
Towards Agent-Oriented Software Development

Jaelson Castro Manuel Kolp John Mylopoulos
Centro de Informática Dept. of Computer Science Dept. of Computer Science

Universidade Federal de Pernambuco University of Toronto University of Toronto
Av. Prof. Luiz Freire S/N 10 King’s College Road 10 King’s College Road

Recife PE, Brazil 50732-970 Toronto M5S3G4, Canada Toronto M5S3G4, Canada
+1 5581 2718430 +1 416 978 7569 +1 416 978 5180
jbc@cin.ufpe.br mkolp@cs.toronto.edu jm@cs.toronto.edu

ABSTRACT

Agent-oriented computing is emerging as a powerful new paradigm that might be the
cornerstone for the next generation of software like e-business systems. Naturally,
defining accurate development methodologies for such emerging systems is becoming
one promising area in software development. Up to now, software development
techniques have been traditionally implementation-driven in the sense that the
programming paradigm of the day dictated the design and requirements analysis
techniques used. However, in this paper, we explore a development methodology for
agent-oriented systems which is requirements-driven: the concepts used in upstream
phases to define requirements for a software system are also used later on during
downstream phases. Our proposal adopts Eric Yu’s i* [Yu95], a modeling framework
for early requirements, based on the notion of distributed intentionality and uses it all
along the life-cycle as a foundation to model late requirements, architectural and
detailed design and implementation. That allows to deal with intention-based software
units at the right phase and not to freeze them earlier in the process. The methodology,
named Tropos, complements proposals for agent-oriented platforms. Since focusing
on human-like and distributed behaviors, they require these kinds of behavior be
modeled at a more abstract level than the current modeling approaches.

Keywords
Software development, software requirements analysis and design, agent-
oriented systems, software architectures.

1 INTRODUCTION

The term agent is now widely used in software architecture to describe a range of software components,
varying in capability from simple wizards in e-planning applications, to information agents used to
automate information retrieval on the internet, and finally to full-fledged intelligent agents capable of
reasoning in a well-defined way like those used to support ontology services in agent-based frameworks
for knowledge management.

Agent-oriented computing [Sho93] has been emerging as a new technology for the next generation of
software including internet-based systems. Arising from research in distributed artificial intelligence, it
addresses the need for software systems to exhibit rational, human-like behavior. Traditional software
systems make it difficult to model rational behavior, and often programs written in these systems
experience limitations when attempting to consider such human-like behaviors, e.g., goals, intentions,
plans, beliefs, desires or trusts. Surely, designing agent-oriented software systems requires proper specific
development methodologies [Igl98,Jen00,Woo00].

2

Up to now, software development techniques have traditionally been inspired and driven by the
programming paradigm of the day. This means that the concepts, methods and tools used during all
phases of development were based on those offered by the pre-eminent programming paradigm. So,
during the era of structured programming, structured analysis and design techniques were proposed
[Dem78,You79], while object-oriented programming has given rise more recently to object-oriented
design and analysis [Boo99,Wir90]. For structured development techniques this meant that throughout
software development, the developer can conceptualize her software system in terms of functions and
processes, inputs and outputs. For object-oriented development, on the other hand, the developer thinks
throughout in terms of objects, classes, methods, inheritance and the like.

Using the same concepts to align requirements analysis with software design and implementation makes
perfect sense. For one thing, such an alignment reduces impedance mismatches between different
development phases. Think what it would be like to take the output of a structured analysis task,
consisting of data flow and entity-relationship diagrams, and try to produce out of it an object-oriented
design! Moreover, such alignment can lead to coherent toolsets and techniques for developing software
(and it has!). As well, it can streamline the development process itself.

But, why base such an alignment on implementation concepts? Requirements analysis is arguably the
most important stage of software development. This is the phase where technical considerations have to
be balanced against social and personal ones. Not surprisingly, this is also the phase where the most and
costliest errors are introduced to a software system. Even if (or rather, when) the importance of design
and implementation phases wanes sometime in the future, requirements analysis will remain a critical
phase for the development of any software system, answering the most fundamental of all design
questions: “what is the system intended for?”

Moreover, even if the agent-oriented paradigm follows the same underlying principle as the today state-
of-the-art object-oriented paradigm -- that reliable and scalable development can be enhanced by
encapsulating the desired behavior in modular units which contain all the definitions and structures
required for them to operate independently –agents extend this concept of encapsulation to include a
representation of human-like behaviors at a higher abstraction level, above object-oriented constructs.
These human-like behaviors and distributed intentions then require to be modeled all along the process at
a more conceptual and declarative level than the one allowed by traditional implementation-driven
methodologies. This approach leads to treat intention-based entities at the right phase in the development
life-cycle and not to lose them when “operationalized” too earlier in the process. Such methodological
philosophy complements agent key characteristics that make the new paradigm attractive like flexibility,
suitability for distributed applications, real-time performance and decision, ability to act autonomously or
to work in teams according the context.

This paper then speculates on the nature of a software development framework, named Tropos
[Cas00,Myl00], which is requirements-driven in the sense that it is based on concepts used during early
requirements analysis. To this end, we adopt the concepts offered by i* [Yu95], a modeling framework
offering concepts such as actor, agent, position and role, as well as social dependencies among actors,
including goal, softgoal, task and resource dependencies. These concepts are used in an example to model
not just early requirements for e-business management system, but also late requirements, architectural
design and detailed design.

The proposed methodology spans five phases of software development:

• Early requirements, concerned with the understanding of a problem by studying an existing
organizational setting; the output of this phase is an organizational model which includes relevant
actors and their respective goals.

• Late requirements, where the system-to-be is described within its operational environment, along with
relevant functions and qualities.

3

• Architectural design, where the system’s global architecture is defined in terms of subsystems,
interconnected through data and control flows.

• Detailed design, where each architectural component is defined in further detail in terms of inputs,
outputs, control, and other relevant information.

• Implementation, where the actual implementation of the system is carried out, consistently with the
detailed design; we use JACK, a commercial agent programming platform, based on the BDI (Beliefs-
Desires-Intentions) agent architecture for this phase.

Section 2 describes a case study specification for a B2C (business to consumer) e-commerce application.
Section 3 outlines our methodology. Section 4 introduces the primitive concepts offered by i* and
illustrates their use with an example. Sections 5, 6, and 7 illustrate how the technique might work for late
requirements, architectural design and detailed design respectively. Throughout, we assume that the task
at hand is to build generic software to support item orders processing for a media shop e-commerce
application. Section 8 sketches the implementation in an intelligent agent development environment.
Section 9 discusses the forms of analysis that are supported in Tropos. Finally, Section 10 summarizes the
contributions of the paper, offers an initial self assessment of the proposed development technique, and
outlines directions for further research.

2 A CASE STUDY SPECIFICATION

Media Shop is a store selling and shipping different kinds of media items such as books, newspapers,
magazines, audio cds, videotapes, DVD, cdroms, games, softwares. Media Shop customers (on-site or
remote) can use a regularly updated catalogue describing available media items to make their order.
Media Shop is supplied with latest releases and in-catalogue items by Media Supplier. To increase
market share, Media Shop has decided to open up a B2C retail sales front on the internet. With the new
setup, a customer can order Media Shop items in person, by phone, or through the internet. The system
has been named Medi@ and is available on the word-wide-web using communication facilities provided
by Telecom Cpy. It also uses financial services supplied by Bank Cpy in respect of on-line money
transactions.

The basic objective for the new system is to allow an on-line customer to examine the items in the Medi@
internet catalogue, also to place orders.

Medi@ is supposed to be available to any potential customer with internet access and a web browser.
There are no registration restrictions, or identification procedures to navigate the catalogue. Even if not
purchasing anything, an anonymous visitor is considered an on-line customer of Medi@.

Potential customers can search the on-line store by either browsing the catalogue or querying the item
database. The catalogue groups media items of the same type into (sub)hierarchies and genres (e.g., audio
cds decomposed into pop, rock, jazz, opera, world, classical music, soundtrack, …) so that customers can
browse only (sub)categories that interest them.

An on-line search engine allows customers with particular items in mind to search title, author/artist and
description fields through keywords or full-text search. If the item is not available in the catalogue, the
customer has then the possibility to ask Media Shop to order the desired item to Media Supplier provided
that the customer gives mandatory editor/publisher references (e.g., ISBN, ISSN), and identifies herself
(e.g., credit card number). Other internet visitors are just expected to navigate the catalogue by browsing
Medi@ offerings.

Details about media items include title, media category (e.g., book) and genre (e.g., science-fiction),
author/artist, short description, editor/publisher international references and information, date, cost, and
sometimes pictures (when available).

4

3 OUTLINE OF THE METHODOLOGY

Step 1. Acquisition of Early Requirements. The outputs of this phase are two models.

1.1 Strategic Dependency (SD) Model to capture relevant actors, theirs respective goals and their
interdependencies.

1.2 Strategic Rationale (SR) Model to determine through a means-end analysis how the goals can be
fulfilled through the contributions of other actors.

Step 2. Definition of Late Requirements in i*. The outputs of this phase are revised SD and SR models.

2.1 Include in the original Strategic Dependency (SD) Model an actor to represent the software
system to be developed.
2.2 Take this system actor and do a means-end analysis to produce a new Strategic Rational (SR)
Model.
2.3 If necessary decompose the system actor into several sub-actors and revise the SD and SR
Models.

Step 3. Architectural design. The outputs of this phase are a Non Functional Requirements (NFR)
Diagram and revised SD and SR models.

3.1 Select an architectural style using as criteria the desired qualities identified in Step 2. Produce a
NFR diagram to represent the selection and design rationale.

3.2 If required, introduce new system actors and dependencies, as well as the decomposition of existing
actors and dependencies into sub-actors and sub-dependencies. Revise the SD and SR Models.

3.3 Assigning actors to agents, positions and roles.

Step 4. Detailed design. The outputs of this phase are Class Diagrams, Sequence Diagrams, Collaboration
Diagrams and Plan Diagrams.

4.1 Based on the SD and SR models produce a Class Diagram.

4.2 Develop Sequence and Collaboration diagrams to capture inter-actor dynamics,

4.3 Develop Plan (state-based) Diagrams to capture both intra-actor and inter-actor dynamics.

Step 5. Implementation. The output of this phase is a BDI (Beliefs-Desires-Intentions) agent architecture.

5.1 From the detailed design generate Agents, Capabilities, Database Relations, Events and Plans in
JACK.

4 EARLY REQUIREMENTS WITH I*

During early requirements analysis, the requirements engineer is supposed to capture and analyze the
intentions of stakeholders. These are modeled as goals which, through some form of a goal-oriented
analysis, eventually lead to the functional and non-functional requirements of the system-to-be [Dar93].
In i* (which stands for “distributed intentionality’’), early requirements are assumed to involve social
actors who depend on each other for goals to be achieved, tasks to be performed, and resources to be
furnished. The i* framework includes the strategic dependency model for describing the network of
relationships among actors, as well as the strategic rationale model for describing and supporting the
reasoning that each actor goes through concerning its relationships with other actors. These models have
been formalized using intentional concepts from AI, such as goal, belief, ability, and commitment (e.g.,
[Coh90]). The framework has been presented in detail in [Yu95] and has been related to different
application areas, including requirements engineering [Yu93], business process reengineering [Yu96],
and software processes [Yu94].

5

A strategic dependency model is a graph, where each node represents an actor, and each link between two
actors indicates that one actor depends on the other for something in order that the former may attain
some goal. We call the depending actor the depender and the actor who is depended upon the dependee.
The object around which the dependency centers is called the dependum. By depending on another actor
for a dependum, an actor is able to achieve goals that it is otherwise unable to achieve on its own, or not
as easily, or not as well. At the same time, the depender becomes vulnerable. If the dependee fails to
deliver the dependum, the depender would be adversely affected in its ability to achieve its goals. Figure
1 shows the beginning of an i* model consisting of two relevant actors coming from our Media Shop
example.

Items
Buy Media

Increase
Market Share

Orders
Customer

Handle
Customers

Happy

Media
Shop

Customer

Figure 1: “Customers want to buy media items, while the Media Shop wants to increase market share, handle orders
and keep customers happy”

The two main stakeholders for a B2C application are the customer and the business actors named
respectively in our case Media Shop and Customer. The customer has one relevant goal Buy Media Items
(represented as an oval-shaped icon), while the media store has goals Handle Customer Orders, Happy
Customer, and Increase Market Share. Since the last two goals are not well-defined, they are represented
in terms of softgoals (shown as cloudy shapes).

Once the relevant stakeholders and their goals have been identified, a strategic rational model determines
through a means-ends analysis how these goals (including softgoals) can actually be fulfilled through the
contributions of other actors. A strategic rationale model is a graph with four main types of nodes -- goal,
task, resource, and softgoal -- and two main types of links -- means-ends links and process
decomposition links. A strategic rationale graph describes the criteria in terms of which each actor
selects among alternative dependency configurations.

Means-ends link

Legend Actor Boundary

Actor

Softgoal

Task

Ressource

Goal

Decomposition link

Dependency
XDepender Dependee

Happy
Customers

Process
InternetBank Cpy

Market Share
Increase

Accounting

Cpy
Telecom Communication

Services Medi@

Supplier
Media

Items
Media

Orders

Customer

Items
Buy Media

Service
Improve

Phone
OrderBy

Be Friendly

Enhance
Catalogue

Run Shop

Select
Items

Consult
Catalogue

OrderBy
Internet

Staff
Training

Billing
Handle

Business
Continuing

Orders
Customer
Handle

Person
OrderIn

Determine
Amount

Sell Stock

Shop
Manage
Staff

Inventory
Manage

Media

Desires
Customer
Satisfy

Figure 2: Means-ends analysis for the softgoal Increase Market Share

6

Figure 2 focuses on one of the (soft)goal identified for Media Shop namely Increase Market Share. The
analysis is thus carried out from the perspective of the Media Shop actor, who has that softgoal in the first
place. The analysis postulates a task Run Shop (represented in terms of a hexagonal icon) through which
Increase Market Share can be fulfilled. Tasks are partially ordered sequences of steps intended to
accomplish some (soft)goal. Tasks can be decomposed into goals and/or subtasks, whose collective
fulfillment completes the task. In the figure, Run Shop is then decomposed into goals Handle Billing and
Handle Customer Orders, tasks Manage Staff and Manage Inventor, and softgoal Improve Service which
together accomplish the top-level task. In turn, sub-goals and subtasks can be refined in more precise
purposes. For instance, the goal Handle Customer Orders is fulfilled either through tasks OrderByPhone,
OrderInPerson or OrderByInternet while the task Manage Staff would be collectively accomplished by
tasks Sell Stock and Enhance Catalogue. Decompositions through means-ends analysis allow us to
identify actors who can accomplish a goal, carry out a task, or deliver on some needed resource. Such
dependencies in Figure 2 are, among others, the resource dependency on the actor Media Supplier for
supplying media items to enhance the catalogue, the softgoal dependencies on Customer for increasing
market share (by running the shop) and keeping customers happy (by improving service) or the task
dependency Accouting on Bank Cpy to make financial records of business transactions for Media Shop.

5 LATE REQUIREMENTS ANALYSIS

Late requirements analysis results in a requirements specification document which describes all functional
and non-functional requirements for the system-to-be. In Tropos, the software system is represented as
one or more actors which participate in a strategic dependency model, along with other actors from the
system’s operational environment. In other words, the system comes into the picture as one or more actors
which contribute to the fulfillment of stakeholder goals. For our example, the Medi@ software system is
introduced as an actor in the strategic dependency model depicted in Figure 3.

Increase
Market Share

Browse
Catalogue

Buy Media

Usability

Telecom
Cpy

Media
Supplier

Items

Services
Internet

Services
Communication

Customer

Orders
Internet
Process

Place Order

Keyword
Search

Bank Cpy

Find User
Medi@

Business
Continuing

Media Shop

Media Items

New Needs

Security

Maintainability

Transactions
Money

Process
On-line

Accounting

Happy
Customers

Figure 3: Strategic dependency model for a media shop

With respect to the actors identified in Figure 2, the Customer depends on the Media Shop to buy media
items while the Media Shop depends on the Customer to increase market share and keep customers
happy. The Media Supplier is expected to provide the Media Shop with media items because of his
dependence on the latter for continuing long-term business. It can also access Medi@ to determine new

7

needs from the customers, i.e., media items not available in the catalogue. As indicated earlier, the Media
Shop depends on the Medi@ software system for processing internet orders and on the Bank Cpy to take
in charge business transactions. The Customer, in turn, depends on the Medi@ actor to place orders
through the internet, to search the database for keywords or simply to browse the on-line catalogue. On a
quality software point of view, the Customer requires the software system as well as on-line money
transaction services from the Bank Cpy and internet services from the Telecom Cpy to be respectively
secure and usable. Another softgoal dependency relies Media Shop on Medi@ on the way the software
system should be maintainable with respect to Media Shop management staff’s desiderata (e.g., catalogue
enhancing, item database evolution, user interface update, …). The other dependencies have already been
described in Figure 2.

Although a strategic dependency model provides hints about why processes are structured in a certain
way, it does not sufficiently support the process of suggesting, exploring, and evaluating alternative
solutions.

As late requirements analysis proceeds, the Medi@ software system is given additional responsibilities,
and ends up as the depender of several dependencies. Moreover, the system is decomposed into several
sub-actors which take on some of these responsibilities. This decomposition and new responsibilities
identification is realized using the same kind of means-ends analysis along with the strategic rationale
analysis illustrated in Figure 2.

++

++

Place

Market Share

Items

Cpy

Buy

Keyword

Media

Order

Secure

Usable

-

-
-

Search

Usability

+

Catalogue

Consulting

On-line
Money

Transactions

Process

Media

+

-

+

Cpy
Telecom

-
Catalogue

Order

Supplier

Form

Bank

Media
Shop

Orders
Internet
Process

Browse

Secure

Get

+

Detail

Update
Catalogue

Maintenance

Produce
Statistics

Security

Identification

Customer
Attract New

Customer

Maintainability

IncreaseServices

Internet

Handled

Internet

Internet
Handled

Searching
Item

Managed
Shop

Handled

New Needs

Internet

Orders

Find User

Medi@

Shopping

Database
System

Monitoring

Handled

Cart

Standard

Evolution
System

ClassicPre-Order

Form

Order
FaxPhone

Order

Order

CommunicationAvailable

Check Out
Add Item

Non Available

Querying

Item

Maintainable

Select Item

Pick

Item

Update GUI

Figure 4: Strategic rational model for the Medi@ system actor

Hence, the analysis in Figure 4 focuses this time on the system software Medi@. It postulates a root task
Internet Shop Managed providing sufficient support (++) [Chu00] to the softgoal Increase Market Share,

8

associated during early requirement analysis with the Media Shop actor. That top-level task is firstly
refined into goals Internet Order Handled and Item Searching Handled, softgoals Attract New Customer,
Secure and Usable and tasks Produce Statistics and Maintenance. They together realize the top-level task,
each of them focusing on one main software responsibility.

To manage internet order, Internet Order Handled is achieved through the task Shopping Cart which is,
in turn, decomposed into subtasks Select Item and Check Out, and Get Identification Detail, each of them
covering one of the main process activities required to design an operational on-line shopping cart
[Con00]. The latter goal is achieved alternatively through sub-goal Classic Communication Handled
dealing with phone and fax orders or sub-goal Internet Handled managing secure form or standard form
orderings. To allow ordering new items, not listed in the catalogue, Select Item is also further refined into
two alternative subtasks, one dedicated to selecting catalogued items, the other to preordering non
available products.

To provide sufficient support (++) to the Maintainability softgoal, Maintenance is refined into three
subtasks dealing with catalogue updating, system evolution and system monitoring.

The goal Item Searching Handled might alternatively be fulfilled through tasks Database Querying or
Catalogue Consulting with respect to customers’ navigating desiderata, i.e., searching precisely particular
items in mind by using search functions or simply browsing the catalogued products.

In addition, as already pointed, Figure 4 introduces softgoal contributions to model sufficient or partial
positive (respectively ++ and +) or negative (respectively - - and -) support to softgoals Secure, Usable,
Maintainable, Attract New Customers and Increase Market Share. As will be explained in Section 5, this
kind of softgoal decomposition will be fully used to model, at the architectural design level, non-
functional requirements captured by the Security, Usability and Maintainability softgoals.

The result of this means-ends analysis is a set of (system and human) actors who are dependees for some
of the dependencies that have been generated.

Figure 5 suggests one possible assignment of responsibilities identified from the Medi@ strategic rational
model. The Medi@ system is decomposed into four sub-actors: Store Front, Billing Processor, Service
Quality Manager and Back Store.

Telecom
Cpy

Accounting

Buy Media
Items

Bills
Processing

Customer

Medi@

Store
Front

Manager
Quality
Service

Bank Cpy

Store
Back

Process
On-line Money
Transactions

Data Report

Web

Manager
Media

Delivery
Media

Media
Shop

Usability

Catalogue
Browse

Keyword
Search

Maintainability

Place Order

Security

Network
Tracing

Quality
Monitor

Deliver
Order

Billing
Processor

Figure 5: The web system consists of four inside actors, each with external dependencies

9

Store Front principally interacts with the Customer actor and provides her with a usable front-end web
application. Back Store keeps track of all web information about customers, products, sales, bills and
other data of strategic importance to Media Shop. Billing Processor is in charge of the secure
management of orders and bills, and other financial data; also of interactions to Bank Cpy. Service
Quality Manager is introduced in order to look for security gaps, usability bottlenecks and maintainability
issues.

All four sub-actors need to communicate and collaborate in running the system. For instance, Store Front
communicates to Billing Processor relevant customer information required to process bills. Store Front
and Billing Process are supervised by Service Quality Manager who monitors transactions. Back Store
organizes, stores and backs up all information coming from Store Front and Billing Processor in order to
produce statistical analyses, historical charts and marketing data. A further refinement of each of these
software system sub-actors with new dependencies and responsibilities will be done in Section 5 at the
architectural design level.

For the rest of the section, we focus on Store Front. This actor is in charge of catalogue browsing and
item database searching, also provides on-line customers with detailed information about media items.
We assume that different media shops working with Medi@ may want to provide their customers with
various forms of information retrieval (boolean, keyword, thesaurus, lexicon, full text, indexed list,
simple browsing, hypertext browsing, SQL queries, etc.).

Store Front is also responsible for supplying a customer with a web shopping cart to keep track of items
the customer is buying when visiting Medi@. We assume that different media shops using the Medi@
system may want to provide customers with different kinds of shopping carts with respect to their internet
browser, plug-ins configuration or platform or simply personal wishes (e.g., Java mode shopping cart,
simple browser shopping cart, frame-based shopping cart, CGI shopping cart, enhanced CGI shopping
cart, shockwave-based shopping cart,…)

Finally, Store Front also initializes the kind of processing that will be done (by Billing Processor) for a
given order (phone/fax, internet standard form or secure encrypted form). We assume that different media
shop managers using the Medi@ web system may be processing various types of orders, such as those
listed above differently and that customers may be selecting the kind of delivery system they would like
to use (UPS, FedEx, DHL, express mail, normal mail, overseas service, …).

Resource, task and softgoal dependencies correspond naturally to functional and non-functional
requirements. Leaving (some) goal dependencies between system actors and other actors is a novelty.
Traditionally, functional goals are “operationalized” during late requirements [Dar93], while quality
softgoals are either operationalized or “metricized” [Dav93]. For example, Billing Processor may be
operationalized during late requirements analysis into particular business processes for processing bills
and orders. Likewise, a security softgoal might be operationalized by defining interfaces which minimize
input/output between the system and its environment, or by limiting access to sensitive information.
Alternatively, the security requirement may be metricized into something like “No more than X
unauthorized operations in the system-to-be per year”.

Leaving goal dependencies with system actors as dependees makes sense whenever there is a foreseeable
need for flexibility in the performance of a task on the part of the system. For example, consider a
communication goal “communicate X to Y”. According to conventional software development
techniques, such a goal needs to be operationalized before the end of late requirements analysis, perhaps
into some sort of a user interface through which user Y will receive message X from the system. The
problem with this approach is that the steps through which this goal is to be fulfilled (along with a host of
background assumptions) are frozen into the requirements of the system-to-be. This early translation of
goals into concrete plans for their fulfillment makes software systems fragile and less reusable.

In our example, we have left three goals in the late requirements model. The first goal is Usability

10

because we propose to implement Store Front and Service Quality Manager as agents able to
automatically decide at run-time which catalogue browser, shopping cart and order processor architecture
fit better to the customer’s needs or navigator/platform specifications. Moreover, we would like to include
different kinds of search engine reflecting search techniques proposed in information brokering or
retrieval and let the system dynamically chooses the most appropriate with respect to the customer’s
needs. The second goal in the late requirements specification is Security. To fulfil it, we propose to
provide in the system’s architecture a number of security strategies and let the system decide at run-time
which one is the most appropriate, taking into account environment configurations, web browser
specifications and network protocols used. The third goal is Maintainability since we would like to let the
software system -- not only the catalogue content but also the database schema or architectural model, the
server structure and behaviors and the application functionalities -- be dynamically extended to integrate
new and future web related technologies.

Hence, instead of operationalizing these goals during requirements analysis, we propose to do so during
architectural design.

6 ARCHITECTURAL DESIGN

The architectural design has emerged as a crucial phase of the design process consisting of a number of
structural elements and their interfaces. A software architecture constitutes a relatively small,
intellectually manageable model of system structure, and how system components work together. For our
internet counter example, the task is to define (or choose) a web application architecture. The canonical
web architecture consists of a web server, a network connection, HTML/XML documents on one or more
clients communicating with a Web server via HTTP, and an application server which enables the system
to manage business logic and state (see Figure 6). This architecture is not intended to imply that a web
application cannot use distributed objects or Java applets; nor does it imply that the web server and
application server cannot be located on the same machine.

File System

External Systems

Data Storage

Web Server

Application Server

Page Request

Browser

Browser

Page Request

01

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������

����
����
����
����
���
���
���

���
���
���

��
��
��
��

Hub

Figure 6: Canonical Web Architecture

Indeed, software architects have developed catalogues of web architectural style (see, for example,
[Con00]). The three most common styles are the Thin Web Client, Thick Web Client and Web Delivery.
The Thin Web Client is most appropriate for internet-based web applications, in which the client has
minimal computing power or no control over its configuration. The client requires only a standard forms-
capable web browser. All the business logic is executed on the server during the fulfillment of page
requests for the client browser. The Thick Web Client style extends the Thin Web Client style with the
use of client-side scripting and custom objects, such as ActiveX controls and Java applets. A significant
amount of business logic can be executed on the client machine. Finally, in the Web Delivery style, the
web is used primarily as a delivery mechanism for an otherwise traditional client/server system. The
client communicates directly with object servers, bypassing HTTP. This style is appropriate when there is
significant control over client and network configuration.

11

During architectural design we concentrate on the key system actors, defined during late requirements
analysis, and their responsibilities. These include the desired functionality of the system-to-be, as well as
a number of quality requirements related to usability, security, performance, portability, availability,
reusability, comprehensibility, evolvability, extensibility, modularity, reusability, etc.

Functional requirements can be accomodated using one of several standard methodologies, such as
structured analysis and design, or object-oriented design methods. However, quality requirements are
generally not addressed by such techniques [Chu00]. For example, as we are building an Internet
application, security is certainly an important concern. Indeed, this was captured by the Security software
goal dependency between the Customer and Medi@ actors (see Figure 3). The software application
should do only what it is supposed to do, without compromising the integrity of the data by exposing
them to unauthorised users. Likewise, Usability is a concern, since customers may have little internet
experience. Interfaces need to be carefully crafted to handle in a user-friendly and comprehensible
manner the communication between the customer and the system, as well as the flow of activities of the
business process. To deal with this softgoal, we have introduced a Usability softgoal dependency between
Customer and Medi@ actors (see Figure 3). Similarly, Maintainability is a strategic design issue since the
software application should be able to integrate new kinds of server modules, languages or internet
protocols in a flexible and generic manner without having to redesign the whole application from scratch.

To cope with these goals, the software architect, who is another (external) actor, goes through a means-
ends analysis comparable to what was discussed earlier. In this case, the analysis involves refining the
softgoals to sub-goals that are more specific and more precise and then evaluating alternative architectural
styles against them, as shown in Figure 7. This analysis is intended to make explicit the space of
alternatives for fulfilling the top-level quality softgoals. Moreover, the analysis allows the evaluation of
several alternative architectural styles. The styles are represented as operationalized softgoals (saying,
roughly, “make the architecture of the new system Web Delivery-/Thin Web-/Thick Web-based”) and are
evaluated with respect to the alternative non-functional softgoals as shown in Figure 6. The evaluation
results in contribution relationships from the architectural goals to the quality softgoals, labeled “+”,
“++”, “-”, “--”, to model partial/sufficient positive/negative contributions as already explained. Design
rationale is represented by claim softgoals drawn as dashed clouds. They make it possible for domain
characteristics (such as priorities) to be considered and properly reflected into the decision making
process, e.g., to provide reasons for selecting or rejecting possible solutions (+, -). Exclamation marks (!
and !!) are used to mark priority softgoals while a check-mark “✔” indicates an accepted softgoal and a
cross “✕ ” labels a denied softgoal.

++

Performance

! !

!!

++

--

+

--

+

+

--

-

!!

!!

!

+ +

!

["Vital Goals"]
Claim

Usability Security

Confidentiality

Integrity Performance

Comprehen-
sibility

Web Delivery Architecture Thick Web ArchitectureThin Web Architecture

Reusability

Availability

--

++

["Restrictions

+
+

+

++

++

Sophisticated
Interface

to browse
the catalogue"]

Claim

Claim
["Anonymous

the system"]
people can use

++

+

--

++ ++

-

-

Dynamicity

++

Maintainability

Portability

Updatibility
+

Time

Figure 7: Refining softgoals in architectural design

12

The Usability softgoal has been AND-decomposed into sub-goals Comprehensibility, Portability and
Sophisticated Interface. From the customer point of view it is important for the Medi@ application to be
comprehensible at first glimpse, i.e., intuitive and ergonomic. The look and feel of the interface must
naturally guide the customer‘s actions who is required only to have minimal computer knowledge.
Equally strategic to Usability is the portability of the application across browser implementations and the
quality of the interface. Note that not all HTML browsers support scripting, applets, controls and plug-ins.
These technologies make the client itself more dynamic, and capable of animation, fly-over help, and
sophisticated input controls. When only minimal business logic needs to be run on the client, scripting is
often an easy and powerful mechanism to use. When truly sophisticated logic needs to run on the client,
building Java applets, Java beans, or ActiveX controls is probably a better approach. ActiveX, however, is
an option only when the client computers are Windows-based.

The Security softgoal has initially been AND-decomposed into sub-goals Availability, client
Confidentiality and data Integrity. The first softgoal guards against interruption of service, the second
guards against unauthorized disclosure of information and the third checks the completeness and the
accuracy of data transactions. Network communication may not be very reliable causing sporadic loss of
the server. Clients, especially those on the internet are, like servers, at risk in web applications. It is
possible for web browsers to unknowingly download content and programs that could open up the client
system to crackers and automated agents all over the net. JavaScript, Java applets, ActiveX controls, and
plug-ins all represent a certain degree of risk to the client and the information it manages.

The Maintainability softgoal has been AND-decomposed into subgoals Reusability, Updatability and
Dynamicity. The first softgoal deals with the way to reuse software components. Even if we can assume
that there is a certain uniformity in the client side mainly because Microsoft Windows is a predominant
operating system for desktops, server components are inherently more diverse according to each web
architecture we have described above. Nevertheless, they have certain elements in common, and some of
those elements can be captured (e.g., by component models such as Enterprise JavaBeans or COM) to be
reused. For example, almost all server-side processes of Medi@ must be able to handle transactions. An
Entreprise JavaBeans model could allow to provide components that are transaction-aware to facilitate
and reuse this common task.

Updatability is a classical software quality inherent to any kind of business application involving a
product database. It is however strategically important for the viability of the application, the stock
management and the business itself. It then must be comprehensible (implicit contribution from
Comprehensibility to Updatability in Figure 7) by the Media Shop employees having to very regularly
(daily, weekly) bring up to date the catalogue by themselves for stock management consistency.

Dynamicity deals with the way the software system can be designed using generic mechanisms to allow
web pages and look to be dynamically and easily changed. Indeed, information content and layout need to
be frequently refreshed to give correct information to customers or simply be fashionable for marketing
reasons (softgoal Attract New Customers in Figure 4). Frameworks like Active Server Pages (ASP),
Server Side Includes (SSI) to create dynamic pages or tools simply separating generic layout from content
such as GenPage to provide “smarter” (non-static) pages make this softgoal easier to achieve.

Finally, Performance is concerned with the capability of Medi@ to do what needs to be done, as quickly
and efficiently as possible. In particular, Time Performance deals with the ability of Medi@ to respond in
time to client requests for its services. Indeed, given that network latency -- the delay inherent in moving
requests from clients to servers and their concomitant responses from servers to clients -- can be quite
long on a network of global proportions like the Internet, adequate or accurate time performances and
measures can be difficult to produce.

As shown by Figure 7, each of the three web architectural patterns contributes positively or negatively to
each softgoals we have just explained. Due to the lack of space, we only described some of these
contributions.

13

The Thin Web Client architecture is useful for internet-based applications, for which only the most basic
client configuration can be guaranteed. Hence, this architecture does well for Portability. However, it has
a limited ability to support Sophisticated User Interfaces. The browser acts as the entire user interface
delivery mechanism and in most common browsers these are limited to a few text entry fields and button.
Moreover, this architecture relies on a connectionless protocol such as HTTP, which contributes
positively to availability of the system since the sporadic loss of a server might not pose a serious
problem. Pure HTTP, without client-side scripting, is rather secure.

On the other hand, the Thick Web Client architecture is generally not portable across browser
implementations. Not all HTML browsers support JavaScript or VBScript. Additionally, only Microsoft
Windows base clients can use ActiveX controls. However, these technologies contribute very positively
to the goal of having sophisticated interfaces. As in the Thin Web Client architecture, all communication
between client and server is done with HTTP. Since HTTP is a “connectionless” type of protocol, most of
the time there is no open connection between client and server. Only during page requests does the client
send information. Hence its positive contribution to Availability. On the negative side, client-side
scripting and custom objects, such as ActiveX controls and Java applets may pose risks to the client
confidentiality.

Last but not least, the Web Delivery architecture is highly portable, since the browser has some built-in
capabilities to automatically download the needed components from the server. However, this architecture
requires a reliable network. Connections between client and server objects last much longer than do
HTTP connections, and so sporadic loss of the server, poses a serious problem that has to be addressed for
this architecture.

As with late requirements, an interesting feature of the proposed analysis method is that it is goal-
oriented. Goals are introduced and analyzed during architectural design, and guide the design process.

Apart from goal analysis, this phase involves, on the one hand, the introduction of other new system
actors and dependencies and on the other hand the decomposition of existing actors and dependencies into
sub-actors and sub-dependencies which will assume the responsibilities of the key system actors
introduced earlier, refine them or capture new ones.

Manager
ability

Maintain-

Processor
Order

Delivery
Processor

Processor
Statistics

Manager
Usability

Security
Checker

Usable

Secure

Selected
Items

Ratings

Maintainable

Browser
Item

Item
Detail

Shopping
Cart

Profiler
Customer

Customer
Data

Profile
Customer

Information
Billing

Check
Out

Front
Store

Processor
Billing

Back
Store

Service
Quality
Manager

Performance

Performance
Monitor

Catalogue
On-line

Consult
Catalogue

Item
Select

Information
Cart

Processor Invoice
Processor

Accounting

Payment
Request

Process
Invoice

Detail
Delivery

Figure 8: Strategic Dependency Model of Medi@ system sub-actors

Figure 8 focuses on the latter kind of refinement. To accommodate the responsibilities of the Store Front
actor of Figure 6, the architect introduces sub-actors like Item Browser managing catalogue navigation et
item database search engines, Shopping Cart for selecting and customizing items, Order Processor for
placing and tracking orders, Customer Profiler for tracking customer data and producing client profile

14

types and On-line Catalogue dealing with digital library obligations for example, notification of the
arrival of new items and recommendation (prediction based on profile and “business intelligence”,
possibly derived through data-mining techniques). Based on the non-functional requirement
decomposition proposed in Figure 7, Service Quality Manager is further refined into four new system
sub-actors Usability Manager, Security Checker, Maintainability Processor and Performance Monitor,
each of them assuming one of the top main softgoals explained previously. Billing Processor is
decomposed into Order Processor mainly dialoguing with Shopping Cart to resume ordering items and
delegating invoicing to Invoice Processor and financial duties to Accounting Processor interacting with
Bank Cpy (not represented in Figure 8). Finally, Back Store is refined into Statistics Processor concerned
with duties like producing charts, reports, audits, sales, forecast turnover, and Delivery Processor taking
care of responsibilities such as interactions with delivery companies information systems.

An interesting decision that comes up during architectural design is whether fulfillment of an actor’s
obligations will be accomplished through assistance from other actors, through delegation
(“outsourcing”), or through decomposition of the actor into component actors. Going back to our running
example, the introduction of other actors described in the previous paragraph amounts to a form of
delegation in the sense that Store Front retains its obligations, but delegates subtasks, sub-goals etc. to
other actors. An alternative architectural design would have Store Front outsourcing some of its
responsibilities to some other actors, so that Store Front removes itself from the critical path of obligation
fulfilment. Lastly, StoreFront may be refined into an aggregate of actors which, by design, work together
to fulfil StoreFront’s obligations. This is analogous to a committee being refined into a collection of
members who collectively fulfil the committee’s mandate. It is not clear, at this point, how the three
alternatives compare, nor what are their respective strengths and weaknesses.

7 DETAILED DESIGN

The detailed design phase is intended to introduce additional detail for each architectural component of a
software system. In our case, this includes actor communication and actor behavior. To support this
phase, we may be adopting agent communication languages, message transportation mechanisms,
ontology communication, agent interaction protocols, plan model, etc. from the agent programming
community. One possibility, among admittedly many, is to adopt one of the extensions to UML proposed
by the FIPA (Foundation for Intelligent Agents) and the OMG Agent Work group [Bau99,Ode99,Ode00].
The rest of the section concentrates on the Shopping cart actor and the check out dependency. Figure 9
depict a partial UML class diagram focusing on that actor that will be implemented as an aggregation of
several CartForms and ItemLines. Associations ItemDetail to On-line Catalogue, aggregation of
MediaItems, and CustomerDetail to CustomerProfiler, aggregation of CustomerProfileCards are directly
derived from resource dependencies with the same name in Figure 8.

As will be explained in the next section, our target implementation model is the BDI model [Bra87], a
rational agent model whose main concepts are Beliefs, Desires and Intentions. According to Figure 12, we
will implement i* tasks as BDI intentions (or plans). They are represented after methods (see Figure 9)
following the label “Plans:”

One of these plans is the checkout task dependency between Shopping Cart and Order Processor which
involves a detailed design of an agent interaction protocol (AIP) to describe inter-agent dynamics. To
define such a protocol, we use AUML - the Agent Unified Modeling Language [Bau99], which supports
templates and packages to represent the protocol as an object, but also in terms of sequence and
collaborations diagrams.

15

id : long
itemNbr : string
itemTitle : string

MediaItem

itemBarCode : OLE
itemPicture : OLE
category :string
genre : string

publisher : string
editor : string
description : string

date : date

weight : single
unitPrice : currency

CD CDromDVD Book Video

0..*

CustomerProfiler

customerid : long

middleName : string

customerName : string
firstName :string

tel : string
address : string

e-mail : string
dob : date
profession : string
salary : integer
maritalStatus : string
familyComp[0..1] : integer
internetPref[0..10] : boolean
entertPref[0..10]:string
hobbies[0..5] : string
comments : string
creditcard# : integer
prevPurchase[[0..*] [0..*]]

: string
prevPurchPrice[[0..*] [0..*]]

: integer

CustomerProfileCard

itemCount : integer

ShoppingCart

...

CartForm
<<Text>> itemCount : integer

<<Button>>Recalculate

getCart()
buildItemTable()
writeTableRow()
updateItems()
loadCartForm()
updateCartForm()
killCartForm()

0..*

ItemDetail

CustomerData

0..*

0..*

0..*

weight()
cost()

ItemLine

allowsSubs :boolean
qty : integer
id : long

0..* 1

<<Text>> qty[0..*] : integer
<<Text>> currentTotal : currency
<<Checkbox>> selectItem[0..*]

<<Submit>> AddItem
<<Submit>> Checkout

<<Submit>> Confirm
<<Button>> Cancel

tax : currency
taxRate : float
total : currency
totWeight : single
shippingCost : currency
qty[0..*] : integer
subTotals[0..*] : currency
itemCount()

1

getIdentDetails
not_understood
verifyCC
logout
cancel
checkout
addItem
selectItem
initialize

failure
confirm
removeItem
succeded
propose
refuse

Plans :

notification()
calculateTotals()
calculateQty()

initializeReport()
getLineItem()
computeWeight()

inform()

Catalogue
On-line

Figure 9: Partial Class Diagram of Store Front focusing on Shopping Cart

Figure 10 (a) introduce the interaction context. It depicts a general view of the sequence diagram to order
media items. It is triggered by the checkout communication act (CA) from Customer to Shopping Cart
and ended with a returned information status about the complete sequence. When the Customer pushes
the checkout button, the Shopping Cart asks the Order Processor to process orders. In turn, the latter
sends a payment request CA to Accouting Processor which informs him about the status (failure/success)
of its internal processing. In the case of success, Order Processor concurrently asks Invoice Processor to
process an invoice (which subsumes, a delivery detail CA to Delivery Processor) and sends billing
information to Statistics Processor.

The sequence diagram of Figure 10 (a) only provides basic specification for an intra-agent order
processing protocol. More processing details are required. For instance, in Figure 10 (a), the diagram
stipulates neither the procedure used by the Customer to produce the checkout CA, nor the procedure
employed by the Shopping Cart to respond to the CA.

Processor

inform

Accounting
Processor Processor

Invoice

inform

checkout

payment request

processOrder

process invoice

billing information

delivery detail

Processor
Delivery

Processor
StatisticsShopping Cart OrderCustomer

12/19/00
9:31 53

X

X

X

Timeout

Plan Diagram (cf. Figure 10)

checkout-request for proposal

refuse

not-understood Notification

propose

Decision

cancel-proposal

accept-proposal

inform
succeeded

failure

FIPA Contract Net Protocol

accept-proposal, succeeded, failure
propose, cancel-proposal
checkout-rfp, refuse, not-understood,

12/19/00 at 9:31 53

Customer, Shopping Cart

b)

a)

inform

Figure 10: Sequence diagram to order media items (a) and agent interaction protocol focusing on a checkout
dialogue (b)

As shown by Figure 10 (b), such details can be provided by using levelling [Ode00], i.e., by introducing
additional interaction and other diagrams which describe some of the primitive action shown in Figure 10
(a). Each additional level can express inter-actor or intra-actor dialogues. At the lowest level,

16

specifications of an actor protocol requires spelling out the detailed processing that takes place within an
actor, as will be shown in Figure 11, in order to implement the protocol.

Figure 10 (b) focuses on the AIP dialogue between Customer and Shopping Cart. It depicts a
customization of the FIPA Contract Net protocol [Ode99] to that particular interaction. Such a protocol
describes a communication pattern among actors as an allowed sequence of messages, as well as
constraints on the contents of those messages.

When a Customer wants to check out, a request for proposal message (checkout-request-for-proposal) is
sent to the Shopping Cart. The Shopping Cart actor has then to respond to the Customer before a given
timeout (for network security and integrity reasons): by refusing to provide a proposal, submitting a
proposal, or informing that it did not understand (the diamond symbol indicates a decision that can result
in zero or more communications being sent – depending on the conditions it contains; the “✕ ” in the
decision diamond indicates an exclusive or decision). If a proposal is offered, the Customer has a choice
of either accepting or canceling the proposal. In the case of proposal acceptance, the Shopping Cart actor
will finally inform the Customer about the proposal’s execution (success/failure). The internal processing
of Shopping Cart’s checkout plan is described in Figure 11.

Checking

[i=3]

Fields
Checking

Credit Card

[i=5]

Fields Updated

[[Not all mandatory
fields filled] ^ [i<5]]

Updating Correcting
CC#

Updated

Fields

Press checkout button [checkout button activated] / shoppingCart.checkout()

Checkout

fail /shoppingCart.logout()

[Mandatory fields filled]
/verifyCC()

/ cancel()
[Not confirmed]

Updating
Stock Records

[foreach
selected item]

Amounts
calculated

Records updated

[Already registered]

[new customer]

[foreach
registered item]

Displaying
Reportsucceeded [report asked]

/ initializeReport()/ shoppingCart.logout()

succeeded/ shoppingcart.logout()

Calculating
Final Amounts

Item
Registering

Customer Profile
Updating

Items
Registered

pass / orderProcessor.
processOrder(this)

profile
updated

^ [i<3]]
[[CC# not valid]

[CC# valid]
/ confirm()? /confirm()

Press confirm button

any [[Cancel button pressed] OR
[timeout>90 sec]] / shoppingCart.initialize()

Figure 11: A plan diagram for checking out

At the lowest level, state charts and activity diagrams can be used to specify the internal processing
(plans) of actors who are no more aggregates. We use them as plan diagrams as proposed in
[Kin96,Kin96a]. Each identified plan is specified as a plan diagram, which is denoted by a rectangular
box. The lower section, the plan graph, is a state transition diagram. However, plan graphs are not just
descriptions of system behavior developed during analysis. Rather, they are directly executable
prescriptions of how a BDI agent should behave (execute identified plans) to achieve a goal or respond to
an event.

The elements of the plan graph are three types of node; start states, end states and internal states, and one
type of directed edge; transitions. Start states are denoted by small filled circles. End states may be pass
or fail states, denoted respectively by a small target or a small no entry sign. Internal states may be
passive or active. Passive states have no substructure and are denoted by a small open circle. Active states
have an associated activity and are denoted by rectangular boxes with rounded corners (e.g., Fields
Checking, Credit Card Checking, Item Registering, …). Activities may be iteration constructs, including
do and while loops, or in the case of a graph state, an embedded graph called a sub-graph.

The initial transition of the plan graph is labeled with an activation event (Press checkout button) and
activation condition ([checkout button activated]) which determine when and in what context the plan

17

should be activated. Transitions from a state automatically occur when exiting the state and no event is
associated (e.g., when exiting Fields Checking) or when the associated event occurs (e.g., Press cancel
button), provided in all cases that the associated condition is true (e.g., [Mandatory fields filled]). When
the transition occurs any associated action is performed (e.g., verifyCC()).

Plan graphs have a semantics which incorporates a notion of failure. Failure within a graph can occur
when an action upon a transition fails, when an explicit transition to a fail state occurs, or when the
activity of an active state terminates in failure and no outgoing transition is enabled.

If the failure occurs inside a state, then the activity of that state terminates in failure. If the failure occurs
in a plan graph, then the plan terminates in failure. If the plan has been activated to perform a goal, this
may result in that goal fails, depending on the availability of alternative plans to achieve the goal.

Figure 11 depicts the plan diagram for checkout. It is triggered by pushing the checkout button.
Mandatory fields are first checked. If all mandatory fields are not filled, an iteration allows the customer
to update them. For security reasons, the loop exits after 5 tries ([i<5]) and causes the plan to fail. Credit
Card validity is then checked. Again for security reasons, when not valid, the CC# can only be corrected 3
times. Otherwise, the plan terminates in failure. The customer is then asked to confirm the CC# to allow
item registration. If the CC# is not confirmed, the plan fails. Otherwise, each item is iteratively registered.
When all items are registered, the stock records (for each registered item) are updated and the final
amounts calculated concurrently. If the customer was already registered by the customer profiler, his
profile card is updated, otherwise nothing is done. If a report is asked, the system displays a printable
voucher including all the details of the checkout process. Finally, the whole plan succeeds, the
ShoppingCart automatically logs out and asks the Order Processor to initializes the order. When, for any
reason, the plan fails, the ShoppingCart automatically logs out. At anytime, if the cancel button is pressed
or the timeout is > 90 sec., (e.g., due to a network bottleneck), the plan fails and the Shopping Cart is
reinitialized.

8 MAPPING TO BDI AGENTS

JACK Intelligent Agents [Cob00] is an agent-oriented development environment built on top of the Java
programming language. JACK’s integration with Java is analogous to the relationship between the C++
and C languages. C was developed as a procedural language and subsequently C++ was developed to
provide C programmers with object-oriented extensions. Similarly, the JACK Agent Language has been
developed to provide agent-oriented specific extensions to Java. Technically, to be executed on the Java
virtual machine, JACK source code is first compiled into regular Java by the JACK Agent Compiler.

Agents in JACK are said intelligent in the sense they model reasoning behavior according to the
theoretical Belief Desire Intention (BDI) model [Bra87] used in artificial intelligence as well as in
cognitive science and philosophy. Following this model (see Figure 12), JACK agents can be considered
autonomous software components that have explicit goals to achieve or events to handle (desires). To
describe how they should go about achieving these desires, these agents are programmed with a set of
plans (intentions). Each plan describes how to achieve a goal under varying circumstances. Set to work,
the agent pursues its given goals (desires), adopting the appropriate plans (intentions) according to its
current set of data (beliefs) about the state of the world.

To support the BDI agents, JACK proposes five main language functional constructs. As shown in Figure
12, they are:

• Agents to define the behavior of intelligent software agents. They have methods and data members like
objects but also capabilities, database relations, description of events and plans.

18

• Capabilities to encapsulate and aggregate events, plans, databases or other capabilities. They provide
agents with a number of “capabilities”, each of which has a specific function attributed to it.

• Database relations to store beliefs and data that an agent has acquired.

• Events to identify the circumstances and messages that an agent can respond to.

 • Plans that are instructions an agent follows to try to achieve its goals and executes to handle its
designated events.

Figure 12 depicts how the i* concepts can be mapped into the BDI model and JACK constructs and how
each concept is related to the others inside the same model. I* actors, (informational/data) resources,
softgoals, goals and tasks are respectively translated into BDI agents, belief, desires and intentions. In
turn, a BDI agent will be mapped as a JACK agent, a belief will be asserted (or retracted) as a database
relation, a desire will be posted (sent internally) as a BDIGoalEvent (representing an objective that an
agent wishes to achieve) and handled as a plan and an intention will be implemented as a plan. Finally, a
i* dependency will be directly realized as a BDIMessageEvent (received by agents from other agents).

Actor Resource

i *

Agent Desire IntentionBeliefBDI

Goal TaskSoftgoal

asserted/
retracted as

acts

modifies

achievesarousesperceives

wishes

mapped into

consumes
needed

satisfies

satisfies

needed

dependee
depender

realized as

DB relationJack Agent

JACK

Capability

capable of

PlanBDIGoalEvent BDIMessageEventstores beliefs changes

aggregated into
uses

aggregated into
aggregated into

handles

reads
modifies

posts

send

intends defined

intends less-defined
available

dependum

Dependency

posted as
handled as

planned as

chooses

Figure 12: i*/BDI/JACK mapping overview

As illustrated in Section 6, other models and diagrams must also be used in the detailed design phase to
model additional system details not captured by i*. For instance, Figure 10 (b) represented the AIP
dialogue between Customer and Shopping Cart involving a checkout-request-for proposal. Figure 13
depicts the JACK layout presenting each of the five JACK constructs as well as the implementation of the
first part of Figure 10 (b) dialogue. Customer and Shopping Cart are implemented as JACK agents
(extends Agent). The request for proposal checkout-rfp is a MessageEvent (extends MessageEvent) sent
by Customer and handled by the Shopping Cart’s checkout plan (extends Plan) we have detailed in Figure
11.

In response to checkout-rfp, Shopping Cart posts a notification MessageEvent handled by (one of the)
three plans refuse, propose, not-understood. Finally, Timeout (which we consider a belief) is implemented
as a closed world (i.e., true or false) database relation asserting for each Shopping Cart one or several
timeout delays.

19

Figure 13: Partial implementation of Figure 9 in JACK

9 FORMS OF ANALYSIS IN TROPOS

To supplement diagrams with rigorous definitions of the actors, dependencies and relevant entities and
relationships, we adopt a KAOS-like [Dar93] notation. Figure 14 represents some of the definitions
coming from Figure 3. We focus on the actors Customer and Media Shop and their dependencies to each
other (BuyMediaItems and IncreaseMarketShare).

Entity Order
Has orderId: Long, cust: Customer, orderDate: Date,

items: SetOf [mediaItem]
Invariant (∀x) (Order(x) ∧ l¬Order(x) ⇒ OrderItemsOK(x.items))

End Order

Entity MediaItem
Has itemId: Long, itemTitle: String, description: Text, editor: String …

End MediaItem

Action MakeOrder
Input Customer {Arg: cust}, Date {Arg: orderDate}, SetOf [mediaItem] {Arg:items}
Output Order [Arg: order]
Precondition ¬OrderItemsOK(order))
Postcondition order.cust = cust ∧ order.orderDate = orderDate ∧ order.items ⊆ items

End MakeOrder

Actor Customer
Has customerId: Long, customerName: Name, address: Address,

tel: PhoneNumber, …
Capable of MakeOrder, Pay, Browse, Query, …
End Customer

20

Actor MediaShop
Has name: {MediaLive}, address: {“735 Yonge Street”},

phone#: 0461-762-883
Capable of Sell, Ship, SendInvoice, …
End MediaShop

Relationship OrderedBy
Links Customer {Role ordering, Card 0..*}

MediaItem {Role ordered, Card 0..*}
End OrderedBy

Dependency BuyMediaItems
 Type Goal
Mode Achieve
DefinedAs OrderItemsOK(order)
 Depender Customer {Card 0..*}
 Dependee MediaShop {Card 0..*}
 Has order: Order
Invariant (∀o: Order) (Fulfil (the BuyMediaItems(o))

⇒ Fulfill(the PlaceOrder(o))
Invariant (∀o) (Order(o) ∧ l¬Order(o) ⇒ (∃d:BuyMediaItems,

ms: MediaShop) (o = d.order ∧ bm.ordering = d.Depender ∧
ms = d.Dependee)

End BuyMediaItems

Dependency IncreaseMarketShare
 Type Softgoal

Mode Maintain
 Depender MediaShop
 Dependee Customer
 Key (dependee,depender)
 Invariant (∀ms:MediaShop, c:Customer)

(Maintain (the IncreaseMarketShare(c,ms)) ⇒
(uFulfill (the BuyMediaItems(order)) ⇒
uFulfill (the PlaceOrder(order))))
End IncreaseMarketShare

Figure 14: KAOS-like specifications for Figure 3

For the specification language and the notation used in Figure 14, we assume that for every class there is a
fluent, e.g., Order(.). A referential expression has one of three forms: variable or constant; expr.attr,
where attr is an attribute of the value of expr. In Class(key) , Class is a class and key one of its keys.
We use a Temporal Logic, à la KAOS, where P is asserted with respect to current time: lP and mP
assert P with respect to the previous/next time instance while uP and P assert P for sometime in the
past/future. We use different actions for dependency fulfilment: e.g., Fulfill is a one time fulfillment of a
dependency by the dependee; Maintain is a continuing fulfilment.

Another high level language used in Tropos is a ConGolog –like language [Les99] allowing us to specify
dynamics such as processes modeled by plan diagrams (see Figure 11). Primitive actions can be defined
in terms of pre- and post-conditions and decomposed into procedures using modeling constructs like
sequencing (a1 ; a2), conditional (if-then), iteration (while <condition> do), concurrent activities (a1 || a2),
priority (a1 〉〉 a2), non-deterministic choice (a1 | a2), interrupt (< x : ∅ → σ > where x is a list of variables,
∅ a trigger condition and σ a body), etc. Although ConGolog offers programming language-like
structures for describing processes, its distinctive feature is that the underlying logic is designed to
support reasoning with respect to process specifications and simulations. Figure 15 gives a example of
ConGolog specifications for the checkout plan graph we have explained previously (see Figure 11).

21

Proc checkOutShoppingCart(shopCart)
< shopCart : failed(shopCart) → logoutShoppingCart(shopCart) >
〉〉

(< pressedCancelButton → reinitializeShoppingCart(shopCart) >
||
< timeout > 90 → reinitializeShoppingCart(shopCart) >)
〉〉
< shopCart : ActivatedCheckoutButton ∧ PressedCheckoutButton

→ startCheckOut(shopCart) >
EndProc

Figure 15 : ConGolog-like specification for the checkout plan from Figure 11

A third language taken into consideration in Tropos is KQML (Knowledge Query and Manipulation
Language) supported by many agent systems and platforms [Kha99]. KQML is a specification language
and protocol for exchanging information and knowledge. It can be used as a communication language
[Fin97] to specify agent interactions such as those modeled in Figure 10 (b). The KQML specifications
define the syntax and semantics for a collection of messages (or performatives from a speech act point of
view) like achieve, ask-if, discard, register, reply, stream-about, subscribe, tell and keywords that
collectively define the language in which agents interacts. Such a performative for the inform CA from
ShoppingCart to Customer about the final status of the whole checkout process (Figure 10 (b)) is defined
in Figure 16 considering the case where the process failed.

(tell :language KQML
:ontology orders
:content (= (status order9753) nil)
:force permanent
:sender shoppingcart7612
:receiver customer5150)

Figure 16: KQML-like specification for the inform CA (Figure 10 (b))

10 CONCLUSIONS AND DISCUSSION

We have argued in favour of a software development methodology which is founded on intentional
concepts, such as those of actor, goal, (goal, task, resource, softgoal) dependency, etc. Our argument rests
on the claim that enterprise software should be organized the same way enterprises are. Moreover, we
have argued that current software development techniques lead to inflexible and non-generic software.
This is the case because the elimination of goals during late requirements, freezes into the design of a
software system a variety of assumptions which may or may not be true in its operational environment.
Given the ever-growing demand for generic, component-ized software that can be downloaded and used
in a variety of computing platforms around the world, we believe that the use of intentional concepts
during late software development phases will become prevalent and should be further researched.

Tropos proposes a modeling framework which views software from five complementary perspectives:

• Social -- who are the relevant actors, what do they want? What are their obligations? What are their
capabilities?

• Intentional -- what are the relevant goals and how do they interrelate? How are they being met, and by
whom ask dependencies?

• Communicational -- how the actors dialogue and how can they interact with each other?

• Process-oriented -- what are the relevant business/computer processes? Who is responsible for what?

22

• Object-oriented -- what are the relevant objects and classes, along with their inter-relationships?

In this paper, we have focused the discussion on the social and intentional perspectives because they are
novel. As hinted earlier, we propose to use UML-type modeling techniques for the others.

There already exist some proposals for agent-oriented software development, most notably [Igl98, Jen00,
Ode00, Woo00]. Such proposals are mostly extensions to known object-oriented and/or knowledge
engineering methodologies. Moreover, all these proposals focus on design -- as opposed to requirements
analysis -- for agent-oriented software and are therefore considerably narrower in scope than Tropos.

Diagrams are not complete, nor formal as software specifications. To address this deficiency, we propose
to offer three levels of software specification. The first is strictly diagrammatic, as discussed in this paper.
The second involves formal annotations which complement diagrams. For example, annotations may
specify that some obligation takes precedence over another. These could be used as a basis for simple
forms of analysis. Finally, we propose to include within Tropos a formal specification language for all
built-in constructs, to support deeper forms of analysis. Turning to the organization of Tropos models, the
concepts of i* will be embedded in a modeling framework which supports generalization, aggregation,
classification, materialization and contextualization. Some elements of UML will be adopted as well for
modeling the object and process perspectives.

Like other requirements modeling frameworks proposed in the literature, we recognize that diagrams are
important for human communication, but are imprecise and offer little support for analysis. Partially
formal annotations can help in defining some forms of analysis, and they serve as bridges between
informal diagrams and formal specifications. Finally, formal specifications serve as foundation for a
formal semantics, as well as a range of analysis techniques, including proofs of correctness, process
simulation, goal analysis etc.

ACKNOWLEDGEMENTS

Many colleagues contributed to the ideas that led to this paper. Special thanks to Eric Yu, whose insights
helped us focus our research on intentional and social concepts. The Tropos project includes as co-
investigators Eric Yu (University of Toronto) and Yves Lespérance (York University); also Alex Borgida
(Rutgers University), Matthias Jarke and Gerhard Lakemeyer (Technical University of Aachen). The
Canadian component of the project is supported in part by the Natural Sciences and Engineering Research
Council (NSERC) of Canada, and the CITO Centre of Excellence, funded by the Province of Ontario.
This work was carried out while J. Castro was visiting the Department of Computer Science, University
of Toronto (partially supported by the CNPq – Brazil grant 203262/86-7.

REFERENCES

[Bau99] Bauer, B., Extending UML for the Specification of Agent Interaction Protocols, OMG document
ad/99-12-03, FIPA submission to the OMG’s Analysis and Design Task Force (ADTF) in response to
the Request of Information (RFI) entitled “UML2.0 RFI”, December 1999.

[Boo99] Booch, G., Rumbaugh, J. and Jacobson, I., The Unified Modeling Language User Guide, The
Addison-Wesley Object Technology Series, Addison-Wesley, 1999.

[Bra87] Bratman, M., Intention, plans, and practical reason, Harvard University Press, Cambridge, 1987.

[Cas00] Castro, J., Kolp, M. and Mylopoulos, J., Developing Agent-Oriented Information Systems for the
Enterprise, Proceedings of the Second International Conference On Enterprise Information Systems
(ICEIS00), Stafford, UK, July 2000.

23

[Chu00] Chung, L. K., Nixon, B. A., Yu, E. and Mylopoulos, J., Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

[Cob00] Coburn, M., Jack Intelligent Agents: User Guide version 2.0, AOS Pty Ltd, 2000.

[Coh90] Cohen, P. and Levesque, H., “Intention is Choice with Commitment”, Artificial Intelligence,
32(3), 1990, pp. 213-261.

[Con00] Conallen, J., Building Web Applications with UML, The Addison-Wesley Object Technology
Series, Addison-Wesley, 2000.

[Dar93] Dardenne, A., van Lamsweerde, A. and Fickas, S., “Goal–directed Requirements Acquisition”,
Science of Computer Programming, 20, 1993, pp. 3-50.

[Dav93] Davis, A., Software Requirements: Objects, Functions and States, Prentice Hall, 1993.

[Dem78] DeMarco, T., Structured Analysis and System Specification, Yourdon Press, 1978.

[Fin97] Finin, T., Labrou, Y. and Mayfield, J., “KQML as an Agent Communication Language”,
Bradshaw, J. M. (ed.), Software Agents, MIT Press, 1997, pp. 291-316.

[Igl98] Iglesias, C., Garrijo, M. and Gonzalez, J., “A Survey of Agent-Oriented Methodologies”,
Proceedings of the 5th International Workshop on Intelligent Agents: Agent Theories, Architectures,
and Languages (ATAL-98), Paris, France, July 1998, pp. 317-330.

[Jen00] Jennings, N. R., “On agent-based software engineering”, Artificial lntelligence, 117, 2000, pp.
277-296.

[Kha99] Khalil, C., Multi-Agent Systems: A Review of Current Technologies, Department of Computer
Science, Loughborough University, IMPACT Research Group, Research Report 99/IMPACT/0182,
1999.

[Kin96] Kinny, D. and Georgeff, M., “Modelling and Design of Multi-Agent System”, Proceedings of the
Third International Workshop on Agent Theories, Architectures, and Languages (ATAL-96),
Budapest, Hungary, August 1996, pp. 1-20.

[Kin96a] Kinny, D., Georgeff, M. and Rao, A., “A Methodology and Modelling Technique for Systems
of BDI Agents”, Proceedings of the 7th European Workshop on Modelling Autonomous Agents in a
Multi-Agent World (MAAMAW-96), Eindhoven, The Netherlands, January 1996, pp. 56-71.

[Les99] Lespérance, Y., Kelley, T. G., Mylopoulos, J. and Yu, E., “Modeling Dynamic Domains with
ConGolog”, Proceedings of the 11th Conference on Advanced Information Systems Engineering
(CAiSE99), Heidelberg, Germany, June 1999, pp. 365-380.

[Myl00] Mylopoulos, J. and Castro, J., “Tropos: A Framework for Requirements-Driven Software
Development”, Brinkkemper, J. and Solvberg, A. (eds.), Information Systems Engineering: State of
the Art and Research Themes, Springer-Verlag, June 2000.

 [Ode99] Odell, J. and Bock, C., Suggested UML Extensions for Agents, OMG document ad/99-12-01,
Submitted to the OMG’s Analysis and Design Task Force (ADTF) in response to the Request of
Information (RFI) entitled “UML 2.0 RFI”, December 1999.

[Ode00] Odell, J., Van Dyke Parunak, H. and Bernhard, B., “Representing Agent Interaction Protocols in
UML”, Proceedings of the First International Workshop on Agent-Oriented Software Engineering
(AOSE-2000), Limerick, Ireland, June 2000.

[Sho93] Shoham, Y., “Agent-oriented programming”, Artificial Intelligence, 60, 1993, pp. 51-92.

[Wir90] Wirfs-Brock, R., Wilkerson, B. and Wiener, L., Designing Object-Oriented Software,
Englewood Cliffs, Prentice-Hall, 1990.

24

[Woo00] Wooldridge, M., Jennings, N. R. and Kinny D., “The Gaia Methodology for Agent-Oriented
Analysis and Design”, Journal of Autonomous Agents and Multi-Agent Systems, 3(3), to appear, 2000.

[You79] Yourdon, E. and Constantine, L., Structured Design: Fundamentals of a Discipline of Computer
Program and Systems Design, Prentice-Hall, 1979.

[Yu93] Yu, E., “Modeling Organizations for Information Systems Requirements Engineering”,
Proceedings of the First IEEE International Symposium on Requirements Engineering, San Jose,
USA, January 1993, pp. 34-41.

[Yu94] Yu, E. and Mylopoulos, J., “Understanding 'Why' in Software Process Modeling, Analysis and
Design”, Proceedings of the Sixteenth International Conference on Software Engineering,
Sorrento, Italy, May 1994, pp. 159-168.

[Yu95] Yu, E., Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis, Department of
Computer Science, University of Toronto, Canada, 1995.

[Yu96] Yu, E. and Mylopoulos, J., “Using Goals, Rules, and Methods to Support Reasoning in Business
Process Reengineering”, International Journal of Intelligent Systems in Accounting, Finance and
Management, 5(1), January 1996, pp. 1-13.

