Formal Tropos. language and semantics

A. Fuxman! R.Kazhamiakin? M. Pistore?? M. Roveri®

! Department of Computer Science, University of Toronto, Canada
2 Department of Information and Communication Technology, University of Trento, Italy
3 |TC-irst, Trento, Italy

afuxman@cs.toronto.edu {pistore,raman} @dit.unitn.it roveri@irst.itc.it

Version 1.0: November 4, 2003

Abstract

In this document we provide a description of the Formal Tropos|anguage and its semantics.



Contents
1 Introduction

2 Formal Tropos

5 The T-Tool

2.1 Syntaxofthe FT Language . . . . . . . . . . . oo i i it
2.2 Temporal formulas . . . . . ... ...
2.3 ObsoleteSyntax . . . . . . . . .
3 The Intermediate Language
3.1 TheSyntaxof IL . . . . .. . . . . . .
3.2 Formal definition of the class signature . . . . . . . . .. . ... ... . ......
3.21 Monotonicdomains . . . . ...
3.22 BasiCsorts . . . .. ... e
3.23 Classsignature . . . . . . . ..
3.3 Formal definition of the logic specification . . . . . .. ... ... ... ......
331 Terms . ...
332 Formulae . . . . ..
3.4 Formal definition of an Intermediate Language specification . . . .. ... .. ..
4 From Formal Tropos to the Intermediate Language
4.1 Fromthe Formal Tropos outer layer . . . . . . ... ... ... ... .......
4.1.1 Classsignature . . . . . . . e e
4.1.2 Logicspecification . . . . . . . ...
4.2 Fromthe Formal Troposinnerlayer . . . . . ... .. ... ... .. .......
4.3 Discussiononthetranslation . . . . .. ... ... ... ... .

5.1 T-Tool functionalities . . . . . . . . . . . . . . .
5.1.1 Animation . . . . . . .
5.1.2 Consistencychecks . . . . . . . . . ... .
5.1.3 Possibilitychecks. . . . . . ...
5.1.4 Assertionchecks . . . . . . . . ...
5.2 The T-Tool architecture . . . . . . . . . . . . . e e e
521 Theroleof IL . . . . . . . . . . . . .
5.2.2 The model checking verificationengine . . . . .. .. ... ... ... ..

6 Conclusions and Future Work

7 Acknowledge



1 Introduction

Early requirements engineering is the phase of the software development process that models and
analyzes the operational environment where a software system will eventually function. In or-
der to analyze such environment, it is necessary to investigate the objectives, business processes,
and interdependencies of different stakeholders. At least in principles, the understanding of these
“strategic” aspects of the operational environment is necessary to motivate and direct the develop-
ment of the software system. Although errors and misunderstandings at this stage are both frequent
and costly, early requirements engineering is usually done informally (if at all).

Formal methods have been successfully applied to the verification and certification of software
systems. In several industrial fields, formal methods are becoming integral components of stan-
dards [2]. However, the application of formal methods to early requirements is by no means trivial.
Most formal techniques have been designed to work (and have been mainly applied) in later phases
of software development, e.g., at the architectural and design level. As a result, there is a mismatch
between the concepts used for early requirements specifications (such as actors, goals, needs...)
and the constructs of formal specification languages such as Z [15], SCR [12], TRIO [10, 14].

Formal Tropos (hereafter FT) is a formal framework that adapts results from the Requirements
Engineering and Formal Methods communities to facilitate the precise modeling and analysis of
early requirements.

The FT framework supports the automatic verification of early requirements specified in a
formal modeling language. This framework is part of a wider on-going project called Tropos,
whose aim is to develop an agent-oriented software engineering methodology, starting from early
requirements. The methodology is to be supported by a variety of analysis tools based on formal
methods.

The FT language offers all the primitive concepts of i* [17] (such as actors, goals, and depen-
dencies among actors), but supplements them with a rich temporal specification language inspired
by KAQOS [6, 7]. The i* notations allow for the description of the “structural” aspects of the early
requirements model, for instance in terms of the network of relationships and dependencies among
actors. FT permits to represent also the “dynamic” aspects of the model, describing for instance
how the network of relationships evolves over time. In FT one can define the circumstances un-
der which a given dependency among two actors arises, as well as the conditions that permit to
consider the dependency fulfilled. In our experience, representing and analyzing these dynamic
aspects allows for a more precise understanding of the early requirements model, and reveals gaps
and inconsistencies that are by no means trivial to discover without the help of formal analysis
tools.

A tool, called T-Tool, has been developed to support the analysis of FT specifications. The
T-Tool is based on the state-of-the-art symbolic model checker NUSMV [4]. It translates auto-
matically an FT specification into an Intermediate Language (hereafter IL) specification that could
potentially link FT with different verification engines. The IL representation is then automati-
cally translated into NUSMYV, which can then perform different kinds of formal analysis, such as
consistency checking, animation of the specification, and property verification.

In this document we formally define the syntax and the semantics of the FT and of the IL
languages. This document is structured as follows. Section 2 will describe the grammar and
the concepts of the Formal Tropos language. In Section 3 we will describe the grammar and



the semantic of the Intermediate Language. In Section 4 we will define the formal semantics of
Formal Tropos in terms of its translation in the Intermediate Language. In Section 5 we describe
the architecture and the functionalities of the tool named T-Tool, developed to support the Formal
Tropos methodology. Finally in Section 6 we will draw some conclusions and we briefly discuss
the extensions we have in mind.

2 Formal Tropos

Although a graphical notation such as i* is valuable for human communication, its models are not
detailed enough to be used as a starting point for performing formal analysis. In this section, we
describe a textual language called Formal Tropos, which has more expressive power than i*, and
is amenable to formal analysis.

2.1 Syntax of the FT Language

In this section, we explain the different elements of a Formal Tropos specification. The complete
grammar is given in Figure 1.

A specification in Formal Tropos consists of a sequence of declarations of entities, actors,
goals, tasks, resources, dependencies, and global properties. Declarations for entities, actors,
goals, resources, task, softgoals and dependencies are structured in two layers. An outer layer
declares their attributes, and is in a sense similar to a class declaration. The inner layer expresses
constraints on the instances, and thus implicitly determines their evolution.

In the outer layer, entities, actors, goals, tasks, resources, softogoals and dependencies are de-
clared as classes which have an associated list of attributes that characterize their instances. Each
attribute has a corresponding sort (i.e., its type) and one or more facets. Sorts can be either prim-
itive (integer, boolean, etc.) or correspond to other classes (entities, actors, goals, tasks, softgoals,
resources or dependencies) of the specification. Facets represent frequently used properties of at-
tributes. The only facet currently supported is constant, that represents the fact that the value of
the attribute cannot change after its initialization. Other possible facets are: optional, which means
that the attribute might assume no value; multivalued, which means that the attribute can assume
more than one value (i.e., it represents a set of possible values).

Entities represent non-intentional elements of the environment or organizational setting. Each
entity is identified by a name, and consists of a set of attributes, a set of creation properties, and
a set of invariant properties. These properties define conditions that should hold, respectively, at
the creation and during the life of each instance of an entity.

Like entities, actors have attributes, and creation and invariant properties.

Goals, task, resources, softgoals and dependencies have a mode and a set of fulfillment proper-
ties, which will be explained shortly. If the actor is not able to fulfill a certain goal by itself, then the
goal should be refined into sub-goals, operationalized in tasks and delegated to other (dependee)
actors via dependencies.

Dependencies represent the relationships that exist among actors in order to fulfill their objec-
tives. In a sense, the concept of strategic dependency is re-ified in Formal Tropos, since depen-
dencies are declared as classes, and can be instantiated just as any other object of the system. A



[* The outer layer */
specification := (entity | actor | int-element | dependency | global-properties)*
entity := Entity name [attributes] [creation-properties] [invar-properties]
actor := Actor name [attributes] [creation-properties] [invar-properties]

int-element := type name mode Actor name [attributes] [creation-properties] [invar-
properties] [fulfill-properties]

dependency := type Dependency name mode Depender name Dependee name [attributes]
[creation-properties] [invar-properties] [fulfill-properties]

type := (Goal | Softgoal | Task | Resource)

mode := Mode (achieve | maintain | achieve&maintain | avoid)
* Attributes */

attributes := Attribute attribute™

attribute := facets name : sort

facets := [constant ] ...

sort := name | integer | boolean | ...

[* The inner layer */
creation-properties := Creation creation-property™
creation-property := property-category event-category temporal-formula
invar-properties := Invariant invar-property*
invar-property := property-category temporal-formula
fulfill-properties := Fulfillment fulfill-property*
fulfill-property := property-category event-category temporal-formula
property-category := [constraint | assertion | possibility ]
event-category := trigger | condition | definition

/* Global properties */
global-properties := Global global-property™

global-property := property-category temporal-formula

Figure 1. The Formal Tropos grammar.




dependency describes an “agreement” between two actors, the depender and the dependee. The
type of the dependency describes the nature of this agreement:

e goal dependencies are used to represent delegation of responsibility for fulfilling a goal,

e softgoal dependencies are similar to goal dependencies; the difference being that, while it is
possible to precisely determine when a goal is fulfilled, the fulfillment of a softgoal cannot
be defined exactly (for instance, it can be a matter of personal taste, or the fulfillment can
occur only to a given extent);

e task dependencies represent delegation of responsibility for performing a given activity;

e resource dependencies describe situations in which the dependee should deliver or provide
some resource to the depender.

Intentional elements are characterized by a mode, which declares the attitude of the involved
actors with respect to its fulfillment. The modalities currently supported by Formal Tropos are the
following:

e achieve: fulfillment properties should be satisfied at least once;
e maintain: fulfillment properties should be satisfied in a continuing way;

e achieve&maintain: as a combination of the previous two modes, it requires the fulfillment
properties to be achieved and then satisfied in a continuing way;

e avoid: the fulfillment properties should be prevented.

The evolution of an intentional object is controlled by three kinds of properties. Creation
properties determine the moment in which a new instance of the object can be created; fulfillment
properties must hold in order to consider that an intentional object is fulfilled; and invariants
represent conditions that should be true along the life of the object. We remark again that the
meaning of the fulfillment conditions changes according to the modality of the corresponding
intentional element. For instance, in an achieve dependency, it defines the condition that should
hold once; and in a maintain dependency it defines a condition that should hold continuously after
the creation of the dependency.

In addition to temporal formulas, properties have facets that determine their meaning. One kind
of facets give what we call property categories; they determine how a property influences the valid
scenarios for a specification. Constraint properties are enforced; they are implicitly defining the
valid scenarios for the requirements specification. On the other hand, assertions and possibilities
are desired properties of the specification; they are not enforced but checked, as we will show in
the next chapter. While assertions are expected to hold in all valid scenarios for the specification,
possibility properties are only expected to hold in at least one valid scenario. If none of these
facets is present, we assume that the property is a constraint.

In the case of creation and fulfillment properties, facet trigger defines a sufficient condition
for the creation or fulfillment; facet condition defines a necessary condition; and facet definition,
a necessary and sufficient condition.



2.2 Temporal formulas

The temporal formulas used for specifying properties are given in a linear-time typed first-order
temporal logic. We will briefly explain them in this section; a complete explanation of their under-
lying semantics is given in Section 3.

First of all, the formulas can contain past and future temporal operators:

f= XfIFFIGFIfUSIYFIHFIPSIfS [ (1)
JustFulfilled(¢) | JustCreated(t) | Fulfilled(¢)

The meaning of the operators is the following:

Xf (next state)

Ff (eventually)

Gf (henceforth, always in the future)

J1 U f2 (until)
Y f (previous state)

Pf (sometimes in the past)

Hf (always in the past)

f1'S f2 (since)

In temporal formulas we consider also some primitive predicates, such as JustCreated (¢) (an
instance of object ¢ is being created at this point in time), and JustFulfilled (¢) (an object ¢ is being
fulfilled at the current point in time). Another predicate, Fulfilled (¢) has different interpretations
depending on the modality of the dependency to which it belongs. For an achieve dependency, it is
true if the dependency has been fulfilled. This means that Fulfilled (¢) is made true at the moment
of the fulfillment and stays true forever. For a maintain dependency, Fulfilled (¢) remains true
while the fulfillment properties hold (i.e, it is true since the creation of the dependency). For an
avoid dependency, it its true if the fulfillment properties never hold (neither in the past nor in the
future).

As first-order formulas, they may contain existential and universal quantifiers. Bound variables
are typed by a sort, which can be either primitive, or the name of a class. The interpretation of the
quantifiers is over all existing instances of the sort. Therefore, if an object has not been created at
a certain point in time, it will not be taken into account when evaluating the quantifiers.

f :=Forall z : sort (f) | Exists z :sort (f) | --- (2)

The classical boolean, equality and relational operators are also available:
f=UINTTENII =21 fef]- ©)
fi=t=t|t!=t]--- (4)

7



Terms can be constants (c), variables (x), attributes of an object (¢.a).

t := c¢|x|ta|self|actor | depender | dependee (5)

Valid formulas must satisfy some constraints. First, they must be well-sorted (e.g., comparison
can be performed among terms of the same sort). Second, each variable x that appears in a formula
must respect one of the following rules:

e z is bounded by a Forall z : sort or a Exists z : sort quantifier;

e z is the name of one of the attributes of the entity, actor, or dependency that contains the
property (not applicable to global properties);

x is the identifier self (not applicable to global properties); self is used to denote the entity,
actor, goal, task, resource or dependency that contains the property;

x is the identifier depender or the identifier dependee (only applicable to properties inside
a dependency);

x 1s the identifier actor (only applicable to properties inside a goal, softgoal, task or re-
source); this identifier refers to the actor of the current goal, task, resource, softgoal.

2.3 Obsolete Syntax

The declaration of dependency element has changed in the new version of the language. The old
version of the grammar definition for dependency is the following:

dependency := Dependency name Type type mode Depender name Dependee name [at-
tributes] [creation-properties] [invar-properties] [fulfill-properties]

This syntax is used in several FT case studies and examples, and the T-Tool supports it. In the
future the old version of the syntax will be deprecated.

The facets for depender, for dependee, for domain, described by the grammar rules below,
which denote the origin of a class property, are simply ignored in the translation.

creation-properties ;= property-category event-category property-origin temporal-formula
invar-property := property-category property-origin temporal-formula

fulfill-properties := property-category event-category property-origin temporal-formula
property-origin := [for depender | for dependee | for domain ]

These facets will probably be removed form future version of the language.

3 Thelntermediate Language

In this section we present an Intermediate Language, a smaller language, which allows for a sim-
pler formal semantics. Furthermore, the Intermediate Language specification is more amenable to
formal analysis, since it removes the strategic flavor of Formal Tropos and shifts the focus to the
dynamic aspects of the system.



3.1 The Syntax of IL

An Intermediate Language specification consists of a class signature, which defines the classes
(or data types) of the system; and a logic specification, which specifies constraints and desired
properties on the temporal behavior of the class instances.

A class signature consists of a sequence of class declarations, where each of them is as follows:

CLASS c

ai - S1
ap,  Sp

c is the name of the class, and the a;’s are its attributes; s; specifies the sort of attribute a;. Sorts
s; can be either primitive (integer, boolean, ...) or correspond to class names.
The logic specification consists of a set of formulas organized as follows:

e CONSTRAINT formulas, which restrict the valid executions of the system;
e ASSERTION formulas, which are expected to hold in all valid executions of the system;

e POSSIBILITY formulas, which are expected to hold in at least one valid execution of the
system.

The formulas are given in a first order linear-time temporal logic with future and past time
operators. Objects can be created during execution, and therefore quantifiers Forall = : s and
Exists z : s range over the objects of sort s that “exist” at a point in time. As a consequence, free
variables do not necessarily “exist” at all moments. The fact that a variable exists might be stated
in our logic with a formula such as Ezists(z) = 3z’ (x = ').

The logic is described by the following rules:

fo= XfIFFIGFISUSIYSFIHFIPFIfSS (6)
f = Forall z : sort (f) | Exists z : sort (f) | --- (7)
f=UINIG&ENIIf=F1fef] (8)
f=t=t|t!=t]-- (9)

t = cl|z|ta (10)

A model for a specification consists of a sequence of worlds, that correspond to snapshots of
the system at different times (we use the natural numbers as the time domain). Each world provides
domains for the basic sorts and the classes defined in the specification. Also, each world has to
respect the signature, that is, if a : s is an attribute of class ¢, then each instance of ¢ has an attribute
a in the domain of s.



A valid model must satisfy all CONSTRAINT formulas, since they are enforced on all valid
executions of the system. We say that a specification is non-empty if it admits at least one valid
model. We say that a specification is correct if the ASSERTION formulas hold in all valid models
of the specification, and the POSSIBILITY formulas hold in at least one valid model.

In the next sections, we will introduce a formal definition of the syntax and semantics of the
Intermediate Language.

3.2 Formal definition of the class signature

3.2.1 Monotonic domains

We have to deal with domains that change over time. This is a hard problem for first-order
temporal logic, since it gives the possibility of mixing temporal operators and quantifiers (see [16]
for a technical explanation of the reasons).

The solution that we adopt is to force domains to be monotonic. That is, we allow new objects
to be created during the evolution of the system, but we do not allow already created objects to be
destroyed.

This solves the problem of combining quantifiers and future temporal operators. If we say
Forall z : s (Go(z)), where ¢(z) is a formula that defines some property of z, then we know that
all the objects x in the domain associated to sort s that exist at the present time, will also exist in
all future snapshots. Therefore, ¢(x) makes sense in all such snapshots.

However, we do have problems when we mix quantifiers and past temporal operators. For
instance, for the formula Forall z : s (Ho(x)), if  is an object in the current domain of s, we are
not guaranteed that = also existed in all past snapshots. The interpretation that we give to formula
Forall z : s (Hé(x)) is hence the following: “for all the objects x of sort s in the current snapshot,
formula ¢(x) holds only in the past snapshots where object z existed”. In this way, we restrict the
scope of a Ho(x) formula to the past snapshots where all the objects referred in ¢ existed.

The interpretation that we give to formula Forall = : s (P$(x)) is as follows: “for all the
objects z of sort s in the current snapshot, there is some previous snapshot where object z existed
and formula ¢(z) held”. That is, in P¢ we require ¢ to have held in a past snapshot where all the
objects referred in ¢ existed.

The strong previous state operator Y¢ is true only if all the objects referred in ¢ exist in the
previous snapshot (and ¢ holds in that snapshot).

3.2.2 Basic sorts

Basic sorts correspond to the elementary data types used in the Intermediate Language, such as
integer, booleans, etc. We assume that a given set .S, of basic sorts is defined and a fixed interpre-
tation domain Dj is associated to each basic sort s € Sj.

10



3.2.3 Class signature

A class signature specifies the classes that are present in a specification, together with their at-
tributes.
A class signature is a pair 3 = (C, {A.}ccc), Where:

e ( is a set of class identifiers;

e for each class ¢ € C, set A, describes the attributes of class c.

All attributes must have a value all along the life of their corresponding

The sorts Sy, for a signature X are the basic sorts Sy and the class identifiers C'; namely, Sy, =
Sp U C (we assume that Sy, and C' are disjoint).

In the following, we will often refer to sets of objects X that are Sx-sorted. This means that a
sort s € Sy, is associated to each object x € X. We write = : s whenever s is the sort of object
x; moreover, we denote with X, the subset of X whose objects are of sort s. We also assume that
sorts are associated to the attributes of a class, that is, the sets A. of the attributes of class ¢ are
Sy-sorted. In particular, we denote with A? the attributes of class ¢ of sort s.

An interpretation (or world) for a class signature X isa tuple W = ({ D*}sesy, {Ze,a b eccaea. ),
where:

e D? is the interpretation domain for each sort s in the set Sy, of sorts of the signature. We
require that D* = Dy for each basic sort s. If c € C, then D* defines the existing instances
of class ¢ in the world.

e If a : s isanattribute of class ¢, then Z., : D¢ — D* is a function that, given an instance of
a class c, returns a value of the attribute a. This defines the interpretation for attribute « of
all the instances of class ¢ in the world. The function must be total.

We denote as Us, the set of all the possible worlds for class signature 3. Given a Sy, sorted set
of variables V and aworld W = ({D_}ccc, {Zc,a}c.a) In Us, a valuation of V in W is a function @
that associates to each variable v € V* of sort s a value in D?.

3.3 Formal definition of the logic specification
3.3.1 Terms

We now define the set of terms 75, v on the class signature £ and on the Sx.-sorted set of variables
V. As terms are sorted, we rather define the classes 7'57V of terms of sort s € Sy,.

o Ifz € Vithenz € Tgy.
e Ifce Cisaclasssort, a € A/ is an attribute of c of sort s, and ¢ € Ty, thent.a € 75y

Givenatermt € Ty, an interpretation W € Us, and a valuation ® of V in W, we can define
an interpretation of Z,y, ¢[t] of term ¢ as an element of D?.

11



o If z € V° then Z,y o[z] = ®(z).
e Ifce Cisaclasssort, a € A; is an attribute of c of sort s, and ¢ € Ty, then
- IW,Q[t.(J,] = Ic,a(IW,q;.[t]), if IW7<p[t] is defined.

— Ty e[t-a] is undefined if 7,y o[¢] is undefined.

3.3.2 Formulae

The formulae Fx v on the class signature ¥ and on the Sx-sorted set of variables V are defined as
follows:

e [l € fE,V-

o Ift € THoom, thent € Fyv.

Ift,,%, € 75y for some sort s, then ¢, =ty € Fxv.

If f, f1, fo € Fyv,thenalso! f, f1 & fo € Fyv.

If f, f1, fo € Fyv thealso Xf,Yf, fi U fao, f1 S fo € Fyv.
o If f e Fyyv withV' =V[z:s|thenForall z : s (f) € Fxv.

In the definition above, we have represented with V[z : s] the Sy-sorted set obtained from V by
setting the sort of variable x to s.

We define as FV f the free variables of a formula f, i.e., the set of the variables x that appear
in f outside the scope of a Forall x : s quantifier. The closed formulae Fs for signature X are the
formulae in F, 4.

The following syntactic abbreviations are also defined:

o F &1

def

°f1|f2: !(!fl&!fQ)

def

o fi=fo=!filf

def

fisr fo=(fi = fo)&(fo— f1)

Exists z : s (f) R (Forall z : s (1 f))

.
o Ff¥yuurf
o« Gf EIFI ¥
e P& yusy
o« Hf ©1p1y

12



Formulae are interpreted on runs. A run R is an infinite sequence of worlds Wy, W, . . .. Since
domains are monotonic, if W; = ({ D{}c, {Zic,a}c,a), then Df C D5, for all 4.

Let R = Wy, Wi, ... be arun. Now we define when a formula f holds at position i of R,
according to valuation ®, written R, 4, ® |= f.

e R,i,® = tt.
o R,i,® =t fort e TE" ™ if and only if Zyy, o[t] = true.

o R,i, d ): t1=t9 for t1,t0 € 7;3?,\/ if and Only if IW,',‘P[tl] = Iwi@[tg], and IWi,Q[tl] and
T, a[t2] are defined.

e R,i,®=! fifnotR,i,® = f.
b Rai7© ’:fl&fQ IfRaZa(I) ’:fl andRaia(P ):fQ
o R,i,® = XfifR,i+1,® = f.

e R,i,® = f1 U fy if there is some j, with i < j, such that R, j, ® = f» and, for each [ with
i<1<j,R,1,® k= fi.

o R,i,® =Yfifi>0, ®v)e D; foreachv:seFV(f),andR,i—1,® = f.

e R,i,® = f1 S f, if there is some j, with j < 4, such that R, j, & = f, and, for each [ with
j <l <, itholds that R,/,® = fi. Furthermore, ®(v) € D;, and ®(v) € D; for each
v:s e FV(f).

e R,i,® =Forall z : s (f) if, foreachd € D}, R,i, @[z :=d] = f.

In the definition above we have represented with ®[x := d] the valuation obtained from & by
assigning value d to variable z.

We say that formula f holds for R, according to valuation ®, written R, ® = f, if and only if
R,0,® E f.

If fis a closed formula, then we say that f holds at position ¢ of R, written R, = f, if and
only if R,:,0 = f.

Finally, if f is a closed formula, then we say that f holds for R, written R = f, if and only if
R,0,0 = f.

3.4 Formal definition of an Intermediate Language specification

Having defined all the appropriate elements, we can now give the formal definition for an Interme-
diate Language Specification.
A specification in the Intermediate Language is a tuple S = (%, C, A, P), where:

e Y is a class signature;

e Cisasetof closed formulae on signature X, that specify the runs that are allowed in the valid
models;

13



e Aisaset of closed formulae on signature ¥, that specify properties that are expected to hold
on all runs of the valid models.

e P isasetof closed formulae on signature 3, that specify properties that are expected to hold
on at least one run of a valid model.

A model for specification S = (33,C, A, P) is arun R such that, for each f € C, R,i = f at
all times s.

A specification S is empty (or unsatisfiable) if it admits no model.

An assertion f € A is correct if R,i = f holds for each model R of S at all times i. If
assertion f is not correct, then a counterexample for f is a model R of S such that R, i i~ f.

A possibility f € P is correct if R,7 = f holds for a model R of S at some time . If
possibility f is correct, then an example for f is a model such that R,i |= f.

A specification S is correct if all its assertions f € A4, and all its possibilities f € P are correct.
Clearly, we are interested in specifications that are both non-empty and correct.

4 From Formal Troposto the Intermediate L anguage

In this section, we present the translation from Formal Tropos into the Intermediate Language. The
resulting specification is a formalization of the semantics of a Formal Tropos specification.

4.1 From the Formal Tropos outer layer
4.1.1 Class signature

Each Formal Tropos class (entity, actor, goal, softgoal, resource, task, or dependency) is translated
to a corresponding Intermediate Language class as follows:

Rule 1 (class signature) For each Formal Tropos class of name C, add the following class to the
Intermediate Language class signature

CLASS C

ai - 81

Qn - Sp

where each variable a; corresponds to some attribute of the Formal Tropos class, and each sort s;
denotes the type of the attribute.

We also add other attributes which, although not present in the Formal Tropos specification, are
necessary for the formalization of its semantics. In particular, for each class corresponding to an
intentional element (goal, softgoal, task, resource, or dependency) , we add the boolean attribute
fulfilled. The intuitive meaning is that this attribute becomes true when the intentional element is
fulfilled. For each class corresponding to a goal, softgoal, task, or resource we include the attribute
actor. The sort of this attribute is the actor mentioned in the Actor clause of the class. For
each dependency we include the attributes depender and dependee. Their sorts are the actors
mentioned in the Depender and Dependee clauses of the dependency class.

14



Rule 2 (fulfilled attribute) For each goal, softgoal, task, resource, and dependency of the Formal
Tropos specification, add the attribute fulfilled of sort boolean to the corresponding Intermediate
Language class.

Rule 3 (actor attribute) For each goal, softgoal, task, and resource of the Formal Tropos spec-
ification containing clause ““Actor A, add the attribute actor of sort A to the corresponding
Intermediate Language class.

Rule 4 (depender and dependee attributes) For each dependency of the Formal Tropos specifi-
cation containing clauses “Depender D7 and “Dependee De”, add the attributes depender of
sort Dr and dependee of sort De to the corresponding Intermediate Language class.

4.1.2 Logic specification

An Intermediate Language class signature is not able to capture the complete semantics of the
Formal Tropos outer layer. The following rules formalize those aspects of the semantics of classes
that are implicit in Formal Tropos.

In the following rule, the meaning of the constant facet in given by appropriate constraints in
the Intermediate Language logic specification.

Rule 5 (constant facet) For each constant attribute a of type ¢ declared in class C, we add the
Intermediate Language constraint

Forall c: C (Forall v : t (c.a = v — X(c.a = v)))

Also the attributes actor, depender, and dependee added by rules 3 and 4 are constant at-
tributes.

Rule 6 (additional attributes are constant) For each class C' that corresponds to a goal, soft-
goal, task, or resource declaration in the Formal Tropos specification containing clause ““Actor
A” we add the Intermediate Language constraint

Forall ¢ : C (Forall a : A (c.actor = a — X(c.actor = a)))

For each class C' that corresponds to a dependency declaration in the Formal Tropos specifica-
tion containing clauses “Depender Dr”” and “Dependee De” we add the Intermediate Language
constraints

Forall ¢ : C (Forall d : Dr (c.depender = d — X(c.depender = d)))

and
Forall ¢ : C (Forall d : De (c.dependee = d — X(c.dependee = d)))

In the next rule we formalize the assumption that, once fulfilled, goals, softgoals, tasks, re-
sources, and dependencies remain in that state forever, regardless of the future evolution of the
system.

Rule 7 (fulfillment forever) For each class C that corresponds to a goal, softgoal, task, resource,
or dependency declaration in the Formal Tropos specification, we add the following constraint

Forall ¢ : C (c.ful filled — Xe. ful filled)

15



4.2 From the Formal Tropos inner layer

We now explain the translation of the properties of a Formal Tropos specification into Intermediate
Language formulas.

In a preliminary step, we replace all Formal Tropos primitive predicates by variables of the
Intermediate Language. In particular, we replace the primitive predicate Fulfilled by the variable
fulfilled introduced in the class signature; and the primitive predicates JustFulfilled and JustCre-
ated by appropriate Intermediate Language translations. Notice that we will continue using Just-
Fulfilled and JustCreated in the Intermediate Language formulas, but they should be considered
as just macros.

Rule 8 (substitutions for primitive predicates) For every Formal Tropos formula,
e every occurrence of predicate Fulfilled(t), is replaced by ¢. ful filled,

e every ocurrence of predicate JustFulfilled(t), is replaced by:

t.ful filled &' Yt. ful filled,

e every occurrence of predicate JustCreated(t), is replaced by (t =t & !Y(t = t)).

Global properties only require the substitutions described in rule 8.

Rule 9 (global properties) For every formula f corresponding to a Formal Tropos global prop-
erty, add formula f to the Intermediate Language specification, where f is the formula obtained
by applying rule 8.

Unlike Formal Tropos, the formulas of the Intermediate Language are no longer associated to a
particular class, and are not anchored to a particular event in the life of the class. This difference has
to be taken into account for the translation of class properties (i.e., properties that are not global).
The following rules describe the translation of these properties. In particular, the formulae obtained
after the translation refer to a new variable ¢ corresponding to the Formal Tropos class they refer
to. Class c universally quantified if the property corresponds to a constraint or an assertion, and
existentially quantified if it corresponds to a possibility.

Rule 10 (closure w.r.t. the class) For very formula corresponding to a property of a Formal Tro-
pos class C':

e every occurrence of self is replaced with variable c;

e every occurrence of a free attribute a;, i.e., every attribute a; that is not in the scope of some
t._ prefix, is replaced with c.a;;

In the rest of this section, we denote with fthe formula obtained from f via the substitutions

of rules 8 and 10.
In the case of invariants, the translation is defined by the following rule.

16



Rule 11 (invariant property) For every formula f corresponding to an invariant property of
class C, add the following formula:

~

Forall c: C (f) if f is a constraint or assertion

Existsc: C (f) if f is a possibility
The translation of creation and fulfillment properties of actors, dependencies, and actor goals
is guided by the modality (e.g., achieve, maintain) and the property category (e.g., necessary,
trigger).
For a creation condition, the Formal Tropos property is simply a precondition for the creation
of an instance, and is translated in the following way.

Rule 12 (creation condition property) For every formula f corresponding to a creation condi-
tion property, add the formula:

~

Forall ¢ : C (JustCreated(c) — f) if f is a constraint or assertion
Exists ¢ : C (JustCreated(c) & f) if f is a possibility

The translation for creation trigger s is more complicated, since we cannot reference the
attributes of instances that do not exist yet. In the next section, we explain the rationale for this
rule in detail.

Rule 13 (creation trigger property) For each formula f corresponding to a creation trigger of
class C , we add the following formula, where a1, as, ..., a, are the free variables of f and
Ay, Ay, ..., A, are their sorts:

Forall a; : A; (Forall ay : Ay (Forall a,, : A, (f —EXists ¢: C(c.a1 = a1 & c.as = az ... c.ap, = ay))))
The translation for creation definition properties is a combination of the previous two rules.

Rule 14 (creation definition property) For each creation definition property, add the formulas
of Rules 12 and 13 to the Intermediate Language specification.

Since objects already exist when their fulfillment properties are evaluated, we do not run into
the problems just explained for creation trigger s. In fact, fulfillment trigger s are just sufficient
conditions, in the same way as the conditions are necessary conditions. The rules for definition
properties is a combination of the rules for condition and trigger. On the other hand, modalities
do play a substantial role in the translation of fulfillment properties, and we will give particular
rules for each of them.

A fulfillment property belonging to an achieve dependency is translated as follows.

Rule 15 (achieve fulfillment property) For each formula f corresponding to a fulfillment prop-
erty of a class C with achieve modality, we add the formula

~

Forall ¢ : C (JustFulfilled(c) — f)) if f is a constraint condition
or assertion condition

Forallc: C (f—) c.fulfilled)) if fisa constraint trigger
or assertion trigger

Exists ¢ : C (JustFulfilled(c) & f)) if fis a possibility

17



Formulas of a maintain dependency are translated in the following way

Rule 16 (maintain fulfillment property) For each formula f of a fulfillment property of a class
C with maintain modality, we add the formula

-~

Forall ¢ : C (c.ful filled — (G AH)f) if f is a constraint condition
or assertion condition
Forall ¢ : C ((G A H)f—> c.ful filled) if f is a constraint trigger
or assertion trigger
Exists ¢ : C (c.fulfilled &(G A H)f) if £ is a possibility
Formulas for avoid dependencies are obtained from the previous rule by simply negating f

Rule 17 (avoid fulfillment property) For each fulfillment property f of a class C' with avoid
modality, we add the formula

~

Forall ¢ : C (c.fulfilled — (G A H)! f) if f is a constraint condition
or assertion condition
Forall ¢ : C ((G A H)! - c.ful filled) if fisa constraint trigger
or assertion trigger
Exists ¢ : C (c. ful filled &(G A H)! ) if f is a possibility
The achieve&maintain modality is a combination of the rules for achieve and for maintain.
The formula should hold at the present state ("achieve” part), and forever in the future ("maintain”
part). Notice that, unlike the maintain modality, the formula does not necessarily hold from the
beginning.
Rule 18 (achieve & maintain fulfillment property) Foreach formula f of a fulfillment property
of a class C' with achieve & maintain modality, we add the formula

~

Forall ¢ : C (c.fulfilled — Gf) if fis a constraint condition
or assertion condition
Forall ¢c: C (Gf—) c.ful filled) if fisa constraint trigger
or assertion trigger
Exists ¢ : C (c. ful filled & Gf) if fis a possibility
The formulas obtained according to the previous rules should be treated differently according
to whether they correspond to a constraint, assertion or possibility of the Formal Tropos specifi-
cation.

Rule 19 (constraints, assertions, and possibilities) . Let f be a formula of a Formal Tropos
specification and let f’ be the corresponding formula added to the Intermediate Language specifi-
cation according to Rules 9 or 11-18.

e If f belongs to a property which has the facet constraint (or no property-category facet),
then f' € C, where C is the set of all constraints of the specification.

e If f belongs to a property which has facet assertion, then f’ € A, where A is the set of all
assertions about the specification.

e Finally, if f belongs to a property with possibility facet, then f’ € P, where P is the set of
all possibilities for the specification.

18



4.3 Discussion on the translation

There are some aspects of the translation that deserve further comments.

To start with, possibility condition properties that are local to a class have a different transla-
tion than constraints and assertions. In particular, while the former use existential quantification,
the latter employ universal quantification. As we explained in Section 3.4, the interpretation of
possibility properties is by definition existential. This is because we define a correct possibility f
as one such that Exists R.R = f, where R is a model of the specification. Therefore, it is natural
to impose an existential semantics to the possibility properties that are attached to a class.

Another point is that creation trigger properties are not translated by adding the formula
Forall ¢ : C (f — JustCreated(c)), which would be analogous to the the one for creation condi-
tion s. The reason is that it is not possible to reference the attributes of an instance ¢ which does not
exist yet. The solution that we adopted is to universally quantify on the attributes of the instance
rather than on the instance itself. According to Rule 13, for each creation trigger of class C' , we
add the following formula, where a1, ao, . . ., a,, are the free variables of f and A, Ay, ..., A, are

their sorts:
Forall a; : A; (Forall as : Ay (... Forall a, : A,

(f =Existsc: C(c.a; = a1 & c.a9 = ay. ..c.a, = ay))))

We do not use JustCreated(c) in the formula because we want to allow cases in which only the
existence of an instance needs to be enforced when the trigger property holds, but not necessarily
the creation of a new instance.

As a final note, we remark that he translation to the Intermediate Language makes it clear
which aspects of Formal Tropos have a characterized meaning, and which not. For instance, all
dependencies are treated in the same way, regardless of their type (resource, softgoal, etc.).

5 TheT-Tool

In this section we describe the T-Tool, a tool that supports the analysis of FT specifications. The
T-Tool is available at the URL http://dit.unitn. it/ ft/.

The T-Tool is based on finite-state model checking [5]. The advantages of model checking
with respect to other formal techniques (e.g., theorem proving; see [11] for a comparison) are
that it allows for an automatic verification of a specification and that (counter-)example traces are
produced as witnesses of the validity (or invalidity) of the specification. A limit of finite-state
model checking is that it requires a model with a finite number of states. This forces to define an
upper bound to the number of class instances that can be created during model checking.

The T-Tool input is an FT specification along with parameters that specify the upper bounds
for the class instances. On the basis of this input, the T-Tool builds a finite model that represents
all possible behaviors of the domain that satisfy the constraints of the specification. The T-Tool
then verifies whether this model exhibits the desired behaviors. The T-Tool provides different veri-
fication functionalities, including interactive animation of the specification, automated consistency
checks, and validation of the specification against possibility and assertion properties. The verifi-
cation phase usually generates feedback on errors in the FT specification and hints on how to fix
them. The verification phase iterates on each fixed version of the model, possibly with different

19



upper bounds of the number of class instances, until a reasonable confidence on the quality of the
specification has been achieved.

5.1 T-Tool functionalities
5.1.1 Animation

An advantage of formal specifications is the possibility to animate them. Through animation, the
user can obtain immediate feedback on the effects of constraints. An animation session consists of
an interactive generation of a valid scenario for the specification. Stepwise, the T-Tool proposes
to the user next possible valid evolutions of the animation and, once the user has selected one,
the system evolves the state of the animation. Animation allows for a better understanding of the
specified domain, as well as for the early identification of trivial bugs and missing requirements that
are often taken for granted, and are therefore difficult to detect in an informal setting. Animation
also facilitates communication with stakeholders by generating concrete scenarios for discussing
specific behaviors.

5.1.2 Consistency checks

Consistency checks are standard checks to guarantee that the FT specification is not self-contradictory.
Inconsistent specifications occur quite often due to complex interactions among constraints in the
specification, and they are very difficult to detect without the support of automated analysis tools.
Consistency checks are performed automatically by the T-Tool and are independent of the appli-
cation domain. The simplest consistency check verifies whether there is any valid scenario that
respects all the constraints of the FT specification. Another consistency check verifies whether
there exists a valid scenario where all the class instances specified by input parameters will be
eventually created. This check aims at verifying whether these parameters violate any cardinality
constraint in the specification. The T-Tool also checks whether there exists a valid scenario where
all the instances of a particular goal or dependency will be eventually created and fulfilled, i.e., the
fulfillment conditions for that goal or dependency are “compatible” with other constraints in the
specification. Not all the consistency checks may be relevant for a given model. For instance, in a
model it may be perfectly reasonable that there is no single scenario where instances are generated
for all classes. In this case, this consistency check is excluded for the model under investigation.

5.1.3 Possibility checks

Possibility checks verify whether the specification is over-constrained, that is, whether we have
ruled out scenarios expected by the stakeholders. When a Possibility property of the FT specifi-
cation is checked, the T-Tool verifies that there are valid traces of the specification that satisfy the
condition expressed in the possibility. The expected outcome of a possibility check is an example
trace that confirms that the possibility is valid. In a sense, possibility checks are similar to consis-
tency checks, since they both verify that the FT specification allows for certain desired scenarios.
Their difference is that consistency is a generic formal property independent of the application
domain, while possibility properties are domain-specific.

20



ﬁ T—Tool

#
~—

s R aﬁﬁ*’ TN

— | FT T T 2 U
— % | S I\S/I

I

\/E< L 4_@4: Ml | v
i IL Scenario | 6ot -
FT Scenario 10 | Verification Engine

Figure 2: The T-Tool framework.

5.1.4 Assertion checks

The goal of Assertion properties is dual to that of possibilities. The aim is to verify whether
the requirements are under-specified and allow for scenarios violating desired properties. Un-
surprisingly, the behavior of the T-Tool in the case of assertion checks is dual to the behavior for
possibility checks, namely, the tool explores all the valid traces and checks whether they satisfy the
assertion property. If this is not the case, an error message is reported and a counter-example trace
is generated. Such counter-examples facilitate the detection of problems in the FT specification
that caused the assertion violation.

5.2 The T-Tool architecture

The T-Tool performs the verification of an FT specification in two steps (see Figure 2). In the first
step, the FT specification is translated into an Intermediate Language (IL) specification. In the
second step, the IL specification is given as input to the verification engine, which is built on top
of the NUSMV model checker [4].

5.2.1 The role of IL

The IL plays a fundamental role in bridging the gap between FT and formal methods. First, IL
is much more compact than FT, and therefore allows for a much simpler formal semantics. In
fact, in the previous sections we showed how the formal semantics of FT is defined on the top of
the semantics of IL, via the translation rules that map an FT specification into an IL specification.
Second, IL, while more suitable to formal analysis, is still independent of the particular analysis
techniques that we employ. For the moment, we have applied only model checking techniques;
however, we plan to also apply techniques based on satisfiability or theorem proving. Finally, IL is
rather independent of the particular constructs of FT. By moving to different domains, it will prob-
ably become necessary to “tune” FT, for instance by adding new modalities for the dependencies.

21



The formal approach described in this paper can be also applied to these dialects of FT, at the cost
of defining a new translation. Furthermore, the IL can be applied to requirements languages that
are based on a different set of concepts than those of FT, such as KAOS [6, 7].

5.2.2 The model checking verification engine

The actual verification is performed by NUSMYV [4]. NUSMV implements several state-of-the-art
model checking algorithms. It also provides an open architecture that facilitates the implementa-
tion of new algorithms and the customization of the verification process to the specific application
domain.

NUSMYV is based on symbolic model checking techniques. Symbolic techniques have been
developed to reduce the effects of the state-explosion problem, thereby enabling the verification
of large designs [5, 13]. NUSMYV adopts symbolic model checking algorithms based on Binary
Decision Diagrams (BDD) [3] and on propositional satisfiability (SAT) [1]. BDD-based model
checking performs an exhaustive traversal of the model by considering all possible behaviors in
a compact way. Such exhaustive exploration allows BDD-based model checking algorithms to
conclude whether a given property is satisfied (or falsified) by the model. On the other hand, this
exhaustive exploration makes BDD-based model checking very expensive for large models. SAT-
based model checking algorithms look for a trace of a given length that satisfies (or falsifies) a
property. SAT-based algorithms are usually more efficient than BDD-based algorithms for traces
of reasonable length, but, if no trace is found for a given length, then it may still be the case that the
property is satisfied by a longer trace. That is, SAT-based model checking verifies the satisfiability
of a property only up to a given length, and is hence called Bounded Model Checking (BMC) [1].
The T-Tool exploits both BDD-based and SAT-based model checking.

6 Conclusionsand Future Work

The FT language is continuously evolving to allow for capturing new requirements. Among the
several extensions we are considering we list, the introduction of the optional facet for attributes,
the support for sets, and extensions of the language to better characterize goal decomposition and
means-end analysis.

7 Acknowledge

We would like to thank all the people that worked and is working on Formal Tropos. Part of the
material presented in this document has been extracted from several documents, e.g. from Ariel’s
thesis [8], from the [9] journal paper.
References

[1] A.Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without BDDs. In

Proceedings of the 5 International Conference on Tools and Algorithms for the Construction

22



and Analysis of Systems, number 1579 in Lecture Notes in Computer Science, pages 193-207,
Amsterdam, The Netherlands, March 1999. Springer.

[2] J. Bowen and V. Stavridou. Safety critical systems, formal methods and standards. IEEE/BCS
Software Engineering Journal, 8(4), July 1993.

[3] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Computing Survey, 24(3):293-318, 1992.

[4] A.Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NUSMV 2: An OpenSource Tool for Symbolic Model Checking. In
Proceedings of Computer Aided Verification Conference, number 2404 in Lecture Notes in
Computer Science, Copenhagen (DK), July 2002. Springer.

[5] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[6] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-Directed Requirements Acquisition.
Science of Computer Programming, 20:3-50, 1993.

[7] R. Darimont, E. Delor, P. Massonet, and A. van Lamsweerde. GRAIL/KAQOS: An Environ-
ment for Goal-Driven Requirements Engineering. In Proceedings of the 20** International
Conference on Software Engineering, volume 2, pages 58-62, Kyoto (Japan), April 1998.

[8] A.Fuxman. Formal Analysis of Early Requirements Specifications. Master’s thesis, Univer-
sity of Toronto, 2001.

[9] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso. Specifying and
analyzing early requirements in Tropos. Requirements Engineering, 2003. To appear.

[10] C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO, a logic language for executable specifica-
tions of real-time systems. Journal of Systems and Software, 2(12):107-123, May 1990.

[11] J. Halpern and M. Vardi. Model checking vs. theorem proving: A manifesto. In Proceedings
of the 2™¢ International Conference on Principles of Knowledge Representation and Reason-
ing, pages 325-334, 1991.

[12] C. Heitmeyer, R. Jeffords, and B. Labaw. Automated consistency checking of requirements
specification. ACM Transactions on Software Engineering and Methodology, 5(3):231-261,
1996.

[13] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publisher, 1993.

[14] A. Morzenti and P. San Pietro. Object-oriented logic specifications of time critical systems.
Transactions on Software Engineering and Methodologies, 3(1):56-98, January 1994.

[15] J. Spivey. The Z Notation. Prentice Hall, 1989.

[16] J. van Benthem. Handbook of Logic in Artificial Intelligence and Logic Programming, vol-
ume 4, chapter Temporal Logic. D. Gabbay and C. Hogger and J. Robinson, 1995.

23



[17] E. Yu. Towards modeling and reasoning support for early requirements engineering. In
Proceedings of the IEEE International Symposium on Requirement Engineering, pages 226—
235. IEEE Computer Society, 1997.

24



