Commitment Alignment Techniques for Distributed Computing

Amit K. Chopra and Munindar P. Singh

North Carolina State University

November, 2008

Image: Image:

Business Interactions

- Flow of messages
- Languages: WS-CDL, ebBP, UML Interaction Diagrams

Example involving EBook and Alice

Applications: TWIST (foreign exchange), HL7 (healthcare), RosettaNet (quote to cash)

Challenge: Flexible Interaction

Problem with current approaches

- No business meaning; compliance = token-matching
- Unnecessarily rigid: lost business opportunities!

Business Interactions: A Semantic Approach

Meanings in terms of effects on commitments

Compliance = not violating a commitment

- C(debtor, creditor, antecedent, consequent)
 - C(EBook, Alice, \$12, BNW)
- ▶ DETACH: $C(x, y, r, u) \land r \rightarrow C(x, y, \top, u)$
 - C(EBook, Alice, \$12, BNW) \land \$12 \Rightarrow C(EBook, Alice, \top , BNW)
 - ► C(*debtor*, *creditor*, *T*, *consequent*): unconditional commitment
- ▶ DISCHARGE: $u \rightarrow \neg C(x, y, r, u)$
 - $BNW \Rightarrow \neg C(EBook, Alice, \$12, BNW)$
 - $BNW \Rightarrow \neg C(EBook, Alice, \top, BNW)$

Commitment Operations

Operation	Performer	Effect
CREATE(C(x, y, r, u))	X	C(x, y, r, u)
CANCEL(C(x, y, r, u))	X	$\neg C(x, y, r, u)$
RELEASE(C(x, y, r, u))	У	$\neg C(x, y, r, u)$
DELEGATE(C(x, y, r, u), z)	X	C(z, y, r, u)
ASSIGN(C(x, y, r, u), z)	У	C(x, z, r, u)

- ► EBook does DELEGATE(C(EBook, Alice, \$12, BNW), Charlie) ⇒ C(Charlie, Alice, \$12, BNW)
- ► Alice does ASSIGN(C(EBook, Alice, \$12, BNW), Bob) ⇒ C(EBook, Bob, \$12, BNW)

Interaction and Meaning: An Example

 $c_B = C(EBook, Alice, \$12, BNW)$ $c_{UB} = C(EBook, Alice, \top, BNW)$

Each agent infers commitments based solely on the messages it observes

singh@ncsu.edu (NCSU)	Alignment	November, 2008	6 / 47

A D N A D N A D N A D N

Realizing Flexible Interaction

 $c_A = C(Alice, EBook, BNW, \$12), c_{UA} = C(Alice, EBook, \top, \$12)$ $c_B = C(EBook, Alice, \$12, BNW), c_{UB} = C(EBook, Alice, \top, BNW)$

Commitment Alignment

æ

Commitment Alignment

Key aspect of business interoperability

- In all relevant executions, if creditor infers a commitment, debtor must also infer that commitment
- Misalignment: Alice infers C(EBook, Alice, \$12, BNW) but EBook does not
- Notice asymmetry
 - Not Misalignment: EBook infers C(EBook, Alice, \$12, BNW) but Alice does not

Misalignment Cause: Autonomy

An agent can freely send messages

► Freely send ⇒ asynchronous messaging

 $c_B = C(EBook, Alice, \$12, BNW)$ $c_{UB} = C(EBook, Alice, \top, BNW)$

< 47 ▶

Misalignment Cause: Autonomy

Automata view $c_B = C(EBook, Alice, $12, BNW)$

Misalignment Cause: Distribution

Agents may not have vital information

 $c_F = C(EBook, Alice, Palin, F451)$ $c_{UF} = C(EBook, Alice, \top, F451)$

< 47 ▶

- E - N

Misalignment Cause: Heterogeneity

Interfaces of agents are incompatible

- Developed and evolve independently
- Agents reflect business interests of autonomous parties
- Messages may have incompatible meanings

< 47 ▶

Heterogeneity Examples

 $c_A = C(Alice, EBook, BNW, $12)$ $c_B = C(EBook, Alice, $12, BNW)$ $c_L = C(ABC, Alice, \$30 \land age, JW)$ $c'_L = C(ABC, Alice, age, JW)$ $c_{UL} = C(ABC, Alice, \top, JW)$

Contributions

Semantics and techniques for alignment

- 1. Formalize commitment alignment
 - Specify relevant executions
- 2. Handle autonomy: semantics of commitment operations and constraints on autonomy
- 3. Handle distribution: constraints on agent behavior
- 4. Handle heterogeneity: semantic interfaces of agents and a decision procedure to verify if agents are compatible

Formalizing Alignment

- Messaging: point to point, ordered, reliable, not "creative"
- Agent observes messages it sends and receives, serially

$$\label{eq:constant} \begin{split} [E_1\,A_0\,B_0],\, [E_1\,A_1\,B_0]\, : \mbox{Valid system states (executions)} \\ [E_3\,A_1\,B_0]: \mbox{Invalid system state} \end{split}$$

4 A N

Relevant Executions: Quiescence

No messages in transit

 $c_B = C(EBook, Alice, \$12, BNW)$ $c_{UB} = C(EBook, Alice, \top, BNW)$

[E₀A₁] : Not quiescent

[E1A1]: Quiescent

singh@ncsu.edu (N	ICSU)
-------------------	-------

Relevant Executions: Integrity

Vital information is propagated

(Analogous to atomicity) $c_F = C(EBook, Alice, Palin, F451)$ $c_{UF} = C(EBook, Alice, \top, F451)$

- 47 →

Handling Autonomy

æ

3 > 4 3

A B > 4
B > 4
B

Sketch

Define what an agent infers upon observing messages

- Create
- Cancel
- Release
- Delegate
- Assign
- Inform
- Special case: introduce constraints to handle the Cancel-Detach race

< □ > < □ > < □ > < □ > < □ </pre>

Strength of Commitments

Principle of NOVEL CREATION

Create has no effect if a stronger commitment has held before $c_B = C(EBook, Alice, \$12, BNW)$

Principle of COMPLETE ERASURE

Release or *Cancel* has no effect if a *strictly* stronger commitment holds; if no such commitment holds, then each weaker commitment is released or cancelled, as appropriate

Image: Image:

Principle of ACCOMMODATION

Release or *Cancel* has the effect that each weaker commitment is treated as if it has held before

(Principle of NOVEL CREATION also comes into play)

	4	< ₫ >	${}^{\ast} \equiv {}^{\flat}$	${\bf A} \equiv {\bf A}$	- 2	50
singh@ncsu.edu (NCSU)	Alignment		Nover	nber, 20	08	24/

Principles at Work

Automata view

э

Delegate and Assign

Multiparty scenarios

 $c_B = C(EBook, Alice, \$12, BNW)$ $d_c c_B = C(Charlie, Alice, \$12, BNW)$ $a_c c_B = C(EBook, Bob, \$12, BNW)$

4 A N

Principle of UNIFORM PRIORITY

For every commitment, either its cancellation or its detach must be accorded priority

 $c_B = C(EBook, Alice, \$12, BNW)$ $c_{UB} = C(EBook, Alice, \top, BNW)$

< 47 ▶

Handling Distribution

æ

Principle of NOTIFICATION

A creditor must notify debtors of detaches $c_F = C(EBook, Alice, Palin, F451)$ $c_{UF} = C(EBook, Alice, \top, F451)$

Analogously, a debtor must notify creditors of discharges

	٩	◆ 臣 ▶ → 臣 ▶	₹.	୬୯୯
singh@ncsu.edu (NCSU)	Alignment	November, 2008		29/47

 Proved that under the semantics and constraints, no misalignment occurs because of autonomy or distribution

3 1 4 3

Image: Image:

Related Work: Synchronization-Based Schemes

- McBurney and Parsons (AAMAS-03), Paurobally et al. (AAMAS-03), Amgoud et al. (ECAI-02)
- Our approach is more general

 $c_B = C(EBook, Alice, \$12, BNW)$

Related Work: Commitment Identifiers

- Each commitment is created with a unique identifier, and commitment operations reference those identifiers (Rovastos, AAMAS-07)
- ▶ $c_B(0) = C(id_0, \$12, BNW), c_B(1) = C(id_1, \$12, BNW)$

Not general: $C(id_0, Palin, F451) \land C(id_1, Palin, GoW) \Rightarrow C(_, Palin, F451 \land GoW)$

singh@ncsu.edu (NCSU)

Semantic Interface Compatibility

æ

3 + 4 = +

Semantic Interface Compatibility

- Concerns ability of agents of work together based on their specifications
- General idea: agents cover each others' assumptions
- Traditionally assumptions specified as control and data flow
 - Criteria: absence of deadlocks, schema matching
- Our approach: commitments as assumptions
 - Criterion: alignment of commitments

Interface Specification

Messages an agent expects to send or receive

- Meanings of messages
- Commitments central element of meaning

Rule schema: Msg means Clause

Clause is a conjunction of commitments and other propositions

Alice

Offer(EBook, Alice) means C(EBook, Alice, pay, book) Pay(Alice, EBook) means pay

Decision Procedure for Interface Compatibility

Our decision procedure checks three kinds of coverage

- Commitment
- Antecedent
- Consequent

A >

Commitment Coverage

Debtor covers each commitment that creditor assumes

Alice

A₁: Offer means C(EBook, Alice, pay, book)

EBook

 E_1 : Offer means C(EBook, Alice, pay, book \land receipt)

Antecedent Coverage

Debtor covers creditor's assumptions about the antecedent

Alice

- A₂: Offer means C(EBook, Alice, pay, book)
- A3 : PayCash means pay

EBook

- E2: Offer means C(EBook, Alice, pay, book)
- E₃ : PayCash means pay
- E4 : PayCredit means pay

Image: Image:

Consequent Coverage

Creditor covers debtor's assumptions about the consequent

Alice

- A₄: Offer means C(EBook, Alice, pay, book)
- A₅ : BookShip means book
- A₆ : BookExpedited means book

EBook

- E₅: Offer means C(EBook, Alice, pay, book)
- E₆ : BookShip means book

Image: Image:

Complete Picture

3

Assembling the Pieces

If agents are compatible (for the interface language presented here), and the semantics and techniques introduced to handle autonomy and distribution are adopted, then alignment is guaranteed

Summary

2

Contributions

Semantics and techniques for alignment

- 1. Formalized commitment alignment
- 2. Handled autonomy: semantics of commitment operations and constraints on autonomy
- 3. Handled distribution: constraints on agent behavior
- 4. Handled heterogeneity: semantic interfaces of agents and a decision procedure to verify if agents are compatible
- 5. Guaranteed alignment

Broader Perspective

Software Engineering

- Interaction: commitments as abstraction
- Assumptions: commitments as architectural connectors between components
- Databases: measures for increased concurrency
 - Eventual consistency
 - Unilateral commit
 - Semantics-based consistency
- SOA: protocols, contracts, patterns
 - 2PC-based coordination protocols are inflexible

Delegation Without Responsibility Pattern

 $\begin{array}{l} c_B = C(EBook, Alice, \$12, BNW) \\ d_c_B = C(Charlie, Alice, \$12, BNW) \\ a_c_B = C(EBook, Bob, \$12, BNW) \end{array}$

A >

Future Work

- Metacommitments
- Richer language for interfaces, corresponding decision procedures, and tools
- Middleware based on semantics and constraints
- Pattern specification language
- Conformance: alignment preserving substitution

Business Processes: Orchestration

- Implementation of a participant
- Languages: BPMN, BPEL

э

(日)