
Towards Requirements-Driven Information

Systems Engineering: The Tropos Project

Jaelson Castro a Manuel Kolp b,1 John Mylopoulos c

aUniversidade Federal de Pernambuco, Centro de Informática, Av. Prof. Luiz
Freire S/N, Recife PE, Brazil 50732-970

bUniversity of Louvain, IAG School of Management, Information Systems
Research Unit, 1 Place des Doyens, B-1348, Louvain-La-Neuve, Belgium

cUniversity of Toronto, Department of Computer Science, 6 King’s College Road,
Toronto M5S 3H5, Ontario, Canada

Abstract

Information systems of the future will have to perform well within ever-changing
organizational environments. Unfortunately, existing software development method-
ologies (object-oriented, structured or otherwise) have traditionally been inspired by
programming concepts, not organizational ones, leading to a semantic gap between
the software system and its operational environment. To reduce this gap, we propose
a software development methodology named Tropos which is founded on concepts
used to model early requirements. Our proposal adopts the i* organizational mod-
eling framework, which offers the notions of actor, goal and (actor) dependency, and
uses these as a foundation to model early and late requirements, architectural and
detailed design. The paper outlines Tropos phases through an e-business example,
and sketches a formal language which underlies the methodology and is intended to
support formal analysis. The methodology seems to complement well proposals for
agent-oriented programming platforms.

Key words:
Software development methodology, requirements engineering, information
systems analysis and design, agent-oriented systems, software architectures.

1 Corresponding author. Tel.: +32-10-47-8395; fax: +32-10-47-8324; e-mail:
kolp@isys.ucl.ac.be

Preprint submitted to Elsevier Preprint 4 January 2002

1 Introduction

Information systems have traditionally suffered from an impedance mismatch.
Their operational environment is understood in terms of actors, responsibil-
ities, objectives, tasks and resources, while the information system itself is
conceived as a collection of (software) modules, entities (e.g., objects, agents),
data structures and interfaces. This mismatch is one of the main factors for
the poor quality of information systems, also the frequent failure of system
development projects.

One cause of this mismatch is that development methodologies have tradi-
tionally been inspired and driven by the programming paradigm of the day.
This means that the concepts, methods and tools used during all phases of
development were based on those offered by the pre-eminent programming
paradigm. So, during the era of structured programming, structured analysis
and design techniques were proposed [15,49], while object-oriented program-
ming has given rise more recently to object-oriented design and analysis [4,45].
For structured development techniques this meant that throughout software
development, the developer could conceptualize the system in terms of func-
tions and processes, inputs and outputs. For object-oriented development, on
the other hand, the developer thinks throughout in terms of objects, classes,
methods, inheritance and the like.

Using the same concepts to align requirements analysis with system design and
implementation makes perfect sense. For one thing, such an alignment reduces
impedance mismatches between different development phases. Moreover, such
an alignment can lead to coherent toolsets and techniques for developing sys-
tem (and it has!) as well, it can streamline the development process itself.

But, why base such an alignment on implementation concepts? Requirements
analysis is arguably the most important stage of information system develop-
ment. This is the phase where technical considerations have to be balanced
against social and organizational ones and where the operational environment
of the system is modeled. Not surprisingly, this is also the phase where the
most and costliest errors are introduced to a system. Even if (or rather, when)
the importance of design and implementation phases wanes sometime in the
future, requirements analysis will remain a critical phase for the development
of any information system, answering the most fundamental of all design ques-
tions: “what is the system intended for?”

Information systems of the future, such as enterprise resource planning (ERP),
groupware, knowledge management and e-business systems, should be de-
signed to match their operational environment. For instance, ERP systems
have to implement a process view of the enterprise to meet business goals,

2

tightly integrating all relevant functions of their operational environment. To
reduce as much as possible this impedance mismatch between the system and
its environment, we outline in this paper a development framework, named
Tropos 2 , which is requirements-driven in the sense that it is based on concepts
used during early requirements analysis. To this end, we adopt the concepts
offered by i* [52], a modeling framework proposing concepts such as actor (ac-
tors can be agents, positions or roles), as well as social dependencies among
actors, including goal, softgoal, task and resource dependencies. These concepts
are used for an e-commerce example 3 to model not just early requirements,
but also late requirements, as well as architectural and detailed design. The
proposed methodology spans four phases:

• Early requirements, concerned with the understanding of a problem by
studying an organizational setting; the output of this phase is an orga-
nizational model which includes relevant actors, their respective goals and
their inter-dependencies.

• Late requirements, where the system-to-be is described within its opera-
tional environment, along with relevant functions and qualities.

• Architectural design, where the system’s global architecture is defined in
terms of subsystems, interconnected through data, control and other de-
pendencies.

• Detailed design, where behaviour of each architectural component is defined
in further detail.

The proposed methodology includes techniques for generating an implemen-
tation from a Tropos detailed design. Using an agent-oriented programming
platform for the implementation seems natural, given that the detailed design
is defined in terms of (system) actors, goals and inter-dependencies among
them. For this paper, we have adopted JACK as programming platform to
study the generation of an implementation from a detailed design. JACK
is a commercial product based on the BDI (Beliefs-Desires-Intentions) agent
architecture.

This paper is an extended and revised version of [7] and integrates further re-
sults from [6,20,21,32–34,37]. Section 2 of the paper describes a case study for
a B2C (business to consumer) e-commerce application. Section 3 introduces
the primitive concepts offered by i* and illustrates their use with an example.
Sections 4, 5, and 6 illustrate how the technique works for late requirements,
architectural design and detailed design respectively. Section 7 sketches the

2 For further detail and information about the Tropos project, see
http://www.cs.toronto.edu/km/tropos.
3 Although, we could have included a simpler (toy) example, we decided to present
a more realistic e-commerce system development exercise of moderate complexity
[12].

3

implementation of the case study using the JACK agent development envi-
ronment. Finally, Section 8 summarizes the contributions of the paper and
relates it to the literature while Appendix A summarizes the methodology.

2 A Case Study

Media Shop is a store selling and shipping different kinds of media items
such as books, newspapers, magazines, audio CDs, videotapes, and the like.
Media Shop customers (on-site or remote) can use a periodically updated
catalogue describing available media items to specify their order. Media Shop
is supplied with the latest releases from Media Producer and in-catalogue items
by Media Supplier. To increase market share, Media Shop has decided to open
up a B2C retail sales front on the internet. With the new setup, a customer
can order Media Shop items in person, by phone, or through the internet.
The system has been named Medi@ and is available on the world-wide-web
using communication facilities provided by Telecom Cpy. It also uses financial
services supplied by Bank Cpy, which specializes on on-line transactions. The
basic objective for the new system is to allow an on-line customer to examine
the items in the Medi@ internet catalogue, and place orders.

There are no registration restrictions, or identification procedures for Medi@
users. Potential customers can search the on-line store by either browsing the
catalogue or querying the item database. The catalogue groups media items of
the same type into (sub)hierarchies and genres (e.g., audio CDs are classified
into pop, rock, jazz, opera, world, classical music, soundtrack, . . .) so that cus-
tomers can browse only (sub)categories of interest. An on-line search engine
allows customers with particular items in mind to search title, author/artist
and description fields through keywords or full-text search. If the item is not
available in the catalogue, the customer has the option of asking Media Shop
to order it, provided the customer has editor/publisher references (e.g., ISBN,
ISSN), and identifies herself (in terms of name and credit card number). De-
tails about media items include title, media category (e.g., book) and genre
(e.g., science-fiction), author/artist, short description, editor/publisher inter-
national references and information, date, cost, and sometimes pictures (when
available).

3 Early Requirements Analysis with i*

Early requirements analysis focuses on the intentions of stakeholders. These
intentions are modeled as goals which, through some form of a goal-oriented
analysis, eventually lead to the functional and non-functional requirements of

4

the system-to-be [13]. In i* (which stands for “distributed intentionality”),
stakeholders are represented as (social) actors who depend on each other for
goals to be achieved, tasks to be performed, and resources to be furnished.
The i* framework includes the strategic dependency model for describing the
network of relationships among actors, as well as the strategic rationale model
for describing and supporting the reasoning that each actor goes through con-
cerning its relationships with other actors. These models have been formal-
ized using intentional concepts from Artificial Intelligence, such as goal, belief,
ability, and commitment (e.g., [11]). The framework has been presented in de-
tail in [24,52] and has been related to different application areas, including
requirements engineering [50], software processes [51], and business process
reengineering [53].

A strategic dependency model is a graph involving actors who have strate-
gic dependencies among each other. A dependency describes an “agreement”
(called dependum) between two actors: the depender and the dependee. The
depender is the depending actor, and the dependee, the actor who is depended
upon. The type of the dependency describes the nature of the agreement. Goal
dependencies are used to represent delegation of responsibility for fulfilling a
goal; softgoal dependencies are similar to goal dependencies, but their fulfill-
ment cannot be defined precisely (for instance, the appreciation is subjective,
or the fulfillment can occur only to a given extent); task dependencies are
used in situations where the dependee is required to perform a given activ-
ity; and resource dependencies require the dependee to provide a resource to
the depender. As shown in Figure 1, actors are represented as circles; depen-
dums – goals, softgoals, tasks and resources – are respectively represented
as ovals, clouds, hexagons and rectangles; and dependencies have the form
depender → dependum → dependee.

Buy Media
Items

Media
Producer

Customers
Happy

Customer
Media Media

Supplier

Consult
Catalogue

Continuous
Supply

Continuing
Business

Media Items

Shop
Quality

Packages

Increase
Market Share

Fig. 1. i* Model for a Media Shop

These elements are sufficient for producing a first model of an organizational
environment. For instance, Figure 1 depicts an i* model of our Medi@ exam-
ple. The main actors are Customer, Media Shop, Media Supplier and Media
Producer. Customer depends on Media Shop to fulfill her goal: Buy Media

5

Items. Conversely, Media Shop depends on Customer to increase market share
and make “customers happy”. Since the dependum Happy Customers cannot
be defined precisely, it is represented as a softgoal. The Customer also depends
on Media Shop to consult the catalogue (task dependency). Furthermore, Me-
dia Shop depends on Media Supplier to supply media items in a continuous
way and get a Media Item (resource dependency). The items are expected to
be of good quality because, otherwise, the Continuing Business dependency
would not be fulfilled. Finally, Media Producer is expected to provide Media
Supplier with Quality Packages.

We have defined a formal language, called Formal Tropos [21], that comple-
ments i* in several directions. First of all, it provides a textual notation for
i* models and allows us to describe dynamic constraints among the different
elements of a specification in a first order, linear-time temporal logic. Second,
it has a precisely defined semantics that is amenable to formal analysis. Fi-
nally, Formal Tropos comes with a methodology for the automated analysis
and animation of specifications [21], based on model checking techniques [9].

As an example, Figure 2 presents the specification for the Buy Media Items
and Continuous Supply goal dependencies. Notice that this specification pro-
vides additional information not present in the i* diagram. For instance, the
fulfillment condition of Buy Media Items states that the customer expects to
get the best price for the type of product she is buying. The condition for
Continuous Supply states that the shop expects to have the items in stock as
soon as someone is interested in buying them.

Entity Media Item
Attribute constant type : Type, price : Amount, inStock : Boolean

Dependency Buy Media Items
Type goal
Mode achieve
Depender Customer
Dependee Media Shop
Attribute constant item : Media Item
Fulfillment

condition for depender
∀ media : MediaItem(self.item.type = media.type → item.price ≤ media.price)

[the customer expects to get the best price for the type of item]

Dependency Continuous Supply
Type goal
Mode maintain
Depender Media Shop
Dependee Media Supplier
Attribute constant item : Media Item
Fulfillment

condition for depender
∃buy : BuyItem(JustCreated(buy) → buy.item.inStock)

[the media retailer expects to get items in stock as soon as
someone is interested in buying them]

Fig. 2. A Formal Tropos Specification

6

Once the relevant stakeholders and their goals have been identified, a strategic
rationale model determines through a means-ends analysis how these goals
(including softgoals) can actually be fulfilled through the contributions of other
actors. A strategic rationale model is a graph with four types of nodes - goal,
task, resource, and softgoal - and two types of links - means-ends links and
task decomposition links. A strategic rationale graph captures the relationship
between the goals of each actor and the dependencies through which the actor
expects these dependencies to be fulfilled.

Figure 3 focuses on one of the (soft)goal dependency identified for Media Shop,
namely Increase Market Share. To achieve that softgoal, the analysis postu-
lates a goal Run Shop that can be fulfilled by means of a task Run Shop.
Tasks are partially ordered sequences of steps intended to accomplish some
(soft)goal. Tasks can be decomposed into goals and/or subtasks, whose col-
lective fulfillment completes the task. In the figure, Run Shop is decomposed
into goals Handle Billing and Handle Customer Orders, tasks Manage Staff
and Manage Inventory, and softgoal Improve Service which together accom-
plish the top-level task. Sub-goals and subtasks can be specified more precisely
through refinement. For instance, the goal Handle Customer Orders is fulfilled
either through tasks Order By Phone, Order In Person or Order By Internet
while the task Manage Inventory would be collectively accomplished by tasks
Sell Stock and Enhance Catalogue. These decompositions eventually allow us
to identify actors who can accomplish a goal, carry out a task, or deliver on
some needed resource for Media Shop. Such dependencies in Figure 3 are,
among others, the goal and resource dependencies on Media Supplier for sup-
plying, in a continuous way, media items to enhance the catalogue and sell
products, the softgoal dependencies on Customer for increasing market share
(by running the shop) and making customers happy (by improving service),
and the task dependency Accouting on Bank Cpy to keep track of business
transactions.

4 Late Requirements Analysis

Late requirements analysis results in a requirements specification which de-
scribes all functional and non-functional requirements for the system-to-be.
In Tropos, the information system is represented as one or more actors which
participate in a strategic dependency model, along with other actors from the
system’s operational environment. In other words, the system comes into the
picture as one or more actors who contribute to the fulfillment of stakeholder
goals.

7

Customers

Process
Internet

Market Share
Increase

Accounting

Cpy
Telecom Communication

Services Medi@

Supplier
Media

Items
Media

Legend
Means-ends link

Happy

Orders

Actor

Actor Boundary

Items
Buy Media

Customer

Bank Cpy

DependeeDepender X
Dependency

Decomposition link

Goal

Ressource

Task

Softgoal

Manage
Orders

Customer

Billing

Staff

Be Friendly

Handle

Handle

Service
Improve

Phone
OrderBy

Enhance
Catalogue

Select
Items

Consult
Catalogue

OrderBy
Internet

Staff
Training

Desires
Customer
Satisfy

Person
OrderIn

Determine
Amount

Sell Stock

Shop

Inventory
Manage

Media
Run Shop

Run
Shop

Continuing
Business

Continuing
Supply

Fig. 3. Means-Ends Analysis for the Softgoal Increase Market Share

For our example, the Medi@ system is introduced as an actor in the strategic
dependency model depicted in Figure 4. With respect to the actors previously
identified, Customer depends on Media Shop to buy media items while Media
Shop depends on Customer to increase market share and make them happy
(with Media Shop service). Media Supplier is expected to supply Media Shop
with media items in a continuous way since depending on the latter for contin-
uing business. It can also use Medi@ to determine new needs from customers,
such as media items not available in the catalogue while expecting Media
Producer to provide her with quality packages. As indicated earlier, Media
Shop depends on Medi@ for processing internet orders and on Bank Cpy to
process business transactions. Customer, in turn, depends on Medi@ to place
orders through the internet, to search the database for keywords, or simply
to browse the on-line catalogue. With respect to relevant qualities, Customer
requires that transaction services be secure and usable, while Media Shop ex-
pects Medi@ to be easily adaptable (e.g., catalogue enhancing, item database
evolution, user interface update, . . .). Finally, Medi@ relies on internet ser-
vices provided by Telecom Cpy and on secure on-line financial transactions
handled by Bank Cpy.

Although a strategic dependency model provides hints about why processes
are structured in a certain way, it does not sufficiently support the process
of suggesting, exploring, and evaluating alternative solutions. As late require-

8

Increase
Market Share

Buy Media
Items

Browse
Catalogue

Telecom
Cpy

Media
Supplier

Services
Internet

Services
Communication

Customer

Orders
Internet
Process

Place Order

Keyword
Search

Bank Cpy

Find User
Medi@

Business
Continuing

Media Shop

Media Items

New Needs

Security

Transactions
Money

Process
On-line

Accounting

Happy
Customers

Adaptability

Availability

Continuing
Supply

Fig. 4. Strategic Dependency Model for a Media Shop

ments analysis proceeds, Medi@ is given additional responsibilities, and ends
up as the depender of several dependencies. Moreover, the system is decom-
posed into several sub-actors which take on some of these responsibilities. This
decomposition and responsibility assignment is realized using the same kind of
means-ends analysis along with the strategic rationale analysis illustrated in
Figure 3. Hence, the analysis in Figure 5 focuses on the system itself, instead
of an external stakeholder.

The figure postulates a root task Internet Shop Managed providing sufficient
support (++) [8] to the softgoal Increase Market Share. That task is firstly
refined into goals Internet Order Handled and Item Searching Handled, soft-
goals Attract New Customer, Secure and Available, and tasks Produce Statis-
tics and Adaptation. To manage internet orders, Internet Order Handled is
achieved through the task Shopping Cart which is decomposed into subtasks
Select Item, Add Item, Check Out, and Get Identification Detail. These are
the main process activities required to design an operational on-line shop-
ping cart [12]. The latter (task) is achieved either through sub-goal Classic
Communication Handled dealing with phone and fax orders or Internet Han-
dled managing secure or standard form orderings. To allow for the ordering
of new items not listed in the catalogue, Select Item is also further refined
into two alternative subtasks, one dedicated to select catalogued items, the
other to preorder unavailable products. To provide sufficient support (++) to
the Adaptable softgoal, Adaptation is refined into four subtasks dealing with
catalogue updates, system evolution, interface updates and system monitor-

9

ing. The goal Item Searching Handled might alternatively be fulfilled through
tasks Database Querying or Catalogue Consulting with respect to customers’
navigating desiderata, i.e., searching with particular items in mind by using
search functions or simply browsing the catalogued products.

Internet

Available

Process

++

Place

Availability

-

++

Form

+

Media

Order

On-line
Money

Transactions

Process

Get

Buy

Secure

-

-
Search

Keyword

Catalogue

Consulting

+

Browse

Media

+

-

+

Cpy
Telecom

Detail

Order

++

Market Share

Cpy
Bank

Media
Shop

Orders

Items

Supplier

Catalogue

Secure

Catalogue

Identification

Customer
Attract New

Customer
Produce
Statistics

Update

Services

Shop

Internet
Handled

Adaptation

Increase

Item

Internet

Managed

Security
Adaptability

Medi@

Find User
New Needs

Internet

Orders
Handled

Internet

Handled
Searching

Order

MonitoringSystem

Available Non Available
Pre-Order

Item

System
Database

Communication

Shopping
Cart

Querying

Classic

Evolution

Item

Order

Form

Fax

Pick

Phone

Check Out

Order

Adaptable

Standard

Handled

Add Item
Select Item

Update GUI

Fig. 5. Strategic Rationale Model for Medi@

In addition, as already pointed, Figure 5 introduces softgoal contributions to
model sufficient/partial positive (respectively ++ and +) or negative (respec-
tively −− and −) support to softgoals Secure, Available, Adaptable, Attract
New Customers and Increase Market Share. The result of this means-ends
analysis is a set of (system and human) actors who are dependees for some of
the dependencies that have been postulated.

Resource, task and softgoal dependencies correspond naturally to functional

10

and non-functional requirements. Leaving (some) goal dependencies between
system actors and other actors is a novelty. Traditionally, functional goals are
“operationalized” during late requirements [13], while quality softgoals are
either operationalized or “metricized” [14]. For example, Billing Processor may
be operationalized during late requirements analysis into particular business
processes for processing bills and orders. Likewise, a security softgoal might be
operationalized by defining interfaces which minimize input/output between
the system and its environment, or by limiting access to sensitive information.
Alternatively, the security requirement may be metricized into something like
“No more than X unauthorized operations in the system-to-be per year”.

Leaving goal dependencies with system actors as dependees makes sense when-
ever there is a foreseeable need for flexibility in the performance of a task on
the part of the system. For example, consider a communication goal “com-
municate X to Y”. According to conventional development techniques, such a
goal needs to be operationalized before the end of late requirements analysis,
perhaps into some sort of a user interface through which user Y will receive
message X from the system. The problem with this approach is that the steps
through which this goal is to be fulfilled (along with a host of background
assumptions) are frozen into the requirements of the system-to-be. This early
translation of goals into concrete plans for their fulfillment makes systems
fragile and less reusable.

In our example, we have left three (soft)goals (Availability, Security, Adapt-
ability) in the late requirements model. The first goal is Availability because
we propose to allow system agents to automatically decide at run-time which
catalogue browser, shopping cart and order processor architecture fit best cus-
tomer needs or navigator/platform specifications. Moreover, we would like to
include different search engines, reflecting different search techniques, and let
the system dynamically choose the most appropriate. The second key softgoal
in the late requirements specification is Security. To fulfil it, we propose to
support in the system’s architecture a number of security strategies and let
the system decide at run-time which one is the most appropriate, taking into
account environment configurations, web browser specifications and network
protocols used. The third goal is Adaptability, meaning that catalogue con-
tent, database schema, and architectural model can be dynamically extended
or modified to integrate new and future web-related technologies.

5 Architectural Design

A system architecture constitutes a relatively small, intellectually manageable
model of system structure, which describes how system components work to-
gether. By now, in addition to classical architectural styles (e.g., [43]), software

11

architects have developed catalogues of style for e-business applications [12,26]
such as Thin Web Client, Thick Web Client, Web Delivery. Unfortunately,
these architectural styles focus on web concepts, protocols and underlying
technologies but not on business processes nor non functional requirements
of the application. As a result, the organizational architecture styles are not
described nor the conceptual high-level perspective of the e-business applica-
tion. In Tropos, we have defined organizational architectural styles [20,32–34]
for cooperative, dynamic and distributed applications like mutli-agent systems
to guide the design of the system architecture.

These architectural styles (flat structure, pyramid, joint venture, structure-in-
5, takeover, arm’s length, vertical integration, co-optation, bidding, . . .) are
based on concepts and design alternatives coming from research in organiza-
tion management: organization theory (e.g.,[42]), strategic alliances and part-
nerships (e.g.,[17]), theory of the firm (e.g.,[29]), agency theory (e.g.,[2]), . . .

Apex

Standardize

Coordination

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non-operational

Logistics SupportControl

Fig. 6. Structure-in-5

For instance, the structure-in-5 (Figure 6) is a typical organizational style.
At the base level, the Operational Core takes care of the basic tasks – the
input, processing, output and direct support procedures – associated with
running the organization. At the top lies the Apex, composed of strategic
executive actors. Below it, sit the Coordination, Middle Agency and Support
actors, who are in charge of control/standardization, management and logistics
procedures, respectively. The Coordination component carries out the tasks
of standardizing the behavior of other components, in addition to applying
analytical procedures to help the organization adapt to its environment. Actors
joining the apex to the operational core make up the Middle Agency. The

12

Support component assists the operational core for non-operational services
that are outside the basic flow of operational tasks and procedures.

The joint venture style (Figure 7) is a more decentralized style based on an
agreement between two or more principal partners who benefit from operat-
ing at a larger scale and reuse the experience and knowledge of their partners.
Each principal partner is autonomous on a local dimension and interacts di-
rectly with other principal partners to exchange services, data and knowledge.
However, the strategic operation and coordination of the joint venture is del-
egated to a Joint Management actor, who coordinates tasks and manages
the sharing of knowledge and resources. Outside the joint venture, secondary
partners supply services or support tasks for the organization core.

Delegation
Authority

Partner_1
Principal

Principal
Partner_n

Resource
Exchange

Principal
Partner_2

Partner_1
Secondary Secondary

Partner_n

Knowledge
Sharing

Management
Joint

Support

Coordination
Added
Value

Contractual
Agreement

Supplying
Services

Fig. 7. Joint Venture

The organizational styles are generic structures defined at a metalevel that
can be instantiated to design a specific application architecture (see Figure 9
for the joint venture style).

For instance, the structure-in-5 style is a metaclass, StructureIn5MetaClass,
aggregation of five (part) metaclasses, one for each actor composing the structure-
in-5 style: ApexMetaClass, CoordinationMetaClass, MiddleAgencyMetaClass,
SupportMetaClass and OperationalCoreMetaClass. Each of these five compo-
nents exclusively belongs to the composite (StructureIn5MetaClass), and their
existence depends on the existence of the composite. We are working on the
formalization of these styles in Formal Tropos [23].

13

These organizational styles have been evaluated and compared using soft-
ware quality attributes identified for architectures involving coordinated au-
tonomous components (e.g., Web, internet, agent or peer-to-peer software sys-
tems) such as predictability (1), security (2), adaptability (3), coordinability
(4), cooperativity (5), availability (6), integrity (7), modularity (8), or aggre-
gability (9). Table 1 summarizes the correlation catalogue for the organiza-
tional styles and quality attributes considered in [32,33]. Following notations
used by the NFR (non functional requirements) framework [8], +, ++, –, – –
respectively model partial/positive, sufficient/positive, partial/negative and
sufficient/negative contributions.

Table 1

Correlation Catalogue
1 2 3 4 5 6 7 8 9

Flat Structure – – – – – + + ++ –

Structure-in-5 + + + – + ++ ++ ++

Pyramid ++ ++ + ++ – + – – –

Joint-Venture + + ++ + – ++ + ++

Bidding – – – – ++ – ++ – – – ++

Takeover ++ ++ - ++ – – + + +

Arm’s-Length – – – + – ++ – – ++ +

Hierchical Contracting + + + + + +

Vertical Integration + + – + – + – – – – – –

Cooptation – – ++ ++ + – – – – –

The first task during architectural design is to select among alternative ar-
chitectural styles using as criteria the desired qualities identified earlier. In
Tropos, we use the NFR framework [8] to conduct such quality analysis. The
analysis involves refining these qualities, represented as softgoals, to sub-goals
that are more specific and more precise and then evaluating alternative archi-
tectural styles against them, as shown in Figure 8. The styles are represented as
operationalized softgoals (saying, roughly, “make the architecture of the new
system pyramid-/joint venture-/co-optation-based, . . . ”). Design rationale is
represented by claim softgoals drawn as dashed clouds. These can represent
contextual information (such as priorities) to be considered and properly re-
flected into the decision making process. Exclamation marks (! and !!) are
used to mark priority softgoals. A check-mark “

√
” indicates a fulfilled soft-

goal, while a cross “×” labels an unfulfillable one.

Software quality attributes Security, Availability and Adaptability have been
left in the late requirements model (See Section 4). They will guide the selec-
tion process of the appropriate architectural style.

14

In Figure 8, Adaptability is AND-decomposed into Dynamicity and Updata-
bility. For our e-commerce example, dynamicity should deal with the way the
system can be designed using generic mechanisms to allow web pages and user
interfaces to be dynamically and easily changed. Indeed, information content
and layout need to be frequently refreshed to give correct information to cus-
tomers or simply be fashionable for marketing reasons. Frameworks like Active
Server Pages (ASP), Server Side Includes (SSI) to create dynamic pages make
this attribute easier to achieve. Updatability should be strategically important
for the viability of the application, the stock management and the business
itself since Media Shop employees have to very regularly bring up to date the
catalogue for inventory consistency.

Availability is decomposed into Usability, Integrity and Response Time. Net-
work communication may not be very reliable causing sporadic loss of the
server. There should be data integrity concerns with the capability of the e-
business system to do what needs to be done, as quickly and efficiently as
possible: in particular with the ability of the system to respond in time to
client requests for its services. It is also important to provide the customer
with a usable application, i.e., comprehensible at first glimpse, intuitive and
ergonomic. Equally strategic to usability concerns is the portability of the
application across browser implementations and the quality of the interface.

Security has been decomposed into Authorization, Confidentiality and Ex-
ternal Consistency. Clients, exposed to the internet are, like servers, at risk
in web applications. It is possible for web browsers and application servers
to download or upload content and programs that could open up the client
system to crackers and automated agents. JavaScript, Java applets, ActiveX
controls, and plug-ins all represent a certain degree of risk to the system and
the information it manages. Equally important, are the procedures checking
the consistency of data transactions.

Eventually, the analysis shown in Figure 8 allows us to choose the joint venture
architectural style for our e-commerce example (the operationalized attribute
is marked with a “

√
”). More details about the selection and non-functional

requirements decomposition process can be found in [32,33]. In addition, more
specific attributes have been identified during the decomposition process, such
as Integrity (Accuracy, Completeness), Usability, Response Time, Maintain-
ability, Updatability, Confidentiality, Authorization (Identification, Authenti-
cation, Validation), Consistency and need to be considered in the system ar-
chitecture.

Figure 9 suggests a possible assignment of system responsibilities, based on
the joint venture architectural style. The system is decomposed into three

15

Pyramid

Claim

can aquire
trusted information"]

["External Agents

Availability

Consistency
ExternalValidation

Integrity

Adaptability

++

-
++

++

-

-

+ +

+
Identification

++

Claim

Completness
Usability Authentication Confidentiality Run-time

Maintainability
Extensibility

Modifiability
Run-time

Updatability

Authorization

["Possible Conflicts"] Dynamicity

!

Security

!

Evolvability

++

Co-optation

Claim
["Possible Conflicts"]

+

+

+

Joint Venture

--

+
-

++

++

++

++

++

+

+

-

Accuracy

+

++

......
Other Styles

- - - - ++

+
+

+

+

ResponseTime

Fig. 8. Selecting an Architecture

principal partners (Store Front, Billing Processor and Back Store) control-
ling themselves on a local dimension and exchanging, providing and receiving
services, data and resources with each other.

Each of them delegates authority to and is controlled and coordinated by the
joint management actor (Joint Manager) managing the system on a global
dimension. Store Front interacts primarily with Customer and provides her
with a usable front-end web application. Back Store keeps track of all web
information about customers, products, sales, bills and other data of strategic
importance to Media Shop. Billing Processor is in charge of the secure manage-
ment of orders and bills, and other financial data; also of interactions to Bank
Cpy. Joint Manager manages all of them controlling security gaps, availability
bottlenecks and adaptability issues. All four sub-actors need to communicate
and collaborate in running the system. For instance, Store Front communi-
cates to Billing Processor relevant customer information required to process
bills. Back Store organizes, stores and backs up all information coming from
Store Front and Billing Processor in order to produce statistical analyses,
historical charts and marketing data.

In the following, we further detail Store Front. This actor is in charge of cat-
alogue browsing and item database searching, also provides on-line customers
with detailed information about media items. We assume that different media
shops working with Medi@ may want to provide their customers with various
forms of information retrieval (boolean, keyword, thesaurus, lexicon, full text,

16

indexed list, simple browsing, hypertext browsing, SQL queries, etc.).

Store Front is also responsible for supplying a customer with a web shopping
cart to keep track of items the customer is buying when visiting Medi@. We as-
sume that different media shops using the Medi@ system may want to provide
customers with different kinds of shopping carts with respect to their internet
browser, plug-ins configuration or platform or simply personal wishes (e.g.,
Java mode shopping cart, simple browser shopping cart, frame-based shop-
ping cart, CGI shopping cart, enhanced CGI shopping cart, shockwave-based
shopping cart, . . .)

Finally, Store Front also initializes the kind of processing that will be done
(by Billing Processor) for a given order (phone/fax, internet standard form
or secure encrypted form). We assume that different media shop managers
using the Medi@ web system may be processing various types of orders, such
as those listed above differently and that customers may be selecting the kind
of delivery system they would like to use (UPS, FedEx, DHL, express mail,
normal mail, overseas service, . . .).

Browser
Item

Item
Detail

Profiler
Customer

Customer
DataShopping

Cart

Information
Cart

Delivery
Processor

Processor
Statistics

Integrity

Usability

Order
Processor

Confiden-
tiality

Detail
Delivery

Information
Billing

Profile
Customer

Selected
Items

Ratings

Updatability

Accounting
Processor

Check
Out

Authori-
zation

Security
Checker

Response
time

Payment
Request

Front
Store

Catalogue
On-line

Consult
Catalogue

Item
Select

Invoice
Processor

ability
Adapt-

Manager

Avail-
ability

Manager

Processor
Billing

Store
BackJoint

Manager

Invoice
Process

Maintain-
ability

Monitor

Observe

Fig. 9. The E-commerce System as Joint Venture Architecture

Fulfillment of an actor’s obligations can be accomplished through delegation

17

and through decomposition of the actor into component actors. The intro-
duction of other actors described in the previous paragraphs amounts to a
form of delegation in the sense that Store Front retains its obligations, but
delegates subtasks, sub-goals etc. to other actors – an alternative architec-
tural design would have Store Front outsourcing some of its responsibilities
to some other actors, so that Store Front removes itself from the critical path
of obligation fulfilment. In addition, as shown in Figure 9, StoreFront – and
the other system actors – is also refined into an aggregate of actors which, by
design, work together to fulfil Store Front ’s obligations. This is analogous to
a committee being refined into a collection of members who collectively fulfil
the committee’s mandate.

Hence, to accommodate the responsibilities of Store Front, we introduce sub-
actors Item Browser to manage catalogue navigation, Shopping Cart to select
and custom items, Customer Profiler to track customer data and produce
client profiles, and On-line Catalogue to deal with digital library obligations.

Moreover, to cope with the identified software quality attributes (Security,
Availability and Adaptability), Joint Manager is further refined into four new
system sub-actors Availability Manager, Security Checker and Adaptability
Manager each of them assuming one of the main softgoals (and their more
specific subgoals) and observed by a Monitor.

Billing Processor is decomposed into Order Processor to dialogue with Shop-
ping Cart and deals with billing details, Accounting Processor to interact with
Bank Cpy (not represented in Figure 9) and Invoice Processor to deal with
delivery and invoice information. Finally, Back Store is refined into Statistics
Processor producing charts, reports, audits, sales, turnover forecast, and De-
livery Processor to interact with information systems of delivery companies.

A further step in the architectural design consists in defining how the goals
assigned to each actor are fulfilled by agents with respect to social patterns. For
this end, designers can be guided by a catalogue of agent patterns in which
a set of pre-defined solutions are available. A lot of work has been done in
software engineering for defining software patterns, and many of them, such as
those identified in [22,40], can be incorporated into agent system architectures.
Unfortunately, they focus on object-oriented not on the inherent intentional
and social characteristics of agents.

In the area of multi-agent systems, some work has been done in designing
agent patterns, see for instance [1,16,30]. However, these contributions focus
on problems like how agents communicate one another, get information from
information sources, and establish a connection with a specific host. Differ-
ently, in Tropos, social patterns are used for solving a specific goal defined at
the architectural level through the identification of organizational styles and

18

relevant quality attributes (softgoals) as discussed previously.

We have defined a catalogue involving some social pattern recurrent in multi-
agent literature; in particular, some of the federated patterns introduced in
[25,47]: broker, matchmaker, mediator, monitor, embassy, wrapper, contract-
net.

For instance, a matchmaker (Figure 10) locates a provider corresponding to
a consumer request for service, and then gives the consumer a handle to the
chosen provider directly. Contrary to the broker who directly handles all inter-
actions between the consumer and the provider, the negotiation for service and
actual service provision are separated into two distinct phases. This pattern
can be used in horizontal integrations and joint ventures [20].

Consumer

Provider

Matchmaker

Advertise
Service

Requested
Service

Locate
Provider

Fig. 10. Matchmacker

An embassy (Figure 11) routes a service requested by an foreign agent to a local
one and handle back the response. If the access is granted, the foreign agent
can submit messages to the embassy for translation. The content is translated
in accordance with a standard ontology. Translated messages are forwarded to
target local agents. The results of the query are passed back out to the foreign
agent, translated in reverse. This pattern can be used in the structure-in-5,
arm’s-length, bidding and co-optation styles to take in charge security aspects
between system components related to the competitivity mechanisms inherent
to these styles [20].

Route

Translate

Service
Requested

Access

Foreigner Embassy

Performative

Requested
Service

Native

Fig. 11. Embassy

19

A detailed analysis of each social pattern allows to define a set of capabilities
associated with the agents involved in the pattern. Such capabilities are not
exhaustive and concern exclusively the agent activities relative to the pattern’s
goal. Table 2 presents a set of capabilities for the matchmaker pattern.

Table 2

Agents’ capabilities for the matchmaker pattern
MATCHMAKER

Agent Capabilities

Customer Build a request to query the matchmaker
Handle with a services ontology
Query the matchmaker for a service
Find alternative matchmakers
Request a service to a provider
Manage possible provider failures
Monitor the provider’s ongoing processes
Ask the provider to stop the requested service

Provider Handle with a services ontology
Advertise a service to the matchmaker
Withdraw the advertisement
Use an agenda for managing the requests
Inform the customer of the acceptance of the request service
Inform the customer of a service failure
Inform the customer of success of a service

Matchmaker Update the local database
Handle with a services ontology
Use an agenda for managing the customer requests
Search the name of an agent for a service
Inform the customer of the unavailability of agents for a service

A capability states that an actor is able to act in order to achieve a given goal.
In particular, for each capability the actor has a set of plans that may apply in
different situations. A plan describes the sequence of actions to perform and
the conditions under which the plan is applicable. It is important to notice that
we have common capabilities for different actors; for instance, the capability
“handle services ontology” is common to the three actors of the Matchmaker
pattern. Capabilities are collected in a catalogue and associated to the pattern.
This allows to define the actors’ role and capabilities suitable for a particular
domain.

Figure 12 shows a possible use of patterns in the e-business system depicted in
Figure 9. In particular, it describes how to solve the goal of managing catalogue
navigation that Store Front has delegated to Item Browser. The goal is decom-
posed into different subgoals and solved with a combination of patterns. The
broker pattern is applied to Info Searcher, which satisfies requests of search-
ing information by accessing On-line Catalogue. Source Matchmaker applies
the matchmaker pattern locating the appropriate source for Info Searcher,
and the monitor pattern is used to check any possible change in the On-line
Catalogue. Finally, the mediator pattern is applied to mediate the interaction

20

among Info Searcher, Source Matchmaker, and Wrapper, while the wrapper
pattern makes the interaction between Item Browser and On-line Catalogue
possible. Of course, other patterns can be applied [33]. For instance, we could
use the contract-net pattern to select a wrapper to which delegate the interac-
tion with On-line Catalogue, or the embassy to route the request of a wrapper
to On-line Catalogue.

Locate
Source

Source
Matchm.

Information

Route Info
Request

Monitor

Provide

change
Notify

Information
Hits

Processor
Statistics

Translate
Response

On-line
Catalogue

Searcher

change
Fwd source

Browser
Item

Info

Ask for
Info

Source
Information

Query
Wrapper

MediatorCustomer
Profile

Advertising

Fig. 12. Detailing Item Browser with Social Patterns

6 Detailed Design

The detailed design phase is intended to introduce additional detail for each
architectural component of a system. In our case, this includes actor communi-
cation and actor behavior. To support this phase, we propose to adopt existing
agent communication languages like FIPA-ACL [35] or KQML [18], message
transportation mechanisms and other concepts and tools. One possibility is
to adopt extensions to UML [4], like AUML, the Agent Unified Modeling
Language [3,38] proposed by the FIPA (Foundation for Physical Intelligent
Agents)[19] and the OMG Agent Work group.

We have also proposed and defined a set of stereotypes, tagged values, and
constraints to accommodate Tropos concepts within UML [37]. As an example,
Figure 13 depicts the i* strategic dependency model from Figure 12 in UML
using the stereotypes we have defined, notably ¿ i* actor À and ¿ i* de-
pendency À. Such mapping in UML could also be done in a similar way for
strategic rationale or goal analysis models.

21

Monitor

<<i* actor>>

On-Line

<<task dependency>>
Translate Response

<<i* actor>>

<<i* actor>>

Profile Customer

<<task dependency>>

<<i* actor>>

<<i* actor>>

Hits Information
<<task dependency>>

Info Searcher

<<goal dependency>>

Mediator

Query Information Source

<<task dependency>>
Ask for Info Advertising

Wrapper

<<goal dependency>>

Fwd Source Change

Provide Information
<<task dependency>>

Notify Change
<<task dependency>>

<<i* actor>>

Catalogue

Locate Source
<<goal dependency>>

Source Match.

<<i* actor>>

<<goal dependency>>
Route Info Request

Fig. 13. Representing the i* Model from Figure 12 in UML with Stereotypes

To illustrate the use of AUML, the rest of the section concentrates on the
Shopping cart actor and the check out dependency. Figure 14 depicts a partial
UML class diagram focusing on that actor that will be implemented as an
aggregation of several CartForms and ItemLines. Associations ItemDetail to
On-line Catalogue, aggregation of MediaItems, and CustomerDetail to Cus-
tomerProfiler, aggregation of CustomerProfileCards are directly derived from
resource dependencies with the same name in Figure 9. Our target imple-
mentation model is the BDI model, an agent model whose main concepts are
Beliefs, Desires and Intentions. As indicated in Figure 18, we propose to im-
plement i* tasks as BDI intentions (or plans). We represent them as methods
(see Figure 14) following the label “Plans:”.

id : long
itemNbr : string
itemTitle : string

MediaItem

itemBarCode : OLE
itemPicture : OLE
category :string
genre : string

publisher : string
editor : string
description : string

date : date

weight : single
unitPrice : currency

CD CDromDVD Book Video

0..*

itemCount : integer

ShoppingCart

...

CartForm
<<Text>> itemCount : integer

<<Button>>Recalculate

getCart()
buildItemTable()
writeTableRow()
updateItems()
loadCartForm()
updateCartForm()
killCartForm()

0..*

ItemDetail

CustomerData

0..*

0..*

0..*

weight()
cost()

ItemLine

allowsSubs :boolean
qty : integer
id : long

0..* 1

<<Text>> qty[0..*] : integer
<<Text>> currentTotal : currency
<<Checkbox>> selectItem[0..*]

<<Submit>> AddItem
<<Submit>> Checkout

<<Submit>> Confirm
<<Button>> Cancel

tax : currency
taxRate : float
total : currency
totWeight : single
shippingCost : currency
qty[0..*] : integer
subTotals[0..*] : currency
itemCount()

1

getIdentDetails
not_understood
verifyCC
logout
cancel
checkout
addItem
selectItem
initialize

failure
confirm
removeItem
succeded
propose
refuse

Plans :

notification()
calculateTotals()
calculateQty()

initializeReport()
getLineItem()
computeWeight()

inform()

Catalogue
On-line

CustomerProfiler

customerid : long

middleName : string

customerName : string
firstName :string

tel : string
address : string

e-mail : string
dob : date
profession : string
salary : integer
maritalStatus : string
familyComp[0..1] : integer
internetPref[0..10] : boolean
entertPref[0..10]:string
hobbies[0..5] : string
comments : string
creditcard# : integer
prevPurchase[[0..*] [0..*]]

: string
prevPurchPrice[[0..*] [0..*]]

: integer

CustomerProfileCard

<<i* actor>>
<<i* actor>>

<<i* actor>>

Fig. 14. Partial Class Diagram for Store Front Focusing on Shopping Cart

22

To specify the checkout task, AUML allows us to use templates and pack-
ages to represent checkout as an object, but also in terms of sequence and
collaborations diagrams.

Figure 15a introduces the checkout interaction context which is triggered by
the checkout communication act (CA) and ends with a returned information
status. When the Customer pushes the checkout button, the Shopping Cart
asks the Order Processor to process orders. In turn, the latter sends a pay-
ment request CA to Accouting Processor which informs him about the status
(failure/success) of its internal processing. In case of success, Order Processor
concurrently asks Invoice Processor to process the invoice (and send a delivery
detail CA to Delivery Processor) and sends billing information to Statistics
Processor.

This diagram only provides basic specification for an intra-agent order process-
ing protocol. In particular, the diagram stipulates neither the procedure used
by the Customer to produce the checkout CA, nor the procedure employed
by the Shopping Cart to respond to the CA.

As shown by Figure 15b, such details can be provided by using levelling [38],
i.e., by introducing additional interaction and other diagrams. Each additional
level can express inter-actor or intra-actor dialogues. At the lowest level,
specification of an actor requires spelling out the detailed processing that takes
place within the actor. Figure 15b focuses on the protocol between Customer
and Shopping Cart which consists of a customization of the FIPA Contract
Net protocol [38]. Such a protocol describes a communication pattern among
actors, as well as constraints on the contents of the messages they exchange.
When a Customer wants to check out, a request-for-proposal message is sent
to Shopping Cart, which must respond before a given timeout (for network
security and integrity reasons). The response may refuse to provide a proposal,
submit a proposal, or express miscomprehension. The diamond symbol with an
“×” indicates an “exclusive or” decision. If a proposal is offered, Customer has
a choice of either accepting or canceling the proposal. The internal processing
of Shopping Cart ’s checkout plan is described in Figure 16.

At the lowest level, we use plan diagrams [31], to specify the internal pro-
cessing of atomic actors. Each identified plan is specified as a plan diagram,
which is denoted by a rectangular box. The lower section, the plan graph, is
a state transition diagram. However, plan graphs are not just descriptions of
system behavior developed during design. Rather, they are directly executable
prescriptions of how a BDI agent should behave (execute identified plans) to
achieve a goal or respond to an event.

23

Processor

inform

Accounting
Processor Processor

Invoice

inform

checkout

payment request

processOrder

process invoice

billing information

delivery detail

Processor
Delivery

Processor
Statistics

12/19/00
9:31 53

X

X

X

Timeout

Plan Diagram (cf. next figure)

checkout-request for proposal

refuse

not-understood Notification

propose

Decision

cancel-proposal

accept-proposal

inform
succeeded

failure

FIPA Contract Net Protocol

accept-proposal, succeeded, failure
propose, cancel-proposal
checkout-rfp, refuse, not-understood,

12/19/00 at 9:31 53

Customer, Shopping Cart

b)

a)

inform

Order
<<i* actor>> <<i* actor>> <<i* actor>> <<i* actor>> <<i* actor>> <<i* actor>> <<i* actor>>

Customer Shopping Cart

Fig. 15. Sequence Diagram to Order Media Items (a), and Agent Interaction Pro-
tocol Focusing on a Checkout Dialogue (b)

The initial transition of the plan diagram is labeled with an activation event
(Press checkout button) and activation condition ([checkout button activated])
which determine when and in what context the plan should be activated. Tran-
sitions from a state automatically occur when exiting the state and no event is
associated (e.g., when exiting Fields Checking) or when the associated event
occurs (e.g., Press cancel button), provided in all cases that the associated
condition is true (e.g., [Mandatory fields filled]). When the transition occurs
any associated action is performed (e.g., verifyCC()).

The elements of the plan graph are three types of node; start states, end states
and internal states, and one type of directed edge; transitions. Start states are
denoted by small filled circles. End states may be pass or fail states, denoted
respectively by a small target or a small no entry sign. Internal states may
be passive or active. Passive states have no substructure and are denoted by
a small open circle. Active states have an associated activity and are denoted
by rectangular boxes with rounded corners. An important feature of plan
diagrams is their notion of failure. Failure can occur when an action upon a
transition fails, when an explicit transition to a fail state occurs, or when the
activity of an active state terminates in failure and no outgoing transition is
enabled.

Figure 16 depicts the plan diagram for checkout, triggered by pushing the
checkout button. Mandatory fields are first checked. If any mandatory fields

24

are not filled, an iteration allows the customer to update them. For security
reasons, the loop exits after 5 tries ([i<5]) and causes the plan to fail. Credit
Card validity is then checked. Again for security reasons, when not valid, the
CC# can only be corrected 3 times. Otherwise, the plan terminates in failure.
The customer is then asked to confirm the CC# to allow item registration.
If the CC# is not confirmed, the plan fails. Otherwise, the plan continues:
each item is iteratively registered, final amounts are calculated, stock records
and customer profiles are updated and a report is displayed. When finally the
whole plan succeeds, the Shopping Cart automatically logs out and asks the
Order Processor to initialize the order. When, for any reason, the plan fails,
the Shopping Cart automatically logs out. At anytime, if the cancel button
is pressed, or the timeout is more than 90 seconds (e.g., due to a network
bottleneck), the plan fails and the Shopping Cart is reinitialized.

Checking

[i=3]

Fields
Checking

Credit Card

[i=5]

Fields Updated

[[Not all mandatory
fields filled] ^ [i<5]]

Updating Correcting
CC#

Updated

Fields

Press checkout button [checkout button activated] / shoppingCart.checkout()

Checkout

fail /shoppingCart.logout()

[Mandatory fields filled]
/verifyCC()

/ cancel()
[Not confirmed]

Updating
Stock Records

[foreach
selected item]

Amounts
calculated

Records updated

[Already registered]

[new customer]

[foreach
registered item]

Displaying
Reportsucceeded [report asked]

/ initializeReport()/ shoppingCart.logout()

succeeded/ shoppingcart.logout()

Calculating
Final Amounts

Item
Registering

Customer Profile
Updating

Items
Registered

pass / orderProcessor.
processOrder(this)

profile
updated

^ [i<3]]
[[CC# not valid]

[CC# valid]
/ confirm()? /confirm()

Press confirm button

any [[Cancel button pressed] OR
[timeout>90 sec]] / shoppingCart.initialize()

Fig. 16. A Plan Diagram for Checkout

Dynamics specifications such as processes modeled by plan diagrams in Tropos
can be formalized using ConGolog [36,44]. Primitive actions can be defined
in terms of pre- and post-conditions and decomposed into procedures using
modeling constructs like sequencing (a1; a2), conditional (if–then), iteration
(while <condition> do), concurrent activities (a1||a2), priority (a1〉〉a2), non-
deterministic choice (a1|a2), interrupt (< x : φ → σ > where x is a
list of variables, φ a trigger condition and σ a body), . . . In addition to offer-
ing programming language-like structures for describing processes ConGolog
underlying logic is designed to support reasoning with respect to process spec-
ifications and simulations. Figure 17 gives some ConGolog specifications for
the checkout plan graph of Figure 16.

25

Proc checkOutShoppingCart(shopCart)
< shopCart : failed(shopCart) → logoutShoppingCart(shopCart) >
〉〉

(< pressedCancelButton → reinitializeShoppingCart(shopCart) >
||
< timeout > 90 → reinitializeShoppingCart(shopCart) >)
〉〉
shopCart : ActivatedCheckoutButton ∧ PressedCheckoutButton
→ startCheckOut(shopCart) >
EndProc

Fig. 17. ConGolog-like specification for the checkout plan from Figure 16

7 Generating an Implementation

JACK Intelligent Agents [10] is an agent-oriented development environment
designed to extend Java with the theoretical Belief Desire Intention (BDI)
agent model [5] used in artificial intelligence as well as in cognitive science
and philosophy.

JACK agents can be considered autonomous software components that have
explicit goals to achieve, or events to cope with (desires). To describe how
they should go about achieving these desires, agents are programmed with
a set of plans (intentions). Each plan describes how to achieve a goal under
different circumstances. Set to work, the agent pursues its given goals (desires),
adopting the appropriate plans (intentions) according to its current set of data
(beliefs) about the state of the world.

To support the programming of BDI agents, JACK offers five principal lan-
guage constructs: agents, capabilities, database relations, events, and plans.
Capabilities aggregate events, plans, databases or other capabilities, each of
them assuming a specific function attached to an agent. Database relations
store beliefs and data of an agent. Events identify the circumstances and mes-
sages that an agent can respond to. Plans are instructions an agent follows to
achieve its goals and handle its designated events.

Figure 18 summarizes the mapping from i* concepts to JACK constructs
and how each concept is related to the others within the same model. i* ac-
tors, (informational/data) resources, softgoals, goals and tasks are respectively
mapped into BDI agents, beliefs, desires and intentions. In turn, a BDI agent
will be mapped as a JACK agent, a belief will be asserted (or retracted) as a
database relation, a desire will be posted (sent internally) as a BDIGoalEvent
(representing an objective that an agent wishes to achieve), and handled as
a plan and an intention will be implemented as a plan. Finally, an i* depen-
dency will be directly realized as a BDIMessageEvent (received by agents from
other agents).

26

Actor Resource

i *

Agent Desire IntentionBeliefBDI

Goal TaskSoftgoal

asserted/
retracted as

acts

modifies

achievesarousesperceives

wishes

mapped into

consumes
needed

satisfies

satisfies

needed

dependee
depender

realized as

DB relationJack Agent

JACK

Capability

capable of

PlanBDIGoalEvent BDIMessageEventstores beliefs changes

aggregated into
uses

aggregated into
aggregated into

handles

reads
modifies

posts

send

intends defined

intends less-defined
available

dependum

Dependency

posted as
handled as

planned as

chooses

Fig. 18. i*/BDI/JACK mapping overview

Figure 19 depicts the JACK layout presenting each of the five JACK con-
structs as well as the implementation of the first part of the dialogue shown
in Figure 15b. The request for proposal checkout-rfp is a MessageEvent (ex-
tends MessageEvent) sent by Customer and handled by the Shopping Cart ’s
checkout plan (extends Plan). Customer and Shopping Cart are implemented
as JACK agents (extends Agent). In response to checkout-rfp, Shopping Cart
posts a notification MessageEvent handled by (one of the) three plans refuse,
propose, not-understood. Finally, Timeout (which we consider a belief) is im-
plemented as a closed world (i.e., true or false) database relation asserting for
each Shopping Cart one or several timeout delays.

8 Conclusion and Discussion

We have proposed a development methodology named Tropos, founded on in-
tentional and social concepts, and inspired by early requirements analysis. The
modeling framework views software from five complementary perspectives:

• Social – who are the relevant actors, what do they want? What are their
obligations? What are their capabilities?

• Intentional – what are the relevant goals and how do they interrelate?
How are they being met, and by whom ask dependencies?

• Communicational – how the actors dialogue and how can they interact
with each other?

27

Fig. 19. Partial Implementation of Figure 15b in JACK

• Process-oriented – what are the relevant business/computer processes?
Who is responsible for what?

• Object-oriented – what are the relevant objects and classes, along with
their inter-relationships?

We believe that the methodology is particularly appropriate for generic, com-
ponentized systems like e-business applications that can be downloaded and
used in a variety of operating environments and computing platforms around
the world. Preliminary results (e.g., [33,39]) suggest that the methodology
complements well proposals for agent-oriented programming environments
given that the software is defined in terms of (system) actors, goals and social
dependencies among them and that we do not necessarily operationalize these
intentional and social structures early on during the development process,
avoiding to freeze solutions to a given requirement in the produced software
designs.

There already exist some proposals for agent-oriented software development
like [3,27,28,31,41,46,48]. Such proposals are mostly extensions to known object-
oriented and/or knowledge engineering methodologies. Moreover, all these pro-
posals focus on design – as opposed to requirements analysis – and are there-
fore considerably narrower in scope than Tropos. Indeed, Tropos proposes to

28

adopt the same concepts, inspired by requirements modeling research, for de-
scribing requirements and system design models in order to narrow the seman-
tic gap between them. The architecture and software design models produced
within our framework are intentional in the sense that system components
have associated goals that are supposed to be fulfilled. They are also social
in the sense that each component has obligations/expectations towards/from
other components. Obviously, such models are best suited to cooperative, dy-
namic and distributed applications like multi-agent systems.

The research reported here is still in progress. Much remains to be done to
further refine the proposed methodology and validate its usefulness with real
case studies. We are currently working on the development of additional for-
mal analysis techniques for Tropos including temporal analysis (using model-
checking), goal analysis and social structures analysis, also the development
of tools which support different phases of the methodology and the definition
of the Formal Tropos language.

Acknowledgements

We are greatful to our colleagues Eric Yu and Ariel Fuxman (University of
Toronto), also Yves Lespérance (York University, Canada), Fausto Giunchiglia,
Paolo Giorgini, Anna Perini and Paolo Bresciani (University of Trento and
IRST) for their contributions to the Tropos project.

This project has been partially funded by the Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada, also by the Province of Ontario
through CITO, a centre of excellence for research on Communications and
Information Technology.

This work was carried out while Jaelson Castro and Manuel Kolp were visiting
the Department of Computer Science, University of Toronto.

References

[1] Y. Aridor and D. Lange. Agent design patterns: Elements of agent application
design. In Proc. of the 2nd Int. Conf. on Autonomous Agents, Agents’98, pages
108–115, St. Paul, USA, May 1998.

[2] S. Baiman. Agency research in managerial accounting: a second look.
Accounting, Organizations and Society, 15(4):341–371, 1990.

29

[3] B. Bauer, J. Muller, and J. Odell. Agent UML: A formalism for specifying
multiagent interaction. In Proc. of the 1st Int. Workshop on Agent-Oriented
Software Engineering, AOSE’00, pages 91–104, Limerick, Ireland, 2001.

[4] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language:
User Guide. Addison-Wesley, 1999.

[5] M. Bratman. Intention, plans, and practical reason. Harvard University Press,
1987.

[6] J. Castro, M. Kolp, and J. Mylopoulos. Developing agent-oriented information
systems for the enterprise. In B. Sharp, editor, Enterprise Information
Systems II. Kluwer Publishing, 2001.

[7] J. Castro, M. Kolp, and J. Mylopoulos. A requirements-driven development
methodology. In Proc. of the 13th Int. Conf. on Advanced Information Systems
Engineering, CAiSE’01, pages 108–123, Interlaken, Switzerland, June 2001.

[8] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements
in Software Engineering. Kluwer Publishing, 2000.

[9] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[10] M. Coburn. Jack intelligent agents: User guide version 2.0. At
http://www.agent-software.com, 2001.

[11] P. Cohen and H. Levesque. Intention is choice with commitment. Artificial
Intelligence, 32(3):213–261, 1990.

[12] J. Conallen. Building Web Applications with UML. Addison-Wesley, 2000.

[13] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements
acquisition. Science of Computer Programming, 20(1–2):3–50, 1993.

[14] A. Davis. Software Requirements: Objects, Functions and States. Prentice Hall,
1993.

[15] T. DeMarco. Structured Analysis and System Specification. Yourdon Press,
1978.

[16] D. Deugo, F. Oppacher, J. Kuester, and I. Otte. Patterns as a means
for intelligent software engineering. In Proc. of the Int. Conf. of Artificial
Intelligence, ICAI’01, pages 605–611, Las Vegas, USA, July 1999.

[17] Y. Doz and G. Hamel. Alliance Advantage: The art of creating value through
partnership. Harvard Business School Press, 1998.

[18] T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication
language. In J. Bradshaw, editor, Software Agents. MIT Press, 1997.

[19] FIPA. The Foundation for Intelligent Physical Agents. At http://www.fipa.org,
2001.

30

[20] A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos. Information systems
as social structures. In Proc. of the 2nd Int. Conf. on Formal Ontologies for
Information Systems, FOIS’01, Ogunquit, USA, Oct. 2001.

[21] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model checking early
requirements specification in Tropos. In Proc. of the 5th Int. Symposium on
Requirements Engineering, RE’01, Toronto, Canada, Aug. 2001.

[22] E. Gamma, R. Helm, J. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[23] P. Giorgini, M. Kolp, and J. Mylopoulos. Multi-agent architectures as
organizational structures. Submitted to Journal of Autonomous Agents and
Multi Agent Systems, 2001.

[24] GRL. Goal oriented requirement language. At
http://www.cs.toronto.edu/km/GRL, 2001.

[25] S. Hayden, C. Carrick, and Q. Yang. Architectural design patterns for
multiagent coordination. In Proc. of the 3rd Int. Conf. on Autonomous Agents,
Agents’99, Seattle, USA, May 1999.

[26] IBM. Patterns for e-business. At
http://www.ibm.com/developerworks/patterns, 2001.

[27] C. Iglesias, M. Garrijo, and J. Gonzalez. A survey of agent-oriented
methodologies. In Proc. of the 5th Int. Workshop on Intelligent Agents:
Agent Theories, Architectures, and Languages, ATAL’98, pages 317–330, Paris,
France, Oct. 1999.

[28] N. Jennings. On agent-based software engineering. Artificial Intelligence,
117(2):277–296, 2000.

[29] M. Jensen and W. Meckling. Theory of the firm: Managerial behaviour, agency
costs and capital structure. Journal of Financial Economics, 3(2):305–360,
1976.

[30] E. Kendall, P. M. Krishna, C. Pathak, and C. Suersh. Patterns of intelligent
and mobile agents. In Proc. of the 2nd Int. Conf. on Autonomous Agents,
Agents’98, pages 92–99, St. Paul, USA, May 1998.

[31] D. Kinny and M. Georgeff. Modelling and design of multi-agent systems.
In Proc. of the 3rd Int. Workshop on Intelligent Agents: Agent Theories,
Architectures, and Languages, ATAL’96, pages 1–20, Budapest, Hungary, Aug.
1997.

[32] M. Kolp, J. Castro, and J. Mylopoulos. A social organization perspective
on software architectures. In Proc. of the 1st Int. Workshop From Software
Requirements to Architectures, STRAW’01, pages 5–12, Toronto, Canada, May
2001.

31

[33] M. Kolp, P. Giorgini, and J. Mylopoulos. A goal-based organizational
perspective on multi-agents architectures. In Proc. of the 8th Int. Workshop
on Intelligent Agents: Agent Theories, Architectures, and Languages, ATAL’01,
Seattle, USA, Aug. 2001.

[34] M. Kolp and J. Mylopoulos. Software architectures as organizational structures.
In Proc. ASERC Workshop on ”The Role of Software Architectures in the
Construction, Evolution, and Reuse of Software Systems”, Edmonton, Canada,
Aug. 2001.

[35] Y. Labrou, T. Finin, and Y. Peng. The current landscape of agent
communication languages. Intelligent Systems, 14(2):45–52, 1999.

[36] Y. Lespérance, T. Kelley, J. Mylopoulos, and E. Yu. Modeling dynamic domains
with ConGolog. In Proc. of the 11th Int. Conf. on Advanced Information
Systems Engineering CAiSE’99, pages 108–123, Heidelberg, Germany, June
1999.

[37] J. Mylopoulos, M. Kolp, and J. Castro. UML for agent-oriented software
development: The Tropos proposal. In Proc. of the 4th Int. Conf. on the Unified
Modeling Language UML’01, Toronto, Canada, Oct. 2001.

[38] J. Odell, H. Van Dyke Parunak, and B. Bauer. Extending UML for agents. In
Proc. of the 2nd Int. Bi-Conference Workshop on Agent-Oriented Information
Systems, AOIS’00, pages 3–17, Austin, USA, July 2000.

[39] A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, and J. Mylopoulos.
A knowledge level software engineering methodology for agent oriented
programming. In Proc. of the 5th Int. Conf on Autonomous Agents, Agents’01,
Montreal, Canada, May 2001.

[40] W. Pree. Design Patterns for Object-Oriented Software Development. Addison-
Wesley, 1995.

[41] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van
de Velde, and B. Wielinga. Knowledge engineering and management: the
CommonKADS methodology. MIT Press, 2000.

[42] W. Scott. Organizations: rational, natural, and open systems. Prentice Hall,
1998.

[43] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

[44] X. Wang and Y. Lespérance. Agent-oriented requirements engineering using
ConGolog and i*. In Proc. of the 3rd Int. Bi-Conference Workshop on Agent-
Oriented Information Systems, AOIS’01, Montreal, Canada, May 2001.

[45] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object-Oriented
Software. Prentice Hall, 1990.

[46] M. Wood and S. DeLoach. An overview of the multiagent systems engineering
methodology. In Proc. of the 1st Int. Workshop on Agent-Oriented Software
Engineering, AOSE’00, pages 207–222, Limerick, Ireland, 2001.

32

[47] S. Woods and M. Barbacci. Architectural evaluation of collaborative agent-
based systems. Technical Report CMU/SEI-99-TR-025, SEI, Carnegie Mellon
University, Pittsburgh, USA, 1999, 1999.

[48] M. Wooldridge, N. Jennings, and D. Kinny. The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems,
3(3):285–312, 2000.

[49] E. Yourdon and L. Constantine. Structured Design: Fundamentals of a
Discipline of Computer Program and Systems Design. Prentice Hall, 1979.

[50] E. Yu. Modeling organizations for information systems requirements
engineering. In Proc. of the 1st Int. Symposium on Requirements Engineering,
RE’93, pages 34–41, San Jose, USA, Jan. 1993.

[51] E. Yu. Understanding ’why’ in software process modeling, analysis and design.
In Proc. of the 16th Int. Conf. on Software Engineering, ICSE’94, pages 159–
168, Sorrento, Italy, May 1994.

[52] E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto, Department of Computer Science, 1995.

[53] E. Yu and J. Mylopoulos. Using goals, rules, and methods to support reasoning
in business process reengineering. International Journal of Intelligent Systems
in Accounting, Finance and Management, 5(1):1–13, 1996.

A Outline of the Tropos Methodology

(1) Acquisition of Early Requirements. The outputs of this phase are two
models.

(a) Strategic Dependency (SD) Model to capture relevant actors, theirs re-
spective goals and their interdependencies.

(b) Strategic Rationale (SR) Model to determine through a means-end analy-
sis how the goals can be fulfilled through the contributions of other actors.

(2) Definition of Late Requirements in i* . The outputs of this phase are
revised SD and SR models.

(a) Include in the original Strategic Dependency (SD) Model an actor to rep-
resent the software system to be developed.

(b) Take this system actor and do a means-ends analysis to produce a new
Strategic Rational (SR) Model.

(c) If necessary decompose the system actor into several sub-actors and revise
the SD and SR Models.

(3) Architectural design. The outputs of this phase are a Non Functional Re-
quirements (NFR) Diagram and revised SD and SR models. Agents are intro-
duced.

33

(a) Select an architectural style using as criteria the desired qualities identified
in Step 2. Produce a NFR diagram to represent the selection and design
rationale.

(b) If required, introduce new system actors and dependencies, as well as the
decomposition of existing actors and dependencies into sub-actors and
sub-dependencies. Revise the SD and SR Models.

(c) Assigning actors to agents and roles/patterns to solve actors’goals.

(4) Detailed design. The outputs of this phase are Agent Class Diagrams, Se-
quence Diagrams, Collaboration Diagrams and Plan Diagrams.

(a) Based on the SD and SR models produce a Class Diagram.
(b) Develop Sequence and Collaboration diagrams to capture inter-actor dy-

namics,
(c) Develop Plan (state-based) Diagrams to capture both intra-actor and

inter-actor dynamics.

(5) Implementation. The output of this phase is a BDI (Beliefs-Desires-Intentions)
agent architecture.

From the detailed design generate Agents, Capabilities, Database Relations,
Events and Plans in JACK.

34

