
Enhancing Agent OPEN with concepts used in

the Tropos methodology?

Brian Henderson-Sellers1, Paolo Giorgini2, and Paolo Bresciani3

1 University of Technology, Sydney, NSW 2007 Australia,
brian@it.uts.edu.au,

2 Department of Information and Communication Technology
University of Trento, Trento, Italy
paolo.giorgini@dit.unitn.it
3 ITS-Irst, Povo (Trento), Italy

bresciani@itc.it

Abstract. Object technology has been supporting the development of
information systems for many years but is now slowly evolving to encom-
pass more recent ideas relating to the concept of “agent”. Integrating
agent concepts into existing OO methodologies has resulted in several
agent-oriented methodologies, one of which is Agent OPEN. In this pa-
per, we evaluate the existing Agent OPEN description against ideas for-
mulated within Tropos, an agent-oriented software development method-
ology.

1 Introduction and Background

While object technology has been in widespread use for the development of in-
formation systems for many years, new ideas from the agent-oriented community
are beginning to be addressed by extending existing OO methodologies to sup-
port the development of agent-based information systems (e.g., [26]). This is
particularly evident in the discussions regarding whether agent orientation is a
brand new paradigm requiring a non-OO mindset or whether it can be accom-
modated as an extension of existing OO ideas.

In this paper, we bring together one agent-oriented methodology which uses
agent concepts throughout the process itself (Tropos [2]) and an object-oriented
framework (the OPEN Process Framework or OPF [9]), specifically in its pub-
lished extensions to support agents [6]. In Section 2, we present these existing
extensions in the context of the OPF itself. In Section 3 we outline the Tropos
methodology and then in Section 4 we evaluate whether the OPF in its extended
form [6] is adequate to support the concepts and process elements described in
Tropos and, where not, what further extensions are needed. We conclude in
Section 5 with recommendations and outline directions for future work.

? This is Contribution Number 03/10 of the Centre for Object Technology Applications
and Research (COTAR).



2

2 The OPEN Process Framework and its Existing

Agent-oriented Enhancements

Integrating agent concepts into existing OOmethodologies has resulted in several
agent-oriented methodologies, for example, [7, 4, 26, 1]. One which we will discuss
is the OPEN Process Framework, or OPF [11, 17, 9], which is a little different
from most others in that it offers a metamodel-underpinned framework rather
than (strictly) a methodology.
Method engineering (e.g., [3, 24]) is then used to construct project-specific

or “situational” methods (a.k.a. methodologies). This is possible because of the
provision of a repository of method fragments (e.g., [25]) or process components
(e.g., [9]).
Initially, the repository of method fragments in OPEN was aimed at pro-

viding the ability to construct methodologies in the general area of information
systems development. However, as new ideas emerged over the last few years,
projects to extend the contents of the OPF repository have seen additions in ar-
eas such as component-based development [14], web-based development [13, 12]
and organizational transition [16]. Initial extensions to agent-oriented develop-
ment were formulated in [6, 15] and it is these extensions which we evaluate for
completeness against the agent-oriented Tropos methodology — a comparison
which is the focus of this paper.

2.1 The OPEN Process Framework

OPF consists of (i) a process metamodel or framework from which can be gen-
erated an organizationally-specific process (instance) created, using a method
engineering approach [3], from (ii) a repository and (iii) a set of construction
guidelines. The metamodel can be said to be at the M2 metalevel (Figure 1)
with both the repository contents and the constructed process instance at the
M1 level. The M0 level in Figure 1 represents the execution of the organiza-
tion’s (M1) process on a single project. Each (M1) process instance is created by
choosing specific process components from the OPF Repository (Figure 1) and
constructing (using the Construction Guidelines) a specific configuration — the
“personalized OO development process”. Then, using this method engineering
approach, from this process metamodel we can generate an organizationally-
specific process (instance).
The major elements in the OPF metamodel are Work Units (Activities, Tasks

and Techniques), Work Products and Producers [9] — see Figure 2. These three
components interact; for example producers perform work units, work units
maintain work products and producers produce work products. In addition to
these three metatypes, there are two auxiliary ones (Stages and Languages),
which interact as shown in Figure 2.
Activity is at the highest level in the sense that a process consists of a number

of Activities. Activities are largescale definitions of what must be done. They are
not used for project management or enactment because they are at too high



3

OPF’s Metamodel

Implemented Process(es)

OPF Repository 
containing Individual 
Process Component 

Descriptions

Constructed Process 
or Process Instance

M2

M1

M0

Fig. 1. Three metalevels (M2, M1, M0) that provide a framework in which the rela-
tionship between the metamodel (M2), the repository and process instances (M1) and
the implemented process (M0) can be seen to co-exist.

an abstraction level. Instead, OPEN offers the concept of Task (in agreement
with the terminology of the Project Managers’ Body of Knowledge [8]) which is
defined as being the smallest unit of work that can be project managed. Both
Activities and Tasks are kinds of Work Unit in the OPF metamodel (Figure 2).
Work Products are the outputs of the Activities. These work products may

be graphically or textually described. Thus, we need a variety of languages to de-
scribe them. Typical examples here are English (natural language), UML (mod-
elling language) and C# (implementation language). Since the metamodel itself
is a “design model”, it quite naturally is documented with one of the available
modelling languages: here the Unified Modeling Language of the OMG [19] is
the most commonly used (at least in OO developments).
While it is possible to analyze the metamodel directly, in this paper we

address the issue of whether the contents of the current repository for the OPF is
adequate for supporting agent-oriented developments. This repository contains
instances generated from each of the metaclasses in the metamodel. For each
metaclass there are potentially numerous instances. These are documented in
various books and papers, as noted earlier. The ones specific to agents are listed
in Table 1 (see next section).

2.2 The Current Agent OPEN

As a consequence of the modular nature of the OPEN approach to method-
ology, via the notion of a repository of process components together with the
application of method or process engineering [23], it is relatively easy to add ad-
ditional meta-elements and extremely easy to add additional examples of process
components to the repository (as instances of pre-existing meta-elements). To



4

Work
Products

Producers

Work
Units

Stages

Languages

Essential
Process

Components

produce

are
documented

using

create
evaluate

iterate
maintain

perform

provide
macro organization

to the

Guidelineshelp to

For each element (represented
by box), OPEN permits the
user to select how many and
which instances will be used.
The OPF documentation
provides a comprehensive list
of suggestions on the best
selections together with
guidelines on their best
organization.

Fig. 2. The five major metatypes in the OPF metamodel (after [9]).

extend this approach to support agent-oriented information systems, Debenham
and Henderson-Sellers [6] analyzed the differences between agent-oriented and
object-oriented approaches in order to be able to itemize and outline the nec-
essary additions to the OPEN Process Framework’s repository in the standard
format provided in [17]. The focus of that work was primarily on instances of
the meta-class WorkUnit useful for agent-oriented methodologies and processes.
Table 1 lists the Tasks and Techniques so far added to the OPF repository (no
new Activities were identified).

3 The Tropos Methodology

Tropos methodology [2, 10, 20] was designed to support agent-oriented systems
development with a particular emphasis on the early requirements engineering
phase. The stated aim was to use agent concepts in the description and definition
of the methodology rather than using OO concepts in a minor extension to
existing OO approaches. Tropos takes the BDI model [22, 18], formulated to
describe the internal view of a single agent, and applies those concepts to the
external view in terms of problem modelling as part of requirements engineering.
In Tropos [20, 5], AI derived mentalistic notions such as actors, goals, soft-

goals, plans, resources, and intentional dependencies are used in all the phases



5

Table 1 Tasks and Techniques already proposed [6, 15] for addition to the OPF repos-
itory in order to support the development of agent-oriented systems.

Tasks for AOIS Techniques likely to be useful

Identify agents’ roles Environmental evaluation

Model the agent’s environment Environmental evaluation

Identify system organization Environmental evaluation

Determine agent interaction protocol Contract nets
Determine delegation strategy Market mechanisms

Determine agent communication protocol FIPA KIF compliant language

Determine conceptual architecture 3-layer BDI model
Determine agent reasoning Deliberative reasoning: Plans

Reactive reasoning: ECA Rules

Determine control architecture Belief revision of agents
Commitment management
Activity scheduling
Task selection by agents
Control architecture

Determine system operation Learning strategies for agents
Gather performance knowledge

Determine security policy for agents [topic of future research]

Undertake agent personalization Environmental evaluation
User model incorporation

Identify emergent behaviour [topic of future research]

of software development, from the first phases of early analysis down to the ac-
tual implementation. It also includes descriptions of Work Products and several
Techniques such as Means-End Analysis, useful in requirements engineering. A
crucial role is given to the earlier analysis of requirements that precedes pre-
scriptive requirements specification. In particular, aside from the understanding
of how the intended system will fit into the organizational setting, and what the
system requirements are, Tropos addresses also the analysis of the why the sys-
tem requirements are as they are, by performing an in-depth justification with
respect to the organizational goals.

4 Supporting Tropos Concepts in the OPEN Process

Framework

In this section, we evaluate the existing Agent OPEN description (summarized
in Section 2.2 above) against ideas formulated within the Tropos methodology,
seeking any omissions or poor support of Tropos elements in the OPF. We then
make recommendations for enhancements to the OPF in order that it can fully
support all agent-oriented concepts formulated in Tropos.
Several new process components (method chunks) need to be added to the

existing OPF repository. These are primarily Tasks and Techniques but there
is also one new Activity: Early Requirements Engineering (in Tropos called the



6

Early Requirements Analysis phase) as well as some work products. All of these
are outlined below in standard OPEN format and summarized for convenience
in Table 2.

Table 2 Activity, Tasks, Techniques and Work Products proposed for inclusion in the
OPF repository as a result of analyzing Tropos.

Activity

Early requirements engineering

Tasks Related Techniques

Model actors

Model capabilities for actors Capabilities identification and analysis

Model dependencies for actors and goals Contribution analysis

Model goals Means–End Analysis
Contribution Analysis
AND/OR Decomposition

Model plans Means–End Analysis
Contribution Analysis
AND/OR Decomposition

Work Products

(Tropos) actor diagram
(Tropos) capability diagram
(Tropos) goal diagram
(Tropos) plan diagram

4.1 Activity

Early Requirements Engineering Early requirements engineering focusses
on domain modeling. It consists of identifying and analyzing the relevant actors
in organizations and their goals or intentions. These actors may correspond with
the stakeholders but may also include other social elements (individuals, but
also organizations, organizational units, teams, and so on) who do not directly
share an interest in the project, but still need to be modelled in order to produce
a sufficiently complete picture of the organizational domain. Each organization
active element is modelled as a (social) actor that is dependent upon another
(social) actor in order for them to achieve some stated goal. During Early Re-
quirements Engineering, these goals are decomposed incrementally and finally
the atomic goals can be used to support an objective analysis of alternatives.
The results of this analysis can be documented using a variety of Tropos

diagrams. Goals, actors and dependencies can be depicted on an actor diagram
and, in more detail, on a goal diagram. These results then form the basis for
the “late requirements analysis” which in OPEN is called simply Requirements
Engineering in which the system requirements are elicited in the context of the
stakeholders’ goals identified in this activity of Early Requirements Engineering.



7

4.2 Tasks

Task: Model actors

Focus: People, other systems and roles involved

Typical supportive techniques: Business process modelling, Soft systems analysis

Explanation. While the concept of actors in OO systems already exist (and
is supported in the original OPF), the Tropos methodology extends the OO
notion of an actor beyond that of a single person/system/role interacting with a
system to that of a more general entity that has strategic goals and intentionality
within the system or organizational setting [2] including also, for example, whole
organizations, organizational units and teams. Actors in Tropos can represent
either agents (both human and artificial) or roles or positions (a set of roles,
typically played by a single agent). This new Task thus considerably extends
the existing concepts related to traditional OO actors. To model an actor, one
must identify and analyze actors of both the environment and the system (or
system-to-be). Tropos encourages the use of this Task in the early requirements
phase for the modelling of domain stakeholders and their intentions as social
actors. Actors can be depicted using (Tropos) actor diagrams (see below).

Task: Model capabilities for actors

Focus: Capability of each actor in the system

Typical supportive techniques: Capabilities identification and analysis

Explanation. The capability of an actor represents its ability to define, choose
and execute a plan (for the fulfilment of a goal), given specific external envi-
ronmental conditions and a specific event [2]. Capability modelling commences
after the architecture has been designed, subsequent to an understanding of the
system sub-actors and their interdependencies. Each system subactor must be
provided with its own individual capabilities, perhaps with additional “social
capabilities” for managing its dependencies with other actors/subactors. Pre-
viously modelled goals and plans generally now become an integral part of the
capabilities. Capabilities can be depicted using (Tropos) capability diagrams and
plan diagrams (see below).

Task: Model dependencies for actors and goals

Focus: How/if an actor depends on another for goal achievements

Typical supportive techniques: Contribution analysis, Delegation analysis

Explanation. In Tropos, a dependency may exist between two actors so that one
actor depends in some way on the other in order to achieve its own goal, a goal
that cannot otherwise be achieved or not as well or as easily without involving
thsi second actor. Similarly, a dependency between two actors may exist for
plan execution or resource availability [2]. The actors are named, respectively,
the depender and the dependee while the dependency itself centres around the
dependum. Dependencies can be depicted using (Tropos) actor diagrams and, in
more detail, in goal diagrams (see below).



8

Task: Model goals
Focus: Actor’s strategic interests
Typical supportive techniques:Means-end analysis, contribution analysis, AND/OR
decomposition
Explanation. A goal represents an actor’s strategic interests [2] — Tropos recom-
mends both hard and soft goals. Modelling goals requires the analysis of those
actor goals from the view point of the actor itself. The rationale for each goal
relative to the stakeholder needs to be analyzed — typical Techniques are shown
in Table 2. Goals may be decomposed into subgoals, either as alternatives or
as concurrent goals. Plans may also be shown together with their decomposi-
tion, although details of plans are shown in a Plan Diagram (q.v.). Goals can be
depicted using (Tropos) goal diagrams (see below).

Task: Model plans
Focus: Means to achieve goals
Typical supportive techniques:Means-end analysis, contribution analysis, AND/OR
decomposition
Explanation. A plan represents a means by which a goal can be satisfied or, in the
case of a soft goal, satisficed [2]. Plan modelling complements goal modelling and
rests on reasoning techniques analogous to those used in goal modelling. Plans
can be depicted using (Tropos) goal diagrams and plan diagrams (see below).

4.3 Techniques

Technique: Means–End Analysis
Focus: Identifying means to achieve goals
Typical tasks for which this is needed: Model goals, Model plans
Description. Means-end analysis aims at identifying plans, resources and goals
as well as means to achieve the goals.
Usage. To perform means-end analysis, the following are performed iteratively:

– Describe the current state, the desired state (the goal) and the difference
between the two

– Select a promising procedure for enabling this change of state by using this
identified difference between present and desired states.

– Apply the selected procedure and update the current state.

If this successful finds an acceptable solution, then the iterations cease; otherwise
they continue. If no acceptable solution is possible, then failure is announced.

Technique: Contribution Analysis
Focus: Goals contributing to other goals
Typical tasks for which this is needed: Model goals, Model plans
Description. Contribution analysis identifies goals that may contribute to the
(partial) fulfilment of the final goal. It may be alternatively viewed as a kind



9

of means-end analysis in which the goal is identified as the means [2]. Con-
tribution analysis applied to softgoals is often used to evaluate non-functional
requirements.

Usage. Identify goals and soft-goals that can contribute either positively or neg-
atively towards the achievement of the overall goal or soft-goal. Of course the
focus is on identifying positive contributions, but the technique may also lead,
as a side effect, to the identification of negative contributions. Annotate these
appropriately (say with + or −). A + label indicates a positive, partial contri-
bution to the fulfilment of the goal being analyzed. Contribution analysis is very
effective for soft goals used for eliciting non-functional (quality) requirements.

Technique: AND/OR Decomposition

Focus: Goal decomposition

Typical tasks for which this is needed: Model goals, Model plans

Description. This is a technique to decompose a root goal into a finer goal struc-
ture.

Usage. Start with a high level goal and decompose into subgoals. These subgoals
may either be alternatives (OR decomposition) or additive (AND decomposi-
tion).

Technique: Capabilities identification and analysis

Focus: Capabilities identification

Typical tasks for which this is needed: Model capabilities for actors

Description. For each goal introduced, we identify a set of capabilities that the
responsible actor should have in order to fulfill the goal. When the achievement of
the goal involves also other actors, the analysis is expended also to these actors
and capabilities for the interaction/collaboration are identified and analyzed
contextually(see [2] for more details).

Usage. Start with a goal associated to an actor and identify the capabilities
needed locally. If the goal involves other actors the analysis is extended to these
actors with respect to their contribution in the achievement of the goal.

4.4 Work Products

Work Product: (Tropos) Actor Diagram In Tropos, the actor diagram
graphically depicts actors (as circles), their goals (as ellipses and clouds) attached
to the relevant actor (Figure 3-a) together with a network of dependencies be-
tween the actors (Figure 3-b). In Figure 3-a, Citizen has two goals: the hard goal
to “get information” and the soft goal to “ensure taxes well spent”. However,
this soft goal is best delegated to the Information Bureau actor. To show this
delegation, the delegated goal is shown explicitly as a dependum (cloud sym-
bol) connected by two line segments to the two actors (Citizen and Information
Bureau) (Figure 3-b).



10

information
get

Info
Bureau

Citizen

ensure taxes
well spent

information
get

Info
Bureau

ensure taxes
well spent

Citizen

(a) (b)

Fig. 3. (a) Example actor diagram showing goals attached to actors; (b) Example actor
diagram showing an explicit dependee, depender and dependum

Work Product: (Tropos) Capability Diagram A capability diagram is
drawn from the viewpoint of a specific agent. They are initiated by an event
caused by an external event. Nodes in the diagram model plans (which can be
expanded through the use of a Plan Diagram (q.v)) and transition arcs model
events. Beliefs are modelled as objects [2]). Each node in the capability diagram
may be expanded into a Plan Diagram (q.v.). Capability diagrams in Tropos use
UML activity diagrams.

services 

good
cultural 

logistic info

make
reservations

provide
eCultural
services

provide
info

educational
services

virtual visits

cultural info

Info
Bureau

AND

AND

+

good
services 

+

reasonable
expenses 

+

funding
museum

well spent
taxes

+ +

Fig. 4. Example goal diagram (after [2])

Work Product: (Tropos) Goal Diagram Figure 4 shows an example goal
diagram in which the focus is that of how Information Bureau tries to achieve
the delegated softgoal “taxes well spent”. Providing good services with reason-
able expenses, Information Bureau can contribute to spend taxes well. Good
services may include good cultural services, which in turn may include services
available via web. So “provide eCultural services” can contribute positively in
achieving the sofgoal “good cultural services”. Figure 4 shows also the partial
AND decomposition of “provide eCultural services” goal.



11

Work Product: (Tropos) Plan Diagram A plan diagram depicts the internal
structure of a plan, summarized as a single node on a Capability diagram (q.v.).
Plan diagrams in Tropos use UML activity diagrams.

5 Conclusions and Future Work

Tropos extends methodological thinking into early requirements. It captures
many aspects of agent-oriented requirements gathering not previously docu-
mented. In analyzing the extent to which other methodological frameworks, and
in particular the OPEN Process Framework, supports these ideas, many defi-
ciencies were identified. Here, we have itemized these gaps in OPEN’s repository
of process components and proposed additions to the repository specifically to
address activities, tasks, techniques and work products found in Tropos but,
until now, not available in the OPF repository.
We intend to progress these cross-fertilization between OPEN and Tropos,

specifically taking advantage of the strengths of each: the early requirements
engineering and agent focus of Tropos and the full lifecycle process of OPEN
together with its metamodel-based underpinning that permits it to be used for
situated method engineering.

References

1. Bernon, C., Gleizes, P.-P., Picard, G. and Glize, P., The ADELFE methodology for
an intranet system design, Procs. Agent-Oriented Information Systems 2002 (eds.
P. Giorgini, Y. Lespérance, G. Wagner and E. Yu), May 2002, Toronto, Canada.

2. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopolous, J. and Perini, A.: Tropos: an
agent-oriented software development methodology. Journal of Autonomous Multi-
Agent Systems (2003) in press

3. Brinkkemper, S.: Method engineering: engineering of information systems develop-
ment methods and tools. Inf. Software Technol. 38(4) (1996) 275–280

4. Caire, G., Chainho, P., Evans, R., Garijo, F., Gomez Sanz, J., Kearney, P., Leal,
F., Massonet, P., Pavon, J. and Stark, J., Agent-oriented analysis using MES-
SAGE/UML, Procs. Second Int. Workshop on Agent-Oriented Software Engineering
(AOSE–2001), Montreal, Canada, May 2001, 101–107 (2001)

5. Castro J., Kolp M. and Mylopoulos J.: Towards Requirements-Driven Information
Systems Engineering: The Tropos Project. Information Systems. Elsevier, Amster-
dam, the Netherlands (2003) in press

6. Debenham, J. and Henderson-Sellers, B., Designing agent-based process systems
— extending the OPEN Process Framework, Chapter VIII in Intelligent Agent
Software Engineering (ed. V. Plekhanova), Idea Group Publishing (2003) 160–190

7. DeLoach, S.A., Multiagent systems engineering: a methodology and language for
designing agent systems, Procs. Agent-Oriented Information Systems ’99 (AOIS’99),
Seattle, WA, USA, 1 May (1999) 1999

8. Duncan, W.R.: A Guide to the Project Management Body of Knowledge, Project
Management Institute, PA, USA (1996) 176pp

9. Firesmith, D.G. and Henderson-Sellers, B.: The OPEN Process Framework. An
Introduction, Addison-Wesley, Harlow, UK (2002) 330pp



12

10. Giorgini P., Perini A., Mylopoulos J., Giunchiglia F. and Bresciani P.: Agent-
Oriented Software Development: A Case Study . Proceedings of the Thirteenth
International Conference on Software Engineering and Knowledge Engineering
(SEKE01), June 13-15 2001, Buenos Aires, Argentina (2001)

11. Graham, I., Henderson-Sellers, B. and Younessi, H.: The OPEN Process Specifica-
tion, Addison-Wesley, Harlow, UK (1997) 314pp

12. Haire, B., Henderson-Sellers, B. and Lowe, D., Supporting web development in
the OPEN process: additional tasks, Procs. 25th Annual International Computer
Software and Applications Conference. COMPSAC 2001, IEEE Computer Society
Press, Los Alamitos, CA, USA (2001) 383–389

13. Haire, B., Lowe, D. and Henderson-Sellers, B., Supporting web development in the
OPEN process, Object-Oriented Information Systems (eds. Z. Bellahsène, D. Patel
and C. Rolland), LNCS 2425, Springer–Verlag, 2002.

14. Henderson-Sellers, B., An OPEN process for component-based development, Chap-
ter 18 in Component-Based Software Engineering: Putting the Pieces Together (eds.
G.T. Heineman and W. Councill), Addison-Wesley, Reading, MA, USA, 2001.

15. Henderson-Sellers, B. and Debenham, J., 2003, Towards OPEN methodological
support for agent oriented systems development, submitted for publication

16. Henderson-Sellers, B. and Serour, M., Creating a process for transitioning to ob-
ject technology, Proceedings Seventh Asia–Pacific Software Engineering Conference.
APSEC 2000, IEEE Computer Society Press, Los Alamitos, CA, USA, 2000.

17. Henderson-Sellers, B., Simons, A.J.H. and Younessi, H.: The OPEN Toolbox of
Techniques, Addison-Wesley, UK (1998) 426pp + CD

18. Kinny, D., Georgeff, M. and Rao, A., A methodology and modelling techniques for
systems of BDI agents, TR 58, Australian Artificial Intelligence Institute (1996)

19. OMG: OMG Unified Modeling Language Specification, Version 1.4, September
2001, OMG document formal/01-09-68 through 80 (13 documents) [Online]. Avail-
able http://www.omg.org (2001)

20. Perini A., Bresciani P., Giorgini P., Giunchiglia G. and Mylopoulos J.: A Knowl-
edge Level Software Engineering Methodology for Agent Oriented Programming. In
J. P. Müller, E. Andre, S. Sen, and C. Frasson, editors, Proceedings of the Fifth In-

ternational Conference on Autonomous Agents, May 2001, Montreal, Canada, 2001.
21. Perini A., Bresciani P., Giorgini P., Giunchiglia F. and Mylopoulos J.: Towards

an Agent Oriented approach to Software Engineering. In A. Omicini and M. Vi-
roli, editors, WOA 2001 – Dagli oggetti agli agenti: tendenze evolutive dei sistemi

software, 4–5 September 2001, Modena, Italy, Pitagora Editrice Bologna (2001)
22. Rao, A.S. and Georgeff, M.P., BDI agents: from theory to practice, Technical Note

56, Australian Artificial Intelligence Institute (1995)
23. Rupprecht, C., Fünffinger, M., Knublauch, H. and Rose, T., Capture and dissemi-

antion of experience about the construction of engineering processes, Procs. CAiSE
2000, LNCS 1789, Springer Verlag, Berlin, 294-308 (2000)

24. Ter Hofstede, A.H.M. and Verhoef, T.F., On the feasibility of situational method
engineering, Information Systems, 22, 401-422 (1997)

25. van Slooten, K., Hodes, B., Characterizing IS development projects, in Proceedings
of the IFIP TC8 Working Conference on Method Engineering: Principles of method
construction and tool support (eds. S. Brinkkemper, K. Lyytinen, R. Welke) Chap-
man&Hall, Great Britain, 29–44 (1996)

26. Wooldridge, M., Jennings, N.R. and Kinny, D., The Gaia methodology for agent-
oriented analysis and design, J. Autonomous Agents and Multi-Agent Systems, 3,
285–313 (2000)


