph’ OR agenda = EMPTY;
IF G = ‘desired graph’ THEN RETURN(G)

ELSE FAIL
END

Figure 4: The final version of the algorithm.

deterministic choices is the‘sort’ of the agenda. Up-
dating the agenda, in fact, simply corresponds to adding
(or in some cases removing) pairs<r,i> (with r=<L,R> )
to the agenda, accordingly with the given definition of the
applicable rule. Differently, the‘sort’ (here unspeci-
fied) subroutine must provide for the control over the non-
deterministic part of the algorithm, and corresponds to the
heuristic part of the algorithm. For example, as a special
case, we can reproduce to the previous algorithm, simply
by requiring that the rules of the different categories are
clustered together in the agenda. But the interesting as-
pect is that also other criteria can be easily introduced, as,
for example, putting first all the rule instances involving
a particular actor13 or including very informal heuristics,
such as, e.g., move forth or backward dependum introduc-
tion rules accordingly to the kind of actor the dependum
is assigned to. In fact, empirical evidence and experience
on the domain under analysis may suggest that it could
be easier to decide upon the introduction of a new goal
of a particular actor over that another, based on the fact
the later could require more time or money for the knowl-
edge acquisition steps.14 There may also be good rea-
sons to keep delegation rules at the bottom of the agenda,
for example because it may be judged that a delegation
may (riskly) require to revise the already analyzed point
of views of other actors. Also, as a final remark, inter-

13In our example, using this kind of priority forn1 would generate an
execution track not requiring to reanalyzen4 goals and softgoals, that is
the problem in the execution discussed above.

14Consider for example the difference in interviewing an “easily
reachable” stakeholder, like a simple employee, instead of interviewing
a top-manager of the analyzed organization.

nal analyses, that reduce delegation to a minimum, can be
preferred because they are easier to parallelize.

4 Conclusion

As presented in [3], the Tropos analysis process can be de-
fined in terms of transformation applications, and in par-
ticular, transformations that can be applied for refining an
initial Tropos model to a final one, working incrementally.

In this paper we have focused on the redefinition of
the transformation system for Tropos early requirements
analysis in terms of a Graph Transformation System. The
formalization provides the necessary machinery to per-
form precise inspections of the process of early require-
ments analysis, and allows us to distinguish among differ-
ent strategies for the execution of the process. We have
also introduced some execution algorithms with an exam-
ple of execution, and finally, we have discussed some pre-
liminary observations on different control strategies.

The work and the considerations presented in this paper
have to be considered as preliminary and a starting point
for further development of a Graph Transformation Sys-
tem based machinery for describing the Tropos diagram
generation and analysis process. The advantages we ex-
pect to be able to introduce with future works on the topic
can be foreseen at least in two directions.

First, the formal inspection of the analysis process in
abstract and of other specific case studies may lead to
careful definitions and comparison of different strategies
of analysis, as preliminary exemplified in the present pa-
per.
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Second, the precise definition of the Graph Transfor-
mation System and its formal analysis should allow us to
prove that the System is algebraically close with respect to
the notion of a valid Tropos diagram, as given is Section 3
and with Table 1. An immediate consequence would be
that an implementation of a Tropos diagram editing tool,
providing syntactic checking services, is possible simply
by using Graph Transformation programming languages
as, for example, PROGRESS [12].
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