
Information Systems as Social Structures

Ariel Fuxman1 Paolo Giorgini2 Manuel Kolp1 John Mylopoulos1
1Dept. of Computer Science - University of Toronto, 10 King’s College Road,

M5S 3G4, Toronto, Ontario, Canada
{afuxman, mkolp, jm}@cs.toronto.edu

2 Department of Mathematics - University of Trento, 14 via Sommarive,
I-3850, Trento, Italy,

pgiorgini@science.unitn.it

Abstract — Organizations are changing at an ever-faster pace, as they try to keep up with
globalization and the information revolution. Unfortunately, information systems technologies
do not support system evolution well, making information systems a roadblock to
organizational change. We propose to view information systems as social structures and define
methodologies which develop and evolve seamlessly an information system within its
operational environment. To this end, this paper proposes an ontology for information systems
that is inspired by social and organizational structures. The ontology adopts components of the
i* organizational modeling framework, which is founded on the notions of actor, goal and
social dependency. Social patterns, drawn from research on cooperative and distributed
architectures, offer a more macroscopic level of social structure description. Finally, the
proposed ontology includes organizational styles inspired from organization theory. These are
used not only to model the overall organizational context of an information system, but also its
architecture. Social patterns and organizational styles are defined in terms of configurations of
i* concepts. The research has been conducted in the context of the Tropos project.

Categories & Descriptors — D.2.1 [Software Engineering]: Requirements/Specifications
– elicitation methods, languages, methodologies; D.2.11 [Software Engineering]: Software
Architectures – data abstraction, patterns; K.6.1 [Management of Computing and Information
systems]: Project and People Management – systems analysis and design; K.6.3 [Management of
Computing and Information systems]: Software Management – software development.

General Terms — Design, Languages, Management.

Keywords — Organizational Modeling, i* Framework, Tropos Methodology.

1. Introduction
Information systems have traditionally suffered from an impedance mismatch. Their
operational environment is understood in terms of actors, responsibilities, dependencies, social
structures, organizational entities, objectives, tasks and resources, while the information
system itself is usually conceived as a collection of (software) modules, entities (e.g., objects,
agents), data structures and interfaces. This mismatch is one of the main factors for the poor
quality of information systems, and for the frequent failure of system development projects.
We are interested in developing an information system methodology, called Tropos [2], which

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
FOIS’01, October 17-19, 2001, Ogunquit, Maine, USA.
Copyright 2001 ACM 1-58113-377-4/01/0010…$5.00.

views information systems as social structures thereby reducing the impedance mismatch
alluded to earlier. Tropos is intended as a seamless methodology tailored to describe both the
organizational environment of a system and the system itself in terms of the same concepts.
By social structures, we mean a collection of social actors, human or software, which act as
agents, positions (e.g., the department chair), or roles (e.g., the meeting chair) and have social
dependencies among them (e.g., the meeting chair depends on the meeting participants to
show up, while they depend on the chair to conduct an effective meeting).

The Tropos ontology is described at three levels of granularity. At the lowest (finest
granularity) level, Tropos adopts concepts offered by the i* organizational modeling
framework [17], such as actor, agent, position, role, and social dependency. At a second,
coarser-grain level the ontology includes possible social patterns, such as mediator, broker
and embassy. At a third, more macroscopic level the ontology offers a set of organizational
styles inspired by organization theory and strategic alliances literature. All three levels are
defined in terms of the i* concepts. Tropos spans four phases of software development:

• Early requirements — concerned with the understanding of a problem by studying an
organizational setting; the output is an organizational model which includes relevant actors,
their goals and dependencies.

• Late requirements — the system-to-be is described within its operational environment,
along with relevant functions and qualities.

• Architectural design — the system’s global architecture is defined in terms of subsystems,
interconnected through data, control and dependencies.

• Detailed design — behavior of each architectural component is defined in further detail.

For purposes of presentation, we describe first i*, then the organizational styles and finally the
social patterns. Section 2 shows how Tropos can produce an initial i* organization model.
Section 3 presents the organization-inspired styles, and their application to the kind of models
presented in Section 2. Section 4 proposes a number of social goal-based patterns. Finally,
Section 5 summarizes the contributions and points to further work.

2. Initial Organizational Models
The page Tropos adopts a goal- and actor-oriented ontology for modeling organizational
settings based on i* [17]. It assumes that an organization involves actors who have strategic
dependencies among each other. A dependency describes an “agreement” (called dependum)
between two actors: the depender and the dependee. The depender is the depending actor, and
the dependee, the actor who is depended upon. The type of the dependency describes the
nature of the agreement. Goal dependencies are used to represent delegation of responsibility
for fulfilling a goal; softgoal dependencies are similar to goal dependencies, but their
fulfillment cannot be defined precisely (for instance, the appreciation is subjective, or the
fulfillment can occur only to a given extent); task dependencies are used in situations where
the dependee is required to perform a given activity; and resource dependencies require the
dependee to provide a resource to the depender. As shown in Figure 1, actors are represented
as circles; dependums — goals, softgoals, tasks and resources — are respectively represented
as ovals, clouds, hexagons and rectangles; and dependencies have the form depender →
dependum → dependee.

These elements are sufficient for producing a first model of an organizational environment.
For instance, Figure 1 depicts an i* model of a business organization selling media items
(books, newspapers, CDs, etc.). The main actors are Customer, MediaRetailer, MediaSupplier
and MediaProducer. Customer depends on MediaRetailer to fulfill her goal: Buy Media Items.
Conversely, MediaRetailer depends on Customer to “satisfy customers”. Since the dependum
SatisfiedCustomers cannot be defined precisely, it is represented as a softgoal. The Customer

also depends on MediaRetailer to get a Media Item (resource dependency) and Consult
Catalogue (task dependency). Furthermore, MediaRetailer depends on MediaSupplier to
supply media items in a continuous way. The items are expected to be of good quality because,
otherwise, the Long-Term Business dependency would not be fulfilled. Finally,
MediaProducer is expected to provide MediaSupplier with Quality Packages.

Buy Media
ItemsCustomer Retailer

Media Media
Supplier

Consult
Catalogue

Customers
Satisfied

Continuous
Supply

Long-Term
Business

Media Items

Quality
Packages

Media
Producer

Figure 1 : i* Model for a Media Retailer

We have defined a formal language, called Formal Tropos [4], that complements i* in several
directions. It provides a textual notation for i* models and allow us to describe dynamic
constraints among the different elements of the specification in a first order linear-time
temporal logic. It has a precisely defined semantics that is amenable to formal analysis.
Finally, we have developed a methodology for the automated analysis and animation of
Formal Tropos specifications [4], based on model checking techniques [3].

Entity MediaItem
Attribute constant itemType : ItemType, price : Amount, InStock : Boolean

Dependency BuyMediaItems
Type goal
Mode achieve
Depender Customer
Dependee MediaRetailer
Attribute constant item : MediaItem
Fulfillment

 condition for depender
∀media : MediaItem(self.item.type = media.type → item.price <= media.price)

[the customer expects to get the best price for the type of item]

Dependency ContinuousSupply
Type goal
Mode maintain
Depender MediaRetailer
Dependee MediaSupplier
Attribute constant item : MediaItem
Fulfillment

 condition for depender
∃buy : BuyItem(JustCreated(buy) → buy.item.inStock)

[the media retailer expects to get items in stock as soon as someone is interested to buy them]

Figure 2 : Formal Tropos Specifications

As an example, Figure 2 presents the specification in Formal Tropos for the BuyMediaItems
and ContinuousSupply goal dependencies. Notice that the Formal Tropos specification
provides additional information that is not present in the i* diagram. For instance, the
fulfillment condition of BuyMediaItems states that the customer expects to get the best price
for the type of product that she is buying. The condition for ContinuousSupply states that the
shop expects to have the items in stock as soon as someone is interested in buying them.

3. Organizational Styles
Organizational theory [10, 14] and strategic alliances literature [6, 15, 16] study alternative
styles for (business) organizations. These styles are used to model how business stakeholders
— individuals, physical or social systems — coordinate in order to achieve common goals.
Tropos adopts (some of these) organizational styles at the macroscopic level of its ontology in
order to describe the overall structure of the organizational context of the system or its
architecture. In this section, we explain some of these styles in terms of the basic ontology
introduced in the previous section.

The structure-in-5 (Figure 3a) is a typical organizational style. At the base level, the
Operational Core takes care of the basic tasks — the input, processing, output and direct
support procedures — associated with running the organization. At the top lies the Apex,
composed of strategic executive actors. Below it, sit the Coordination, Middle Agency and
Support actors, who are in charge of control/standardization, management and logistics
procedures, respectively. The Coordination component carries out the tasks of standardizing
the behavior of other components, in addition to applying analytical procedures to help the
organization adapt to its environment. Actors joining the apex to the operational core make up
the Middle Agency. The Support component assists the operational core for non-operational
services that are outside the basic flow of operational tasks and procedures.

Apex

Standardize

Coordination

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non-operational

Logistics SupportControl

(a)

Delegation
Authority

Partner_1
Principal

Principal
Partner_n

Resource
Exchange

Principal
Partner_2

Partner_1
Secondary Secondary

Partner_n

Knowledge
Sharing

Management
Joint

Support

Coordination
Added
Value

Contractual
Agreement

Supplying
Services

(b)

The organizational styles are generic structures defined at a metalevel that can be instantiated
to model/design a specific application context/architecture (see Figure 7 and 8). As an
example, Figure 4 specifies the structure-in-5 style in Telos [12]. The Telos language provides
features to describe metaconcepts used to represent the knowledge relevant to a variety of

Figure 3 : Structure-in-5 (a) and Joint Venture (b)

worlds — subject, usage, system, development worlds — related to a software system. Our
organizational styles are formulated as Telos metaconcepts, primarily based on the aggregation
semantics for Telos presented in [11].

The structure-in-5 style is specified as a Telos metaclass, StructureIn5MetaClass. It is an
aggregation of five (part) metaclasses, one for each actor composing the structure-in-5 style:
ApexMetaClass, CoordinationMetaClass, MiddleAgencyMetaClass, SupportMetaClass and
OperationalCoreMetaClass. Each of these five components exclusively belongs
(exclusivePart) to the composite (Structure-In5MetaClass), and their existence depends
(dependentPart) on the existence of the composite.

TELL CLASS StructureIn5MetaClass
IN Class WITH /*Class is here used as a MetaMetaClass*/
attribute name: String
part, exclusivePart, dependentPart
 ApexMetaClass: Class
 CoordinationMetaClass: Class
 MiddleAgencyMetaClass: Class
 SupportMetaClass: Class
 OperationalCoreMetaClass: Class
END StructureIn5MetaClass

Figure 4 : Structure-in-5 in Telos

The joint venture style (Figure 3b) is a more decentralized style that involves an agreement
between two or more principal partners in order to obtain the benefits derived from operating
at a larger scale and reusing the experience and knowledge of the partners. Each principal
partner can manage and control itself on a local dimension and interact directly with other
principal partners to exchange, provide and receive services, data and knowledge. However,
the strategic operation and coordination is delegated to a Joint Management actor, who
coordinates tasks and manages the sharing of knowledge and resources. Outside the joint
venture, secondary partners supply services or support tasks for the organization core.

The takeover style involves the total delegation of authority and management from two or
more partners to a single collective takeover actor. It is similar in many ways to the joint
venture style. The major and crucial difference is that while in a joint venture identities and
autonomies of the separate units are preserved, the takeover absorbs these critical units in the
sense that no direct relationships, dependencies or communications are tolerated except those
involving the takeover.

The vertical integration style merges, backward or forward, several actors engaged in
achieving or realizing related goals or tasks at different stages of a production process. An
Organizer merges and synchronizes interactions/dependences between participants, who act
as intermediaries. Figure 5a presents a vertical integration style for the domain of goods
distribution. Provider is expected to supply quality products, Wholesaler is responsible for
ensuring their massive exposure, while Retailer takes care of the direct delivery to the
Consumers.

The pyramid style is the well-know hierarchical authority structure. Actors at lower levels
depend on those at higher levels for supervision. The crucial mechanism is direct supervision
from the Apex. Managers and supervisors at intermediate levels only route strategic decisions
and authority from the Apex to the operating (low) level. They can coordinate behaviors or
take decisions by their own, but only at a local level.

The arm’s-length style implies agreements between independent and competitive, but partner
actors. Partners keep their autonomy and independence but act and put their resources and
knowledge together to accomplish precise common goals. No authority is lost, or delegated
from one collaborator to another.

Wholesaler

Provider

Consumer

Organizer

Products

Market
Evaluation

Supply

Retailer

Acquire

Detect
Products

Products

Products Products

Products
Deliver

Massive
Supply

Directives

Direct Access

Quality Wide Access
to Market

to Consumer

Interest in

(a)

Controller

Negociator Deliberator

Routing Brokering

Observer

Executive

Mediator

Conflict
Solving

Contractor_1 Contractor_2 Contractor_3 Contractor_n

Authority
Strategic
Decisions

Coordinate

Monitoring Matching

Raw
Data

(b)

Figure 5 : Vertical Integration (a) and Hierarchical Contracting (b)

The hierarchical contracting style (Figure 5b) identifies coordinating mechanisms that
combine arm’s-length agreement features with aspects of pyramidal authority. Coordination
mechanisms developed for arm’s-length (independent) characteristics involve a variety of
negotiators, mediators and observers at different levels handling conditional clauses to monitor
and manage possible contingencies, negotiate and resolve conflicts and finally deliberate and
take decisions. Hierarchical relationships, from the executive apex to the arm’s-length
contractors restrict autonomy and underlie a cooperative venture between the parties.

The bidding style (Figure 6a) involves competitivity mechanisms, and actors behave as if they
were taking part in an auction. The Auctioneer actor runs the show, advertises the auction
issued by the auction Issuer, receives bids from Bidder actors and ensures communication and
feedback with the auction Issuer. The auction Issuer is responsible for issuing the bidding.

The co-optation style (Figure 6b) involves the incorporation of representatives of external
systems into the decision-making or advisory structure and behavior of an initiating
organization. By co-opting representatives of external systems, organizations are, in effect,
trading confidentiality and authority for resource, knowledge assets and support. The initiating
system has to come to terms with the contractors what is being done on its behalf; and each
co-optated actor has to reconcile and adjust its own views with the policy of the system it has
to communicate.

Start Bid
at the lowest

price

Run
Auction

Bidder_1 Bidder_2

Bid Higher No Higher
Bid

Bidder_n

Auctioneer

Issuer

Best

Bid
PossibleService/

Product

(a)

Knowledge
Sharing

Support

Cooptated_1

Contractor_1 Contractor_n

Services
Foreign

Provides
Assets Cooptated_2 Cooptated_n

Ressource
External

(b)
Figure 6 : Vertical Integration (a) and Hierarchical Contracting (b)

Organizational styles guide the development of the organizational model for a system. For
instance, suppose that we detect that the organizational style for the Media Company example
of the previous Section can be represented as a vertical integration. Then, the initial
organizational model of Figure 1 can be refined and completed as shown in Figure 7.

Customer

Packages

Supply
Products

Supply
Direct Access

Quality

Media
Producer

Massive
Exposure

Supplier

Find
Information

about
Media actors

Media

to Custumer
Continuous

Retailer
Media

Process
Order

Order
Place

Catalogue
Browse

User Needs
Find

Customers
Satisfied

Business
Long-term

Products
Interest in

Discover
New Talents

Media
System

Figure 7 : Modeling the Media Company with the Vertical Integration Style

Tropos aims to apply its social ontology not only to organizational models, but also to all
levels of software development (most notably, architectural design). For instance, the joint
venture style can be used to produce an architectural description of the Media System. A more
detailed description of this particular architecture can be found in [9]. Figure 8 suggests a
possible assignment of system responsibilities for the business-to-consumer (B2C) part of the
Media System. Following the joint venture style, the architecture is decomposed into three
principal partner actors (Store Front, Order Processor and Back Store). They control
themselves on a local dimension for exchanging, providing and receiving services, data and
resources with each other.

Each of the three system actors delegates authority to and is controlled and coordinated by the
joint management actor (Joint Manager), managing the system on a global dimension. Store
Front interacts primarily with Customer and provides her with a usable front-end Web
application. Back Store keeps track of all Web information about customer orders, product
sales, bills and other data of strategic importance to MediaRetailer. Order Processor is in
charge of the secure management of orders and bills, and other financial data. Joint Manager
manages all of them handling Security gaps, Availability bottlenecks and Adaptability issues,
three software quality attributes (as well as sub-attributes Authorization, Integrity, Usability,
Updatability and Maintainability) required for business-to-consumer applications identified
and evaluated in detail for our Media system example in [9].

All the system actors of Figure 8 will eventually be further specified into subactors, and
delegated with specific responsibilities. For instance, in the Store Front, Item Browser is
delegated the task of managing catalogue navigation; Shopping Cart, the selection and
customization of items; Customer Profiler, the tracking of customer data and the production
of client profiles; and Product Database, the management of media items information.
Similarly, to cope with Security, Availability and, Adaptability, Joint Manager is further
refined into three new system sub-actors Security Checker, Availability Manager and
Adaptability Manager. Further decomposition details can be found in [9].

Browser
Item

Item
Detail

Profiler
Customer

Customer
DataShopping

Cart

Integrity

Updatability

Usability
Security
Checker

Order
Processor

Check
Out

Authori-
zation

Front
Store

Database
Product

Consult
Catalogue

Item
Select

ability
Adapt-

Manager

Avail-
ability

Manager

Joint
Manager

Maintain-
ability

Back
Store

Information
Order

Figures
Ratings &

Figure 8 : Designing the System Architecture with the Joint Venture Style

4. Social Patterns
The last element of our ontology are the social patterns. Unlike organizational styles, they
focus on the social structure necessary to achieve one particular goal, instead of the overall
goals of the organization.

A social pattern defines the actors (together with their roles and reponsibilites) and the social
dependencies that are necessary for the achievement of the goal. Considerable work has been
done in software engineering for defining software patterns (see e.g., [5]); unfortunately, they
do not place emphasis on social aspects. On the other hand, proposals of patterns that address
social issues (see e.g., [1, 8]) are not intended to be used at an organizational level, but rather
during implementation phases by addressing issues such as agent communication, information
gathering from information sources, or connection setup.

In the following, we present some social patterns that focus on social mechanisms recurrent in
multi-agent and cooperative systems literature; in particular, the following structures are
inspired by the federated patterns introduced in [7, 18]. As with organizational styles, patterns
are also metastructures that can be instantiated to model/design a specific application
context/architecture (See Figure 12).

A broker (Figure 9a) is an arbiter and intermediary who has access services of an actor
(Provider) in order to satisfy the request of a Consumer. This pattern is especially used in the
hierarchical contracting and joint venture styles. Notice that roles are established in the context
of a particular interaction. For instance, Consumers may be in turn Providers, and vice versa.

A matchmaker (Figure 9b) locates a Provider that can handle a Consumer’s request for
service, and then directs the Consumer to the chosen Provider. As opposed to the Broker who
handles all interactions between the Consumer and the Provider, the Matchmaker only makes
the connection, and leaves all further interaction to be done directly between the intervening
actors. It can also be used in hierarchical contracting and joint ventures.

Service
Requested

Provider

Consumer Broker

Advertise
Service

Requested
Service

(a)

Consumer

Provider

Matchmaker

Advertise
Service

Requested
Service

Locate
Provider

(b)

Figure 9: Broker (a) and Matchmaker (b)

A mediator (Figure 10a) mediates interactions among different actors. An Initiator addresses
the Mediator instead of asking directly another colleague, the Performer. It has acquaintance
models of colleagues and coordinates the cooperation between them. Inversely, each colleague
has an acquaintance model of the Mediator. While a broker simply matches providers with
consumers, a Mediator encapsulates interactions and maintains models of initiators and
performers behaviors over time. It is used in the pyramid, vertical integration and hierarchical
contracting styles since it underlies direct cooperation and encapsulation reinforcing authority.

A monitor (Figure 10b) alerts a Subscriber about relevant events. It accepts subscriptions,
requests notifications for subjects of interest, receives such notifications, and alerts subscribers
of relevant events. The Subject provides notifications of state changes as requested. The
Subscriber registers for notification of state changes to distributed subjects, receives
notifications with current state information, and updates its local state information. This

pattern is used in the hierarchical contracting, vertical integration, arm’s-length and bidding
styles implying observation activities.

Map
Performer

MediatorInitiator

Performer

Route

Service
Performs

Service
Requested

(a)

Monitor

Change

Subscriber

NotifySubject

Change

Forward
Subscribed

(b)

Figure 10 : Mediator (a) and Monitor (b)

An embassy (Figure 11a) routes a service requested by a foreign actor (Foreigner) to a local
one, and handles back the response. If the access is granted, the Foreigner can submit
messages to the Embassy for translation. The content is translated in accordance with a
standard ontology. Translated messages are forwarded to target local actors. The results of the
query are passed back to the Foreigner, and translated in reverse. This pattern can be used in
the structure-in-5, arm’s-length, bidding and co-optation styles to handle security aspects
between systems component related to the competitivity mechanisms inherent to these styles.

A wrapper is an embassy that incorporates a legacy system into the organization. The
wrapper interfaces the clients to the legacy by acting as a translator between them. This
ensures that communication protocols are respected and the legacy system remains decoupled
from the clients. This pattern can be used in the co-optation style when one of the co-optated
actor is a representative for a legacy system.

The contract-net pattern (Figure 11b) selects an actor to which to assign a task. The pattern
involves a manager (Contractor) and any number of participants (Clients). The manager issues
a request for proposal for a particular service to all participants, and then accepts "proposals"
to meet the service request at a particular "cost". The manager selects one participant who
performs the contracted work and informs the manager upon completion. This pattern is used
in the arm’s-length, bidding and co-optation styles due to their inherent competitive features.

Route

Translate

Service
Requested

Access

Foreigner Embassy

Performative

Requested
Service

Native

(a)

Accept

Perform
Contracted

ContractorClient

Work

Request for
Poposal

(b)

Figure 11 : Embassy (a) and Contract-Net (b)

Figure 12 shows a possible use of the patterns in the e-business system shown in Figure 8. In
particular, it shows how to solve the goal of managing catalogue navigation that the Store
Front has delegated to the Item Browser. The goal is decomposed into subgoals and solved
with a combination of patterns.

Searcher
Info

Locate
Source

Source
Matchm.

Route Info
Request

Monitor

Provide
Information

change
Notify

Information
Hits

Processor
Statistics

Database
Product

Translate
Response

Profile
Customer Mediator

Wrapper
Query

Information
Source

Info
Ask for

Advertising

Item
Browser

Fwd source
change

Figure 12 : Social Patterns for Item Browser

The broker pattern is applied to the Info Searcher, which satisfies requests of searching
information by accessing Product Database. The Source Matchmaker applies the matchmaker
pattern locating the appropriate source for the Info Searcher, and the monitor pattern is used to
check any possible change in the Product Database. Finally, the mediator pattern is applied to
mediate the interaction among the Info Searcher, the Source Matchmaker, and the Wrapper,
while the wrapper pattern makes the interaction between the Item Browser and the Product
Database possible. Of course, other patterns can be applied. For instance, we could use the
contract-net pattern to select a wrapper to which delegate the interaction with the Product
Database, or the embassy to route the request of a wrapper to the Product Database.

5. Conclusion
We have proposed an ontology which views information systems as social structures. The
ontology has been inspired by organizational modeling frameworks and theories, also by
multi-agent and cooperative system research.

Obviously, this social perspective on software systems is best suited for software which
operates within an open, dynamic, and distributed environment, such as those that are
becoming prevalent with Web, Internet, agent, and peer-to-peer software technologies.

We are continuing work on formalizing the organizational styles and social patterns that have
been presented. In particular, we propose to define formally the patterns and styles as
metaclasses which are instantiated for particular information system designs. To this end, we
are improving the syntax and semantics of Formal Tropos especially to support metalevel
specifications. We also propose to compare and contrast our styles and patterns to classical
software architectural styles and patterns proposed in the software engineering literature and
relate them to implementation-inspired architectural components such as ports, connectors,
interfaces, libraries and configurations. Finally, we are working on formalizing the “code of
ethics” for the different patterns, answering the question: what can one expect from a broker,
mediator, embassy, etc.?

6. References
[1] Aridor, Y., and Lange, D. B. Agent Design Patterns: Elements of Agent Application

Design. In Proc. of the 2nd Int. Conf. on Autonomous Agents, Agents’98, pages 108—
115, St. Paul, USA, May 1998.

[2] Castro, J., Kolp, M., and Mylopoulos, J. A Requirements-Driven Development
Methodology. In Proc. of the 13th Int. Conf. on Advanced Information Systems
Engineering, CAiSE’01, pages 108—123, Interlaken, Switzerland, June 2001.

[3] Clarke, E., Grumberg, O., and Peled, D. Model Checking, MIT Press, 1999.
[4] Fuxman, A., Pistore M., Mylopoulos, J., and Traverso, P. Model Checking Early

Requirements Specification in Tropos. In Proc. of the 5th Int. Symposium on
Requirements Engineering, RE’01, Toronto, Canada, Aug. 2001.

[5] Gamma, E., Helm, R., Johnson, J., and Vlissides, J. Design Patterns: Elements of
Reusable Object-oriented Software, Addison-Wesley, 1995

[6] Gomes-Casseres, B. The Alliance Revolution : The New Shape of Business Rivalry,
Harvard University Press, 1996.

[7] Hayden, S., Carrick, C., and Yang, Q. Architectural Design Patterns for Multiagent
Coordination. In Proc. of the 3rd Int. Conf. on Autonomous Agents, Agents’99, Seattle,
USA, May 1999.

[8] Kendall, E., Murali Krishna, P. V., Pathak, C. V., and Suersh, C. B. Patterns of Intelligent
and Mobile Agents. In Proc. of the 2nd Int. Conf. on Autonomous Agents, Agents’98,
pages 92—99, St. Paul, USA, May 1998.

[9] Kolp, M., Castro, J., Mylopoulos, J. A Social Organization Perspective on Software
Architectures. In Proc. of the First Int. Workshop From Software Requirements to
Architectures, STRAW'01, pages 5—12, Toronto, May 2001.

[10] Mintzberg, H., Structure in Fives: Designing Effective Organizations, Prentice-Hall,
1992.

[11] Motschnig-Pitrik, R. The Semantics of PartsVersus Aggregates in Data/Knowledge
Modeling. In Proc. of the 5th Int. Conf. on Advanced Information Systems
Engineering,CAiSE’93, pages 352—372, Paris, June 1993.

[12] Mylopoulos, J., Borgida, A., Jarke, M., and Koubarakis, M. Telos: Representing
Knowledge About Information Systems. ACM Trans. Info. Sys., 8 (4):325 – 362, 1990.

[13] Shaw, M., and Garlan, D. Software Architecture: Perspectives on an Emerging
Discipline, Prentice Hall, 1996.

[14] Scott, W. R. Organizations : Rational, Natural, and Open Systems, Prentice Hall, 1998.
[15] Segil, L. Intelligent Business Alliances: How to Profit Using Today's Most Important

Strategic Tool, Times Business, 1996.
[16] Yoshino, M.Y., and Rangan, U. S. Strategic Alliances: An Entrepreneurial Approach to

Globalization, Harvard Business School Press, 1995.
[17] Yu, E. Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,

Department of Computer Science, University of Toronto, Canada, 1995.
[18] Woods, S. G., and Barbacci, M. Architectural Evaluation of Collaborative Agent-Based

Systems. Technical Report, CMU/SEI-99-TR-025, SEI, Carnegie Mellon University,
USA, 1999.

