
Information Systems Development through Social
Structures

Manuel Kolp1 Paolo Giorgini2

 1 IAG - Information Systems Research Unit - University of Louvain, 1 Place des Doyens,
B-1348 Louvain-La-Neuve, Belgium, tel.: +32-10 47 83 95, kolp@isys.ucl.ac.be

2 Department of Mathematics - University of Trento, via Sommarive, 14, I-38100, Trento,
Italy, tel.: +39-0461-882052, pgiorgini@science.unitn.it

Abstract. Information systems for organizations such as e-business and
knowledge management systems must continually evolve to adapt to their
operational environment. Unfortunately, current development methodologies do
not support system evolution well, making software an obstacle to
organizational changes. The paper describes a framework that develops and
evolves seamlessly a system-to-be within its organizational environment. We
adopt a set of social structures – organizational styles and social patterns –
based on concepts of organization theory and agent approaches, as a foundation
to model early and late requirements as well as architectural and detailed
design. We illustrate the use of the social structures through a case study, and
we specify one of the styles in Formal Tropos language. This research has been
conducted within the context of the Tropos project.

1 Introduction

We are interested in narrowing the semantic gap between requirements analysis
and system design. On one hand, requirements analysis techniques have been
recognizing the modeling of the social and intentional context, within which a system
will eventually operate, as an important part of the analysis process (e.g., [Ant96,
Bub93, Dar93, Yu95]). On the other hand, software design techniques have
traditionally been inspired and driven by the programming paradigm of the day (e.g.,
[Boo99, Wir90]). This impedance mismatch between analysis and design is one of the
main factors for the poor quality of system development projects.

One way to reduce this gap is adopting as much as possible the same concepts for
all phases of the development process. In this paper, we propose a set of social
structures – organizational styles and social patterns – as a foundation to model early
and late requirements as well as architectural and detailed design. These social
structures use primitives from i* [Yu95], a modeling framework for early
requirements founded on the notions of actor, goal and social dependency.

This work continues the research in progress within the Tropos project [Cas01,
Gio01] and relies on material detailed in previous papers. In [Cas01], we have
presented Tropos, an information system development framework, which is
requirements-driven in the sense that it adopts concepts used during early
requirements analysis, especially those offered by i*. The Tropos framework has also

been applied for developing multi-agent systems [Gio01]. Tropos spans four phases
of software development:

• early requirements analysis, concerned with the understanding of a problem by
studying an organizational setting - the output is an organizational model which
includes relevant actors, their goals and inter-dependencies;

• late requirements analysis, where the system-to-be is described within its
operational environment, along with relevant functions and qualities;

• architectural design, where the system’s global architecture is defined in terms of
subsystems, interconnected through data, control and other dependencies;

• detailed design, where behavior of each architectural component is defined in
further detail.

In [Fux01] we have detailed a social ontology for Tropos that views information
systems as social structures. The ontology is described at three levels of granularity.
At the lowest (finest granularity) level, Tropos adopts concepts offered by the i*
framework. At a second, coarser-grain, level the ontology includes possible social
patterns, such as mediator, broker and embassy. At a third, more macroscopic level
the ontology offers a set of organizational styles inspired by organization theory and
strategic alliances literature.

In [Kol01], we have described how to use our Tropos social ontology to design
multi-agent architectures. As a matter of fact, multi-agent systems can be considered
structured societies of coordinated autonomous agents that interact one another to
achieve particular, possible common goals.

We argue that the development of methodologies for organizational information
systems, like ERP, Knowledge Management, groupware and e-business systems, need
to integrate organizational models and software system designs. This allows systems
to better match their operational context. In this paper, we propose to reduce the
impedance mismatch between phases of the development process by using social
structures as building blocks all along the system life-cycle.

The paper is organized as follows. In Section 2, we present some of our social
structures, firstly organization-inspired styles, and secondly social patterns based on
agent approaches; then, we illustrate how social structures can be evaluated. Section 3
presents a case study in which social structures are used all along the information
system life-cycle. It also proposes the Formal Tropos specification of one of our
styles. Finally, Section 4 summarizes the contributions of the paper and points to
further work.

2 Social Structures

For a detailed presentation of our organizational styles and social patterns, see
[Fux01, Kol01].

2.1 Organizational Styles

Organization theory (e.g., [Min92, Sco98]) and strategic alliances (e.g., [Gom96,
Seg96,Yos95]) study alternatives to model (business) organizations. An
organizational style represents a possible way to structure the stakeholders –

individuals, physical or social systems – of an organization in order to meet its
strategic goals.

The structure of an organization defines the roles of the various components
(actors), their responsibilities for tasks and goals, the way in which the resources are
allocated, and the strategies that must be adopted. Moreover, the structure defines
how to coordinate the activities of the various actors and how they depend on each
other. Dependencies can involve both actors of the organization and actors of the
environment in which the organization is located (e.g., partners, competitors, clients,
etc.).

An organizational style offers also a set of design parameters that can be selected
and turned in order to influence the division of labor and the coordinating
mechanisms, thereby affecting how the organization functions. Design parameters
include, among others, tasks assignment, standardization, supervision and control.
The organization designer can use these parameters in order to deal with, so called,
situational or contingency factors, namely organizational states or conditions that are
associated with the use of certain design parameters. Contingency factors can involve
age and size of the organization, the technical system it uses, and various aspects of
the environment, such as stability, complexity, diversity, and hostility.

We propose a catalogue adopting (some of) the styles offered in organization
theory for developing information systems. In the following, we present briefly some
of these styles using the strategic dependency model of i*.

A strategic dependency model is a graph, where each node represents an actor (an
agent, a position, or a role within an organization) and each link between two actors
indicates that one actor depends on another for a goal to be fulfilled, a task to be
carried out, or a resource to be made available. We call the depending actor of a
dependency the depender and the actor who is depended upon the dependee. The
object around which the dependency centers (goal, task or resource) is called the
dependum. The model distinguishes among four types of dependencies – goal-, task-,
resource-, and softgoal-dependency – based on the type of freedom that is allowed in
the relationship between depender and dependee. Softgoals are distinguished from
goals because they do not have a formal definition, and they are amenable to a
different (more qualitative) kind of analysis [Chu00].

For instance, in Figure 1, the Technostructure, Middle Agency and Support actors
depend on the Apex for strategic management. Since the goal Strategic Management
does not have a precise description, it is represented as a softgoal (cloudy shape). The
Middle Agency depends on the Technostructure and Support respectively through
goal dependencies Control and Logistics represented as oval-shaped icons. The
Operational Core is related to the Technostructure and Support actors through the
Standardize task dependency and the Non-operational Service resource dependency,
respectively.

Apex

Standardize

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non−operational

Logistics SupportControl
Structure
Techno−

Fig. 1. Structure-in-5

The structure-in-5 (Figure 1) is a typical organizational style. At the base level,
the Operational Core takes care of the basic tasks — the input, processing, output
and direct support procedures — associated with running the organization. At the top
lies the Apex, composed of strategic executive actors. Below it, sit the
Technostructure, Middle Agency and Support actors, who are in charge of
control/standardization, management and logistics procedures, respectively. The
Technostructure component carries out the tasks of standardizing the behavior of
other components, in addition to applying analytical procedures to help the
organization adapt to its environment. Actors joining the apex to the operational core
make up the Middle Agency. The Support component assists the operational core for
non-operational services that are outside the basic flow of operational tasks and
procedures.

The joint venture style (Figure 2) is a more decentralized style that involves an
agreement between two or more principal partners in order to obtain the benefits
derived from operating at a larger scale and reusing the experience and knowledge of
the partners. Each principal partner can manage and control itself on a local
dimension and interact directly with other principal partners to exchange, provide and
receive services, data and knowledge. However, the strategic operation and
coordination is delegated to a Joint Management actor, who coordinates tasks and
manages the sharing of knowledge and resources.

Resource
Exchange

Contractual
Agreement

Support

Business
Processes

Strategic
Decision
Making

Corporate

Operational

Coordination

Management
Joint

Activities

Knowledge
Sharing

Partner_1 Partner_2

Partner_3 Partner_n

Fig. 2. Joint Venture

The vertical integration style merges, backward or forward, several actors
engaged in achieving or realizing related goals or tasks at different stages of a
production process.

Wholesaler

Provider

Consumer

Organizer

Products

Market
Evaluation

Supply

Retailer

Acquire

Detect
Products

Products

Products Products

Products
Deliver

Massive
Supply

Directives

Direct Access

Quality Wide Access
to Market

to Consumer

Interest in

Fig. 3. Vertical Integration

An Organizer merges and synchronizes interactions/dependences between
participants, who act as intermediaries. Figure 3 presents a vertical integration style
for the domain of goods distribution. Provider is expected to supply quality products,

Wholesaler is responsible for ensuring their massive exposure, while Retailer takes
care of the direct delivery to the Consumers.

For a more detailed presentation of organizational styles we have defined
(takeover, hierarchical contracting, bidding, arm’s-length, pyramid, flat structure, co-
optation, …), see [Fux01].

2.2 Social patterns

A social pattern defines the actors (together with their roles and responsibilities) and
the social dependencies that are necessary for the achievement of a goal.
Considerable work has been done in software engineering for defining software
patterns (see e.g., [Gam95]), but unfortunately, they do not place emphasis on social
aspects. On the other hand, proposals of patterns that address social issues (see e.g.,
[Ari98]) are not intended to be used at an organizational level, but rather during
implementation phases by addressing issues such as agent communication,
information gathering from information sources, or connection setup.
In the following, we present two of the social patterns that focus on social
mechanisms recurrent in multi-agent and cooperative systems literature (e.g.,
[Hay99]): mediator and embassy pattern.

A mediator (Figure 4a) mediates interactions among different actors. An initiator
addresses the mediator in place of asking directly another colleague, the performer. It
has acquaintance models of colleagues and coordinates the cooperation between them.
Inversely, each colleague has an acquaintance model of the mediator. While a broker
simply matches providers with consumers, a mediator encapsulates interactions and
maintains models of initiators and performers behaviors over time.

Map

Performer

MediatorInitiator

Performer

Route

Service
Performs

Service
Requested

Route

Translate

Service
Requested

Access

Foreigner Embassy

Performative

Requested
Service

Native

Fig. 4. Mediator (a) and Embassy (b)

An embassy (Figure 4b) routes a service requested by a foreign actor to local ones
and handles back the response. If the access is granted, the foreign actor can submit
messages to the embassy for translation. The content is translated in accordance with
a standard ontology. Translated messages are forwarded to target local actors. The
results of the query are passed back out to the foreign actor, translated in reverse.

For a more detailed presentation of the social patterns we have defined (broker,
matchmaker, contract-net, facilitator, wrapper, …), see [Kol01].

2.3 Evaluating Social Structures

Strenghts and weaknesses of styles and patterns can be evaluated and compared
through quality attributes (or non-functional requirements) analysis. Quality attributes
like coordinativity, predictability, failability-tolerance and adaptability have been
found relevant for organizational constructs [Sha96].

Coordinability: actors must be able to coordinate with other actors of the social
structure to achieve a common purpose or simply their local goals.

Predictability: actors can have a high degree of autonomy in the way they
undertake actions and communication in their domains. It can be then difficult to
predict individual characteristics as part of determining the behavior of the system at
large.

Failability-Tolerance: a failure of one actor does not necessarily imply a failure of
the whole structure. The structure then needs to check the completeness and the
reliability of data, information and transactions. To prevent failure, different actors
can, for instance, assume replicated capabilities.

Adaptability: actors must to adapt to modifications in their social environment.
They may allow changes to the communication protocol, dynamic introduction of a
new kind of actors previously unknown or manipulations of existing ones.

Due to the lack of space, we only consider the structure-in-5 and the joint venture
with respect to the four qualities described above. Table 1 summarizes their strengths
and weaknesses.

 Coordinativity Predictability Failab-Tol. Adaptability

S-in-5 + + ++ +-

Joint-Venture +- + +- +-

Table 1. Strengths and Weaknesses of some Social Structures

The structure-in-5 improves coordinativity among components by differentiating

the data hierarchy - supported by the support component – from the control hierarchy
- supported by the operational core, technostructure, middle agency and strategic
apex. The existence of different levels of abstraction in the structure-in-5 addresses
the need for managing predictability. Besides, higher levels are more abstract than
lower levels: lower levels only involve resources and task dependencies while higher
ones propose intentional (goals and softgoals) relationships. Checks and control
mechanisms can be integrated at different levels of abstraction assuming redundancy
from different perspectives and increase considerably failability-tolerance. Since the
structure-in-5 separates data and control hierarchies, integrity of these two hierarchies
can also be verified independently. The structure-in-5 separates independently the
typical components of an organization, isolating them from each other and allowing
then dynamic adaptability. But since it is restricted to no more than 5 major
components, more refinement has to take place inside the components.

The joint venture supports coordinativity in the sense that each partner interacts
via the joint manager for strategic decisions. Partners indicate their interest, and the
joint manager either returns them the strategic information immediately or mediates

the request to some other partners. However, since partners are usually
heterogeneous, it could be a drawback to define a common interaction background.
The central position and role of the joint manager is a means for resolving conflicts
and preventing unpredictability. Through its joint manager, the joint-venture proposes
a central communication controller. How the joint venture style addresses failability-
tolerance, notably reliability, is less clear. However, exceptions, wiretapping,
supervising, and monitoring can improve it. Manipulation of partners can be done
easily to adapt the structure by registering new ones to the joint manager. However,
since partners can also communicate directly with each other, existing dependencies
should be updated as well. The joint manager cannot be removed due to its central
position.

To cope with these quality attributes and select the appropriate structure, more
refined analysis and decomposition can be done with frameworks like KAOS [Dar93]
or the NFR framework [Chu00]. In the NFR framework, we go through a means-ends
refining of the identified quality attributes in more precise sub-attributes, and then, as
shown partially in Figure 5, we evaluate the social structures against such a sub-
attributes.

The analysis is intended to make explicit the space of alternatives for fulfilling the
top-level attributes. The social structures are represented as operationalized attributes
(saying, roughly, “makes the structure structure-in-5, joint-venture, vertical-
integration-based, …”).

Other Styles

... ...

... ...!

!

! Completness
Reliability

Coordinativity

Redundancy

Participability

+

Failability-Tolerance Other Quality Attributes

Claim
["External Agents

can spoof
the system"]

Joint Venture Structure in 5

Distributivity

+

++

+

+

-
+

-

++

+

Commonality

Fig. 5. Partial Evaluation for Organizational Styles

The evaluation results in contribution relationships from the social structures to the
quality attributes, labeled “+”, “++”, “-”, “--” that mean partially satisfied, satisfied,
partially denied and denied, respectively. Design rationale is represented by claims
drawn as dashed clouds. They make it possible for domain characteristics such as
priorities to be considered and properly reflected into the decision making process.
Exclamation marks are used to mark priority attributes while a check-mark “33”
indicates an accepted attribute and a cross “±±” labels a denied attribute.

Relationships types (AND, OR, ++, +, -, and --) between quality attributes are
formalized to offer a tractable proof procedure. Attributes can be labeled as Satisfied
(S), Partially Satisfied (PS), Denied (D), or Partially Denied (PD), and are not
required to be logically exclusive since they may be contradictory. Table 2 shows

propagation rules for ++, +, -, and -- relationships with respect to satisfiability (S) and
partial satisfiability (PS). A dual table is given for the deniability and the partial
deniability.

 ++ + - --

S S PS PD D

PS PS PS PD PD

Table 2: Propagation rules for S and PS

Under the assumption that D < PD < PS < S, we use min-value and max-value
functions respectively for AND and OR relationships.

We are currently working on two different approaches. The first is a logic approach
in which S, PS, PD, and D are four truth values and each node can assume the values
S (or PS) and D (or PD) (conflicts are allowed; e.g., a node can be satisfied and
partially denied). For each type of relationship the propagation rules are defined by a
set of axioms. The second approach uses a numerical interval to define the degree of
satisfiability and deniability of a node. Here, we are working in two different
directions: one is based on the probability theory and the other on the Dempster-
Shafer theory (see, e.g, [Par94]).

3 Information System Life Cycle with Social Structures

In order to illustrate the use of our social structures, we consider a business-to-
business setting describing a typical media industry. Media Retailer is a specialized
store selling and shipping different kinds of media items such as books, newspapers,
audio CDs, videotapes, and the like. Media Retailer is supplied with the latest releases
by Media Supplier. At the production level, Editor is specialized in the press and
book business, Movie Studio makes movies while Record Label works in the music
industry and Games Design creates video and computer games. All these actors have
agreed to develop Media System, an internet-based information system supporting
business-to-business capabilities to facilitate and improve business interactions, and
to reduce costs and delays of traditional information and communication means.
Customers will also be able to use the Media System to browse the catalogue, query
the item database, and order on-line items.

3.1 Early Requirements

Early requirements analysis is concerned with the understanding of a problem by
studying an organizational setting; the output is an organizational model which
includes relevant actors, their goals and inter-dependencies. Like several media
companies, Media Producer could be organized as a joint venture (Figure 6).

& Script
Scenario

Movie
Studio

Production
Cpy

Editor

Record
Soundtrack

Design
Game

Record
Label

Game Scenario

Media
Producer

Scores
Edit

Handle Press
Business

Provide
Films

Management)
(Joint

Manage
Record Deals

Develop
Games

Fig. 6. Media Producer using the Joint Venture Style

Each partner actor composing Media Producer is specialized in one or several
specific media production areas: Editor handles press business and contributes to
provide film scenarios and script ideas, Movie Studio makes films and video clips for
Record Label, which handles record deals and records soundtracks for Movie Studio
and Game Design. This last actor develops games and relies on Movie Studio for
game plots. Each actor is responsible for its own business management. However,
only the joint management actor, Production Cpy, handles the corporate strategic
management.

3.2 Late Requirements

Late requirements analysis describes the system-to-be as an actor within its
operational environment, along with relevant functions and qualities. We introduce
the Media System as a full-fledged social actor contributing to the fulfillment of
stakeholder goals, along with other actors from the system’s operational environment.

We use our organizational styles to guide the modeling of the system inside its
organizational environment. For instance, the late requirements model of the system
interacting with its environment might be represented as a vertical integration as
shown in Figure 7. With respect to the vertical integration structure presented in
Figure 3, the Customer takes the role of Consumer, Media Producer assumes the
position of Provider, and Media System the role of Organizer. Media Producer is
expected to provide quality products, Media Supplier ensures massive exposure of
media items while Media Retailer interacts with the Customer. The information
system is introduced as a full-fledged organizational actor, and each of the human
stakholders uses the Media system for her particular needs and goals. For instance,
Media Producer wants to find information about the media market and stakeholders;
Media Supplier wants to find and promote new ideas, projects and talents to increase
her market share, while Media Retailer needs to be provided with e-commerce
facilities to satisfy customers. Finally, Customer wants to consult product catalogues
and place orders.

Customer

Packages

Supply
Products

Supply
Direct Access

Quality

Media
Producer

Massive
Exposure

Supplier

Find
Information

about
Media actors

Media

to Custumer
Continuous

Retailer
Media

Process
Order

Order
Place

Catalogue
Browse

User Needs
Find

Customers
Satisfied

Business
Long-term

Products
Interest in

Discover
New Talents

Media
System

Fig. 7. Introducing the system using the Vertical Integration Style

3.3 Architectural Design

Architectural design defines the system’s global architecture in terms of subsystems,
interconnected through data, control and other dependencies. We aim to apply our
social structures not only to requirements models, but also to all levels of software
design. In our example, the joint venture style is used to produce an architectural
description of the Media System. A detailed description of this particular architecture
can be found in [Kol01]. Figure 8 suggests a possible assignment of system
responsibilities for the business-to-consumer (B2C) part of the Media System.
Following the joint venture style, the architecture is decomposed into three principal
partner actors (Store Front, Order Processor and Back Store). They control
themselves on a local dimension for exchanging, providing and receiving services,
data and resources with each other.

Each of the three system actors delegates authority to and is controlled and
coordinated by the joint management actor (Joint Manager), managing the system on
a global dimension. Store Front interacts primarily with Customer and provides her
with a usable front-end Web application. Back Store keeps track of all Web
information about customer orders, product sales, bills and other data of strategic
importance to Media Retailer. Order Processor is in charge for the secure
management of orders and bills, and other financial data. Joint Manager manages all
of them handling Security gaps, Availability bottlenecks and Adaptability issues.
These three software quality attributes (as well as sub-attributes Authorization,

Integrity, Usability, Updatability and Maintainability) required for business-to-
consumer applications are identified and evaluated in detail for the Media system
example in [Kol01].

Browser
Item

Item
Detail

Profiler
Customer

Customer
DataShopping

Cart

Integrity

Updatability

Usability
Security
Checker

Order
Processor

Check
Out

Authori-
zation

Front
Store

Database
Product

Consult
Catalogue

Item
Select

ability
Adapt-

Manager

Avail-
ability

Manager

Joint
Manager

Maintain-
ability

Back
Store

Information
Order

Figures
Ratings &

Fig. 8. Designing the System Architecture with the Joint Venture Style.

All the system actors of Figure 8 will eventually be further specified into subactors,
and delegated with specific responsibilities. For instance, in the Store Front, Item
Browser is delegated the task of managing the catalogue navigation; Shopping Cart,
the selection and customization of items; Customer Profiler, the tracking of customer
data and the production of client profiles; and Product Database, the management of
media items information. Similarly, to cope with Security, Availability and,
Adaptability, Joint Manager is further refined into three new system sub-actors
Security Checker, Availability Manager and Adaptability Manager.

3.4 Detailed Design

Detailed design is concerned with the definition in further detail of the behavior of
each component identified during architectural design. Figure 9 shows a possible use
of our social patterns in the e-business system shown in Figure 8. In particular, it
shows how to solve the goal of managing catalogue navigation that the Store Front
delegates to the Item Browser. The goal is decomposed into subgoals and solved with
a combination of social patterns.

The broker pattern is applied to the Info Searcher, which satisfies requests of
searching information by accessing Product Database. The Source Matchmaker
applies the matchmaker pattern locating the appropriate source for the Info Searcher,
and the monitor pattern is used to check any possible change in the Product Database.
Finally, the mediator pattern is applied to mediate the interaction among the Info
Searcher, the Source Matchmaker, and the Wrapper, while the wrapper pattern makes
the interaction between the Item Browser and the Product Database possible. Of
course, other patterns can be applied. For instance, we could use the contract-net

pattern to select a wrapper to which delegate the interaction with the Product
Database, or the embassy to route the request of a wrapper to the Product Database.

Searcher
Info

Locate
Source

Source
Matchm.

Route Info
Request

Monitor

Provide
Information

change
Notify

Information
Hits

Processor
Statistics

Database
Product

Translate
Response

Profile
Customer Mediator

Wrapper
Query

Information
Source

Info
Ask for

Advertising

Item
Browser

Fwd source
change

Fig. 9. Social Patterns for Item Browser

3.5 Formalizing Social Structures

Formal Tropos [Fux01] offers all the primitive concepts of i* (such as actors,
goals and dependencies), but supplements them with a rich specification language
inspired by KAOS [Dar93]: it provides a textual notation for i* models and allow us
to describe dynamic constraints among the different elements of the specification in a
first order linear-time temporal logic. It has also a precisely defined semantics that is
amenable to formal analysis. In the following we present a part of the Formal Tropos
formalization of the Media Producer depicted in Figure 6. In particular, we focus on
the Production Cpy goal of applying a movie and game strategy.

In the following, we specify that there will be just one ProductionCpy, which has
the goals of drawing up a Game Movie Contract and applying the Game Movie
Strategy. The goal DrawUpGameMovieContract is fulfilled when there is a contract
signed by a Movie Studio actor and a Game Design actor. The goal of applying the
game movie strategy is fulfilled when for each action movie there is a game about the
movie, which will be delivered within a month from the date of the movie delivery.

Entity Movie
 Attribute constant type:{action, love, thriller, comedy , drama, sciences-fiction}
 delivery_date : Date;
Entity Game
 Attribute constant movie_ref : Movie, delivery_date: Date;

Entity Scenario

 Attribute constant movie_ref : Movie, game_ref: Game;

Entity GameMovieContract
 Attribute constant conditions: Conditions, ms : MovieStudio,
 gd : GameDesign, signature_date :Date
Actor ProductionCpy
 Creation condition ¬∃ pCpy: ProductionCpy
 Goal DrawUpGameMovieContract
 Mode maintain
 Fulfilment
 definition ∃ contract: GameMovieContract(
 ∃ ms:MovieStudio(contract.ms=ms) ^
 ∃ gd:GameDesign(contract.gd=gd))
 Goal ApplyGameMovieStrategy
 Mode maintain
 Fulfilment
 condition ��Fulfilled(DrawUpGameMovieContract)
 definition ∀ movie:Movie (movie.type=action → (
 ∃ game:Game(game.movie_ref=movie ^
 game.delivery_date≥movie.delivery_date ^
 game.delivery_date ≤ (1 month + movie.delivery_date)))

The following describes a goal and a resource dependency. The DevelopGame
dependency is created when there is a new action movie for which there is no games,
and it is fulfilled when there will be at least one game for such a movie.

Dependency DevelopGame

Type goal
Mode Achieve
Depender ProductionCpy
Dependee GameDesign
Attribute constant movie: Movie, contract: GameMovieContract
Creation

condition movie.type=action ^ ¬∃ game:Game(game.movie_ref=movie) ^
 contract.gd=dependee

trigger JustCreated(movie)
Fulfilment

 condition for depender
 ∃ game:Game(game.movie_ref=movie)

Here, the GameScenario dependency applies when a new game has to be

developed and no scenario for such game exists. The dependency is fulfilled when the
Movie Studio provides the scenario.

Dependency GameScenario
Type resource Mode maintain
Depender GameDesign
Dependee MovieStudio
Attribute constant game: Game, scenario: Scenario, contract: GameMovieContract
Creation

condition ¬∃ scenario: Scenario(scenario.game_ref=game) ^

 (contract.gd=depender ^ contract.ms=dependee)
trigger JustCreated(game)

Fulfilment
 condition for depender

 scenario.game_ref=game

4 Conclusion

We have emphasized that the design of information systems should be based on the
same organization concepts and models used in requirements analysis. This should
help to reduce the impedance mismatch between analysis and design. Within the
context of Tropos, a development methodology inspired by early requirements
modeling techniques, we have proposed to use social structures not only for early but
also late requirements analysis as well as architectural and detailed design. These
social structures rely on concepts from organization theory and agent approaches.

We are continuing to work on the formalization of our organizational styles and
social patterns. The idea is defining formally organization structures as metastructures
that can be instantiated for particular information system designs. Moreover, we want
to study and formalize when a particular design is an instance of such a metastructure.
We are also contrasting our structures to conventional styles [Sha96] and patterns
[Gam95] proposed in the software engineering literature. As mentioned, we are
defining algorithms to propagate evidences of satisfaction and denial of each
conventional or social structure with respect to a set of non-functional requirements.
These should allow us to evaluate and compare more precisely the structures against
them within the NFR framework.

References

[Ant96] A. I. Anton, “Goal-Based Requirements Analysis”, In Proceedings of the Second
International Conference On Requirements Analysis (ICRE’96), pp.136-144, 1996.

[Ari98] Y. Aridor and D. B. Lange. “Agent Design Patterns: Elements of Agent Application
Design” In Proceedings of the Second International Conference on Autonomous Agents
(Agents’98), New York, USA, May 1998.

[Boo99] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User
Guide, The Addison-Wesley Object Technology Series, Addison-Wesley, 1999.

[Bub93] J. A. Bubenko, “Next Generation Information Systems: an Organizational
Perspective”, In Proceedings of the International Workshop on Development of Intelligent
Information Systems, Niagara-on-the-Lake, Ontario, pp. 22-31, Canada, April 1991.

[Cas01] J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-Driven Development
Methodology”. In Proceedings of the 13th International Conference on Advanced
Information Systems Engineering (CAiSE’01), Interlaken, Switzerland, June 2001.

[Chu00] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos. Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

[Dar93] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal–directed Requirements
Acquisition”, Science of Computer Programming, 20, pp. 3-50, 1993.

[Fux01] A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos. “Information systems as social
structures”. In Proceedings of the 2nd International Conference on Formal Ontologies for
Information Systems (FOIS’01), Ogunquit, USA, October 2001.

 [Gam95] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, 1995.

[Gio01]P. Giorgini, A. Perini, J. Mylopoulos, F. Giunchiglia and P. Bresciani. “Agent-Oriented
Software Development: A Case Study”. In Proceedings of the 13th International
Conference on Software Engineering & Knowledge Engineering (SEKE01), Buenos Aires,
Argentina, June 2001.

[Gom96] B. Gomes-Casseres. The alliance revolution: the new shape of business rivalry,
Harvard University Press, 1996.

[Hay99] S. Hayden, C. Carrick, and Q. Yang. “Architectural Design Patterns for Multiagent
Coordination”. In Proceedings of the International Conference on Autonomous Agents
(Agents’99), Seattle, USA, May 1999.

[Kol01] M. Kolp, P. Giorgini, and J. Mylopoulos. “An Organizational Perspective on Multi-
agent Architectures”. In Proceedings of the Eighth International Workshop on Agent
Theories, architectures, and languages (ATAL’01), Seattle, USA, August 2001.

[Min92] H. Mintzberg, Structure in fives: designing effective organizations. Prentice-Hall,
1992.

 [Ode00] J. Odell, H. Van Dyke Parunak, and B. Bauer, “Extending UML for Agents”, In
Proceedings of the Agent-Oriented Information System Workshop at the 17th National
Conference on Artificial Intelligence, pp. 3-17, Austin, USA, July 2000.

[Par94] S. Parsons, “Some qualitative approaches to applying the Dempster-Shafer theory”. In
Information and Decision technologies, 19 (1994), pp 321- 337.

[Sco98] W. Richard Scott. Organizations: rational, natural, and open systems, Prentice Hall,
1998.

[Sha96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline, Upper Saddle River, N.J., Prentice Hall, 1996.

[Seg96] L. Segil. Intelligent business alliances: how to profit using today's most important
strategic tool, Times Business, 1996.

[Wir90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-Oriented Software,
Englewood Cliffs, Prentice-Hall, 1990.

[Yos95] M.Y. Yoshino, and U. S. Rangan, Strategic Alliances: An Entrepreneurial Approach
to Globalization, Harvard Business School Press, 1995.

[Yu95] E. Yu. Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada, 1995.

