
Organizational Patterns for Early Requirements
Analysis

Manuel Kolp1, Paolo Giorgini2, and John Mylopoulos3

1IAG - Information Systems Research Unit - University of Louvain, 1 Place des Doyens, B-
1348 Louvain-La-Neuve, Belgium, tel.: 32-10 47 83 95, kolp@isys.ucl.ac.be

2 Department of Information and Communication Technology - University of Trento
4 via Sommarive, I-38100, Trento, Italy, tel.: 39-0461-88 2052, paolo.giorgini@dit.unitn.it

3 Department of Computer Science - University of Toronto, 40 St George Street,
M5S 2E4, Toronto, Canada, tel.: 1-416-978 5180, jm@cs.toronto.edu

Abstract. Early requirements analysis is concerned with modeling and
understanding the organizational context within which a software system will
eventually function. This paper proposes organizational patterns motivated by
organizational theories intended to facilitate the construction of organizational
models. These patterns are defined from real world organizational settings,
modeled in i* and formalized using the Formal Tropos language. Additionally,
the paper evaluates the proposed patterns using desirable qualities such as
coordinability and predictability.

1. Introduction

Modeling the organizational and intentional context within which a software system
will eventually operate has been recognized as an important element of the
requirements engineering process (e.g., [Ant96, Bub93, Dar93, Yu93]). Such models
are founded on primitive concepts such as those of actor and goal. This paper focuses
on the definition of a set of organizational patterns that can be used as building blocks
for constructing such models. Our proposal is based on concepts adopted from
organization theory and strategic alliances literature. Throughout the paper, we use i*
[Yu95] as the modeling framework in terms of which the proposed patterns are
presented and accounted for.

The research reported in this paper is being conducted within the context of the
Tropos project, whose aim is to construct and validate a software development
methodology for agent-based software systems. The methodology adopts ideas from
multi-agent system technologies, mostly to define the implementation phase of our
methodology. It also adopts ideas from Requirements Engineering, where actors and
goals have been used heavily for early requirements analysis. The project is founded
on that actors and goals are used as fundamental concepts for modeling and analysis
during all phases of software development, not just early requirements, or
implementation. More details about Tropos can be found in [Cas02]. The present
work continues the research in progress about social abstractions for the Tropos

methodology. In [Fux01, Kol02], we have detailed a social ontology for Tropos to
consider information systems as social structures all along the development life cycle.
In [Kol01, Kol02a, Gio02], we have described how to use this Tropos social ontology
to design multi-agent systems architectures. As a matter of fact, multi-agent systems
can be considered structured societies of coordinated autonomous agents. In the
present paper, we emphasize now the use of organizational patterns based on
organization theory an strategic alliances for early requirements analysis, with the
concern of modeling the organizational setting for a system-to-be in terms of
abstractions that could better match its operational environment (e.g., an enterprise, a
corporate alliance, …)

The paper is organized as follows. Section 2 describes organizational and strategic
alliance theories, focusing on the internal and external structure of an organization.
Section 3 details two organizational patterns – the structure-in-5 and the joint venture
– based on real world examples of organizations. These two patterns are modeled in
terms of social and intentional concepts using the i* framework and a formal
specification language (Formal Tropos) founded on i*. Section 4 identifies a set of
desirable qualities for comparing and evaluating these patterns. Finally, Section 5
summarizes the contributions of the paper and overviews related work.

2. Structuring Organizations

Since the origins of civilization, people have been designing, participating in, and
sharing the burdens and rewards of organizations. The early organizations were
primarily military or governmental in nature. In the Art of War, Sun Tzu describes the
need for hierarchical structure, communications, and strategy. In the Politics,
Aristotle wrote of governmental administration and its association with culture. To
the would-be-leader, Machiavelli advocated in the Prince power over morality. The
roots of organizational theories, then, can be traced to antiquity, including thinkers
from around the world who studied alternative organizational structures. Such
structures consist of stakeholders – individuals, groups, physical or social systems –
that coordinate and interact with each other to achieve common goals. Today,
organizational structures are primarily studied by two disciplines: Organization
Theory (e.g., [Min92, Mor99, Sco98, Yos95]), that describes the internal structure of
an organization, and Strategic Alliances (e.g., [Gom96, Seg96, Dus99]), that model
the external collaborations of independent organizations who have agreed to pursue a
set of shared business goals.

2.1. Organization theory

“An organization is a consciously coordinated social entity, with a relatively
identifiable boundary, that functions on a relatively continuous basis to achieve a
common goal or a set of goals” [Yos95]. Organization theory is the discipline that
studies both structure and design in such social entities. Structural issues deal with
descriptive aspects while design issues address prescriptive ones. Organization theory,
as far back as Adam Smith, describes how practical organizations are actually

structured, offers suggestions on how new ones can be constructed, and how old ones
can change to improve effectiveness. To this end, schools of organization theory have
proposed patterns to try to find and formalize recurring organizational structures and
behaviors.

For instance, the structure-in-5 pattern [Min92] consists of the typical strategic and
logistic components generally present in many organizations. At the base level, the
Operational Core takes care of basic tasks – the input, processing, output and direct
support procedures – associated with running the organization. At the top lies the
Apex, composed of executive actors. Below it, sit the Technostructure, Middle Line
and Support components, which are responsible for control/standardization,
management, and logistics, respectively. The Technostructure component carries out
the tasks of standardizing the behavior of other components. Additionally, it is
responsible for applying analytical procedures that help the organization to adapt to
the environment. Actors joining the apex to the operational core make up the Middle
Line. The Support component assists the operational core for non-operational services
that are outside the basic flow of operational tasks and procedures. We describe and
model examples of structures-in-5 in Section 3. Other proposed patterns are, for
example, the matrix, the pyramid, and the lattice (see e.g. [Mor99]). For further
information about the patterns we are working on, see [Kol01, Fux01a].

2.2. Strategic Alliances

A strategic alliance links specific facets of the businesses of two or more
organizations. At its core, this structure is a trading partnership that enhances the
effectiveness of the competitive strategies of the participant organizations by
providing for the mutually beneficial trade of technologies, skills, or products based
upon them. An alliance can take a variety of forms, ranging from arm’s-length
contracts to joint ventures, from multinational corporations to university spin-offs,
from franchises to equity arrangements (see e.g. [Dus99]. Varied interpretations of the
term exist, but a strategic alliance can be defined as possessing simultaneously the
following three necessary and sufficient characteristics:

• The two or more organizations that unite to pursue a set of agreed upon goals

remain independent subsequent to the formation of the alliance.
• The partner organizations share the benefits of the alliances and control over the

performance of assigned tasks.
• The partner organizations contribute on a continuing basis in one or more key

strategic areas, e.g., technology, products, and so forth.

For instance, the joint venture pattern involves agreement between two or more

intra-industry partners to obtain the benefits of larger scale, partial investment and
lower maintenance costs. A specific joint management actor coordinates tasks and
manages the sharing of resources between partner actors. Each partner can manage
and control itself on a local dimension and interact directly with other partners to
exchange resources, such as data and knowledge. However, the strategic operation

and coordination of such an organization are only ensured by the joint management
actor in which the original actors possess participation equity. We describe and
model examples of joint ventures in Section 3. For further information about the
patterns we are working on, see [Kol01, Fux01a].

3. Modeling Organizational Patterns

We have overviewed our organizational patterns in [Kol01,Fux01a]. To model and
formalize two of them in more detail, we describe in this section four case studies.
The first two examples – FoodCo and Agate Ltd – will be used to illustrate and define
formally the structure-in-5, a pattern adopted from organization theory; the others –
Airbus and Eurocopter – serve the same purpose for the joint-venture pattern used in
strategic alliances.

3.1. Structure-in 5 Pattern

We describe first two case studies from [Ben99]. The presented organizations are
modeled in terms of the structure-in-5 pattern. We then formalize the pattern.

FoodCo. FoodCo is a food enterprise based in the East Anglian region of the UK

that produces a range of perishable foods for major UK supermarket chains. Its
products line ranges from extended to pre-packed vegetables and salads, includes a
wide range of sauces, pickles, sandwich toppings, and almost anything made of
vegetable that can be sold in jars. There are one farm with a market garden and three
factories on the site as well as two warehouses.

The structure of the organization follows the structure-in-5. A Board of eight
directors forms the strategic apex. It is responsible for defining the general strategy
of the organization: five different chief managers (administration & finance,
marketing, planning, operation, and distribution) are required to apply the different
aspects of that general strategy in the coordination of the work in the area of their
competence: Policy and Budget for Planning and Administration/Finance, Production
Management for Operation, and Customer Relationship Management for Marketing
and Distribution.

Operation groups production managers and, typically, coordinates all managerial
aspects of the production. To this end, it relies on Planning and Administration/
Finances for dealing with Planning and Control aspects of the production and on
Marketing and Distribution for Delivery & Sales Logistics. The Planning and
Administration/Finances departments constitute the technostructure that implements
work procedures and policy, management control, planning and budget of the
enterprise. This includes the financial strategy, the general administration and human
resources management.

The support involves the Marketing and Distribution staff. Marketing coordinates
the customer relationship management (market study, sales, …), while Distribution
controls the work at the warehouse, and pick-up & dispatch activities.

Finally, the operational core groups line workers, factory and farm foremen that
are under the direct supervision of production managers (middle line).

Figure 1 models the FoodCo structure-in-5 using the i* strategic dependency
model.

i* is a modeling framework for early requirements analysis [Yu95], founded on
notions such as actor, agent, role, position, goal, softgoal, task, resource, belief and
different kinds of social dependency between actors. Its strategic dependency model
describes the network of social dependencies among actors. It is a graph, where each
node represents an actor, and each link between two actors indicates that one actor
depends on another for something in order that the former may attain some goal. A
dependency describes an “agreement” (called dependum) between two actors: the
depender and the dependee. The depender is the depending actor, and the dependee,
the actor who is depended upon. The type of the dependency describes the nature of
the agreement. Goal dependencies are used to represent delegation of responsibility
for fulfilling a goal; softgoal dependencies are similar to goal dependencies, but their
fulfillment cannot be defined precisely (for instance, the appreciation is subjective, or
the fulfillment can occur only to a given extent); task dependencies are used in
situations where the dependee is required to perform a given activity; and resource
dependencies require the dependee to provide a resource to the depender. As shown in
Figure 1, actors are represented as circles; dependums – goals, softgoals, tasks and
resources – are respectively represented as ovals, clouds, hexagons and rectangles;
and dependencies have the form depender → dependum → dependee. We also use
later the notion of role (circle with a double line) allowing us to model the same actor
assuming different roles

Fig. 1. FoodCo in Structure-in-5

Agate. Agate Ltd is an advertising agency in Birmingham, UK that employs more

than fifty staff as described in Figure 2.

Direction Administration Campaigns Management
1 Campaign Director 1 Office manager 2 Campaign managers
1 Creative Director 3 Direction assistants 3 Campaign marketers
1 Administrative Director 4 Manager Secretaries 1 Editor in Chief
1 Finance Director 2 Receptionists 1 Creative Manager
 2 Clerks/typists
Edition 1 Filing clerk Graphics
2 Editors 6 Graphic designers
4 Copy writers 2 Photographers

IT Accounts Edition Documentation
1 IT manager 1 Accountant manager 1 Media librarian
1 Network administrator 1 Credit controller 1 Resource librarian
1 System administrator 2 Accounts clerks 1 Knowledge worker
1 Analyst 2 Purchasing assistants
1 Computer technician

Fig. 2. Organization of Agate Ltd

 The Direction – four directors responsible for the main aspects of Agate’s

Global Strategy (advertising campaigns, creative activities, administration and
finances) – forms the strategic apex. The middle line composed of the Campaigns
Management staff is in charge of finding and coordinating advertising campaigns
(marketing, sales, edition, graphics, budget, …) supported in these tasks by the
Administration and Accounts and IT and Documentation departments.

Fig. 3. Agate in Structure-in-5

The Administration and Accounts constitutes the technostructure handling
administrative tasks and policy, paperwork, purchases and budgets. The support is

constituted of the IT and Documentation departments. It defines the IT policy of
Agate, provides technical means required for campaigns and ensures system support
as well as information retrieval services (documentation resources). The operational
core includes the Graphics and Edition staff in charge of the creative and artistic
aspects of realizing campaigns: texts, photographs, drawings, layout, design, logos,…

Figure 3 models the structure-in-5 organization of Agate Ltd.
Figure 4 generalizes the structure-in-5 pattern explored in Figures 2 and 3. The

pattern must be composed of five actors. Each of them assumes the responsibilities
described in Section 2.

Dependencies between the Strategic Apex as depender and the Technostructure,
Middle Line and Support as dependees must be goal dependencies. A softgoal
dependency models the strategic dependence of the Technostructure, Middle Line and
Support on the Strategic Apex. Relationships between the Middle Line and
Technostructure and Support must be of type goal dependencies. The Operational
Core relies on the Technostructure and Support through task and resource
dependencies. Only task dependencies are permitted between the Middle Line (as
depender or dependee) and the Operational Core (as dependee or depender).

Fig. 4. The Structure-in-5 Pattern

To specify the structure and formal properties of the pattern, we use Formal
Tropos [Fux01] which offers the primitive concepts of i* augmented with a rich
specification language inspired by KAOS [Dar93]. Formal Tropos offers a textual
notation for i* models and allows one to describe dynamic constraints among the
different elements of the specification in a first order linear-time temporal logic.
Moreover, Formal Tropos has a precise semantics which makes specifications
amenable to formal analysis. Basically, Formal Tropos conceives three main types of
classes: actor, dependency, and entity. The attributes of a Formal Tropos class denote
relationships among different objects being modeled.

In order to express conditions about Strategic Dependency models, such as for
instance our organizational patterns, we extend Formal Tropos with metaclasses. In
particular, we have:

Metaclasses
Actor := Actor name [attributes][creation-properties]

 [invar-properties][actor-goal]
With subclasses:
Agent (with attributes occupies: Position, play: Role)
Position (with attribute cover: Role)
Role

Dependency:= Dependency name type mode Depender name Dependee name
 [attributes][creation-properties][invar-properties]
 [fulfill-properties]

Entity:= Entity name [attribute] [creation-properties]
 [invar-properties]

Classes: Classes are instances of Metaclasses.

Part of the Structure-in-5 pattern specification is in the following:

Actor StrategicApex
 SoftGoal StrategicManagement

Actor MiddleLine
 Goal ManagementControl
 Task OperationCoordination

Actor Support
 Goal PolicyDefinition
 Goal Logistics

The following structural (global) properties must be satisfied by the pattern:

Only one instance of the Strategic Apex
∀ sa1,sa2: StrategicApex → (sa1=sa2)

Only softgoal dependencies between the Stategic Apex as dependee and the Middle Line, the
Technostructure and the Support as dependers

∀ sa: StrategicApex, ml: Technostructure ∨ Middle_Agency ∨
Support, dep: Dependency
((dep.dependee=sa ∧ dep.depender=ml) → (dep.type=softgoal))

The previous softgoal dependency is fulfilled if and only if all the goal dependencies between
the Middle Agency, the Technostructure and the Support as dependers and the Stategic Apex
as dependee have been achieved sometimes in the past

∀ sa: StrategicApex, ml: MiddleLine, dep1: Dependency
((dep1.type=softgoal ∧ dep1.dependee=sa ∧ dep1.depender=ml) ∧
 (∀ dep2: Dependency (dep2.type=goal ∧ (dep2.depender=sa ∧

dep2.dependee = ml ∧ ♦Fulfilled(dep2)))) → Fulfilled(dep1))

Only task dependencies between the Middle Line and the Operational Core
∀ml: MiddleLine, oc: OperationalCore, dep: Dependency

((dep.depender=ml ∧ dep.dependee=oc) ∨
 (dep.depender=oc ∧ dep.dependee=ml)) → (dep.type = task))

Only resource or task dependencies between the Technostructure and the Operational Core

∀ts: Technostructure, oc: OperationalCore, dep : Dependency
((dep.depender=ts ∧ dep.dependee=oc) →
 (dep.type=task ∨ dep.type=resource))

Only resource or task dependencies between the Support and the Operational Core

∀ sp: Support, oc: OperationalCore, dep: Dependency
((dep.depender=sp ∧ dep.dependee=oc) →
 (dep.type=task ∨ dep.type=ressource)

3.2. Joint-Venture Pattern

We describe here two case studies from [Dus99]. The presented organizations are

modeled following the joint venture structure. We then formalize it as an
organizational pattern.

Airbus. The Airbus Industrie joint venture coordinates collaborative activities

between European aeronautic manufacturers to built and market airbus aircrafts. The
joint venture involves four partners: Aerospatiale (France), DASA (Daimler-Benz
Aerospace, Germany), British Aerospace (UK) and CASA (Construcciones
Aeronauticas SA, Spain). Research, development and production tasks have been
distributed among the partners, avoiding any duplication. Aerospatiale is mainly
responsible for developing and manufacturing the cockpit of the aircraft and for
system integration. DASA develops and manufactures the fuselage, British Aerospace
the wings and CASA the tail unit. Final assembly is carried out in Toulouse (France)
by Aerospatiale. Unlike production, commercial and decisional activities have not
been split between partners. All strategy, marketing, sales and after-sales operations
are entrusted to the Airbus Industrie joint venture, which is the only interface with
external stakeholders such as customers. To buy an Airbus, or to maintain their fleet,
customer airlines could not approach one or other of the partner firms directly, but has
to deal with Airbus Industrie. Airbus Industrie, which is a real manufacturing
company, defines the alliance’s product policy and elaborates the specifications of
each new model of aircraft to be launched. Airbus defends the point of view and
interests of the alliance as a whole, even against the partner companies themselves
when the individual goals of the latter conflict with the collective goals of the
alliance.
Figure 5 models the organization of the Airbus Industrie joint venture using the i*
strategic dependency model. Airbus assumes two roles: Airbus Industrie and Airbus
Joint Venture. Airbus Industrie deals with demands from customers, Customer
depends on it to receive airbus aircrafts or maintenance services. The Airbus Joint
Venture role ensures the interface for the four partners (CASA, Aerospatiale, British
Aerospace and DASA) with Airbus Industrie defining Airbus strategic policy,
managing conflicts between the four Airbus partners, defending the interests of the
whole alliance and defining new aircrafts specifications. Airbus Joint Venture
coordinates the four partners ensuring that each of them assumes a specific task in the
building of Airbus aircrafts: wings building for British Aerospace, tail unit building
for CASA, cockpit building and aircraft assembling for Aerospace and fuselage

building for DASA. Since Aerospatiale assumes two different tasks, it is modeled as
two roles: Aerospatiale Manufacturing and Aerospatiale Assembling. Aerospatiale
Assembling depends on each of the four partners to receive the different parts of the
planes.

Fig. 5. The Airbus Industrie Joint Venture

Eurocopter. In 1992, Aerospatiale and DASA decided to merge all their helicopter
activities within a joint venture Eurocopter. Marketing, sales, R&D, management and
production strategies, policies and staff were reorganized and merged immediately; all
the helicopter models, irrespective of their origin, were marketed under the
Eurocopter name. Eurocopter has inherited helicopter manufacturing and engineering
facilities, two in France (La Courneuve and Marignane), one in Germany (Ottobrunn).
For political and social reasons, each of them has been specialized rather than closed
down to group production together at a single site. The Marignane plant manufactures
large helicopters, Ottobrunn produces small helicopters and La Courneuve
concentrates on the manufacture of some complex components requiring a specific
expertise, such as rotors and blades.

Fig. 6. The Eurocopter Joint Venture

Figure 6 models the organization of the Eurocopter joint venture in i*. As in the
Airbus joint venture, Eurocopter assumes two roles. The Eurocopter role handles
helicopter orders from customers who depend on it to obtain the machines. It also
defines marketing, sales, production and R & D strategies and policy. The Eurocopter
joint venture role coordinates the manufacturing operations of the two partners -
DASA and Aerospatiale - and depends on them for the production of small
helicopters (DASA Ottobrunn), large ones (La Courneuve) and complex components
(Marignane) such as rotors and blades. Since Aerospatiale assumes two different
responsibilities, it is considered two roles: Aerospatiale Marignane and Aerospatiale
La Courneuve. DASA Ottobrunn and Aerospatiale Marignane depends on La
Courneuve to be supplied with complex helicopter parts.
Figure 7 generalizes the joint venture model explored in Figures 5 and 6. Partners
depend on each other for providing and receiving resources. Operation coordination is
ensured by the joint manager actor which depends on partners for the accomplishment
of these assigned tasks. The joint manager actor must assume two roles: a private
interface role to coordinate partners of the alliance and a public interface role to take
strategic decisions, define policy for the private interface and represents the interests
of the whole partnership with respect to external stakeholders.

Fig. 7. The Joint Venture Pattern

Part of the Joint Venture pattern specification is in the following:

Role JointManagerPrivateInterface
 Goal CoordinatePatterns

Role JointManagerPublicInterface
 Goal TakeStrategicDecision
 SoftGoal RepresentPartnershipInterests

Actor Partner

The following structural (global) properties must be satisfied:

Only one instance of the joint manager
∀ jmpri1, jmpri2: JointManagerPrivateInterface (jmpri1=jmpri2)

Only resource dependencies between partners
∀ p1, p2: Partner, dep: Dependency

 (((dep.depender=p1 ∧ dep.dependee=p2) ∨

 (dep.depender=p2 ∧ dep.dependee=p1)) → (dep.type=resource))

Only task dependencies between partners and joint manager, with joint manager as depender
∀ jmpri: JointManagerPrivateInterface, p:Partner, dep:Dependency
 ((dep.dependee=p ∧ dep.depender=jmpri) → dep.type=task)

Only goal or softgoal dependencies between the joint manager roles
∀ jmpri:JointManagerPrivInterf, jmpui: JointManagerPubInterf,
 dep: Dependency((dep.depender=jmpri ∧ dep.dependee=jmpui) →
 (dep.type=goal ∨ dep.type=softgoal))

Partners only have relationships with other partners or the joint manager private interface
∀ dep: Dependency, p1: Partner
 ((dep.depender=p1 ∨ dep.dependee=p1) →
 ((∃p2: Partner(p1≠p2 ∧ (dep.depender=p2 ∨ dep.dependee=p2))) ∨

(∃jmpi: JointManagerPrivInterf
 ((dep.depender=jmpi ∨ dep.dependee= jmpi))))

The joint manager private interface only has relationships with the joint manager public
interface or partners
 ∀ dep: Dependency, jmpi: JointManagerPrivInterf
 ((dep.depender=jpmi ∨ dep.dependee=jpmi) →
 ((∃p: Partner((dep.depender=p∨ dep.dependee=p))) ∨
 (∃jmpui: JointManagerPubInterf (
 (dep.depender=jmpui ∨ dep.dependee= jmpui))))

4. Evaluation

Patterns can be compared and evaluated with quality attributes [Sha96]. For instance,
the following qualities seem particularly relevant for organizational structures
[Gio02]:

Coordinativity. Actors must be able to coordinate with other actors to achieve a

common purpose or simply their local goals.

Predictability. Actors can have a high degree of autonomy in the way they

undertake action and communication in their domains. It can be then difficult to
predict individual characteristics as part of determining the behavior of the system-at-
large.

Fallibility-Tolerance. A failure of one actor does not necessarily imply a failure of

the whole structure. The structure then needs to check the completeness and the
accuracy of data, information and transactions. To prevent failure, different actors
can, for instance, implement replicated capabilities.

Adaptability. Actors must be able to adapt to changes in their environment. They

may allow changes to the component’s communication protocol, dynamic
introduction of a new kind of component previously unknown or manipulations of
existing actors.

 Coord. Predict. Failab-Tol. Adapt.

S-in-5 + + ++ +-

Joint-Vent. +- + +- +-

Table 1. Strengths and Weaknesses of some Organizational Patterns

The structure-in-5 improves coordinativity among actors by differentiating the

data hierarchy - the support actor – from the control hierarchy - supported by the
operational core, technostructure, middle agency and strategic apex. The existence of
three different levels of abstraction (1 – Operational Core; 2 – Technostructure,
Middle Line and Support; 3 – Strategic Apex) addresses the need for managing
predictability. Besides, higher levels are more abstract than lower levels: lower levels
only involve resources and task dependencies while higher ones propose intentional
(goals and softgoals) relationships. Checks and control mechanisms can be integrated
at different levels of abstraction assuming redundancy from different perspectives and
increase considerably failability-tolerance. Since the structure-in-5 separates data and
control hierarchies, integrity of these two hierarchies can also be verified
independently. The structure-in-5 separates independently the typical components of
an organization, isolating them from each other and allowing then dynamic
adaptability. But since it is restricted to no more than 5 major components, more
refinement has to take place inside the components.

The joint venture supports coordinativity in the sense that each partner actor
interacts via the joint manager for strategic decisions. Partners indicate their interest,
and the joint manager either returns them the strategic information immediately or
mediates the request to some other partners. However, since partners are usually
heterogeneous, it could be a drawback to define a common interaction background.
The central position and role of the joint manager is a means for resolving conflicts
and preventing unpredictability. Through its joint manager, the joint-venture proposes
a central communication controller. It is less clear how the joint venture style
addresses fallibility-tolerance, notably reliability. However, exceptions, supervision,
and monitoring can improve its overall score with respect to these qualities.
Manipulation of partners can be done easily to adapt the structure by registering new
ones to the joint manager. However, since partners can also exchange resources
directly with each other, existing dependencies should be updated as well. The joint
manager cannot be removed due to its central position.

A more precise and systematic analysis of these quality attributes can be done with
goal-oriented frameworks such as KAOS [Dar93] or the NFR framework [Chu00]. In
the NFR framework, qualities are represented as softgoals. Analyzing them amounts
to a means-ends decomposition of softgoals into more fine-grained subgoals. Each
pattern contributes positively/negatively to some of the identified subgoals. The
overall evaluation of a pattern with respect to a quality is arrived at by propagating
contributions from bottom towards the top of a softgoal dependency graph. A partial
example of such a graph is shown in Figure 8.

The analysis resulting in a softgoal dependency graph is intended to make explicit
the space of alternatives for fulfilling a top-level attribute. The organizational patterns
are represented as operationalized attributes (saying, roughly, “fulfilled by the pattern
structure-in-5 / joint-venture”).

Other Styles

... ...

... ...!

!

! Completness
Reliability

Coordinativity

Redundancy

Participability

+

Failability−Tolerance Other Quality Attributes

Claim
["External Agents

can spoof
the system"]

Joint Venture Structure in 5

Distributivity

+

++

+

+

−
+

−

++

+

Commonality

Fig. 8. Partial Evaluation for Organizational Styles

The evaluation process is defined in terms of contribution relationships from
softgoals to softgoals, labeled “+”, “++”, “-”, “--” that mean respectively partially
satisfied, satisfied, partially denied and denied. Design rationale is represented by
claims drawn as dashed clouds. Such features make it possible for domain
characteristics such as priorities to be considered and properly reflected in the
decision-making process. Exclamation marks are used to mark priority attributes
while a check-mark “ ” indicates a fulfilled softgoal and a cross “ ” labels a denied
one.

Relationships types (AND, OR, ++, +, -, and --) between quality attributes are
formalized to offer a tractable proof procedure. To each quality attribute we associate
two different variables: S for satisfiability and D for deniability. These variables can
assume three possible values: null (−) , partial (p), and total (t). For instance, when
S=t, an attribute is totally satisfied, when S=p it is partially satisfied, and when S=−
there is no evidence to say something about its satisfiability (analogously for D).

S and D are not required to be logically exclusive since there may be contradictory
contributions, e.g., for a particular pattern, a softgoal is satisfied and partially denied
at the same time. Table 2 shows propagation rules for ++, +, -, and -- relationships
with respect to satisfiability (S). Notice that the null value does not produce any effect
in the propagation. A dual table is given for the deniability and the partial deniability.

S ++ + - --

t S=t S=p D=p D=t

p S=p S=p D=p D=p

Table 2. Propagation rules for Satisfiability

Under the assumption that − < p < t, we use min-value and max-value functions
respectively for AND and OR relationships. The basic algorithm for the labels
propagation is presented in Figure 9.

Initially, all the nodes are initialized with the available evidence, a null value is
assigned to the nodes for which we do not have evidence. At each step the value of
the two variables S and D of each node is calculated using the nodes’ value of the
previous step. The final value for D and S is given by the maximum value of all
contributions of the incoming relations. The algorithm terminates when an iteration
adds no new values to any the variables of any node of the graph. The use of
maximum value function guarantees the termination of the algorithm. Further details
about this propagation algorithm are presented in [Gio02a].

1 Initialize NODES’
2 do
3 NODES ← NODES’
4 foreach node ni
5 foreach incoming relation Aij

6 Dj ← ComputeD(Aij)

7 Sj ← ComputeS(Aij)

8 ni.D’ ← Maxj(Dj)

9 ni.S’ ← Maxj(Sj)

10 while(NODES≠NODES’)

Fig. 9. Basic propagation algorithm

5. Conclusions

Modelers need to rely on patterns, styles, and idioms, to build their models,
whatever the purpose. We argue that, as with other phases of software development,
early requirements analysis can be facilitated by the adoption of organizational
patterns. This paper focuses on two such patterns and studies them in detail, through
examples, a formalization using Formal Tropos, and an evaluation with respect to
desirable attributes.

There have been many proposals for software patterns since the original work on
design patterns [Gam95]. Some of this work focuses on requirements patterns. For
example, [Kon02] proposes a set of requirements patterns for embedded software
systems. These patterns are represented in UML and cover both structural and
behavioral aspects of a requirements specification. Along similar lines, [Fow97]
proposes some general patterns in UML. In both cases, the focus is on late
requirements, and the modeling language used is UML. On a different path, [Gro01]
proposes a systematic approach for evaluating design patterns with respect to non-
functional requirements (e.g., security, performance, reliability). Our approach differs
from this work primarily in the fact that our proposal is founded on ideas from
Organization Theory and Strategic Alliances literature. In [Kol01, Kol02a, Gio02],
we have already described organizational patterns but to be used for designing multi-

agent system architectures. Considering real world organizations as a metaphor,
systems involving many software actors, such as multi-agent systems could benefit
from the same organizational models. In the present paper, we have focused on
patterns for modeling organizational settings, rather than software systems and
emphasized the need for organizational abstractions to better match the operational
environment of the system-to-be during early requirements analysis.

References

[Ant96] A. I. Anton, “Goal-Based Requirements Analysis”, Proceedings of the 2nd Int. Conf.
On Requirements Analysis, ICRE’96, 1996, pp.136-144.

[Ben99] S. Bennett, S. McRobb, and R. Farmer. Object-Oriented Systems Analysis and Design
– using UML. McGraw Hill, 1999.

[Bub93] J. A. Bubenko, “Next Generation Information Systems: an Organizational
Perspective”, Proc. of the International Workshop on Development of Intelligent
Information Systems, Niagara-on-the-Lake, Ontario, Canada, April 1991, pp. 22-31.

[Cas02] J. Castro, M. Kolp and J. Mylopoulos. “Towards Requirements-Driven Information
Systems Engineering: The Tropos Project”. In Information Systems (27), Elsevier,
Amsterdam, The Netherlands, 2002.

[Chu00] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos. Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

[Dar93] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal–directed Requirements
Acquisition”, Science of Computer Programming, 20, 1993, pp. 3-50.

[Dus99] P. Dussauge and B. Garrette, Cooperative Strategy: Competing Successfully Through
Strategic Alliances, Wiley and Sons, 1999.

[Fow97] Fowler, M., Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997.
[Fux01] A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. “Model Checking Early

Requirements Specification in Tropos”. In Proc. of the 5th Int. Symposium on Requirements
Engineering, RE’01, Toronto, Canada, Aug. 2001.

[Fux01a] A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos. “Information systems as social
structures”. In Proceedings of the 2nd International Conference on Formal Ontologies for
Information Systems, FOIS’01, Ogunquit, USA, October 2001.

[Gam95] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of reusable
Object-Oriented Software, Addison-Wesley, 1995.

[Gio02] P. Giorgini, M. Kolp, and J. Mylopoulos. “Multi-Agent and Software Architecture: A
Comparative Case Study”. In Proceedings of the 3rd International Workshop on Agent
Software Engineering (AOSE'02), Bologna, Italy, July 2002.

[Gio02a] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Reasoning with Goal
Models. In Proceedings of the 21st International Conference on Conceptual Modeling
(ER02), LNCS 2503 Springer Verlag. Tampere, Finland, October, 2002,

[Gom96] B. Gomes-Casseres. The alliance revolution: the new shape of business rivalry,
Cambridge, Mass., Harvard University Press, 1996.

[Gro01] D. Gross and E. Yu, “From Non-Functional Requirements to Design Through
Patterns”, Requirements Engineering 6(1), 18-36, 2002.

[Kol01] M. Kolp, P. Giorgini and J. Mylopoulos. “A Goal-Based Organizational Perspective
on Multi-Agents Architectures”. In Proc. of the 8th Int. Workshop on Intelligent Agents:
Agent Theories, Architectures, and Languages (ATAL2001), Seattle, USA, August 2001.

[Kol02] M. Kolp, P. Giorgini, and J. Mylopoulos. “Information Systems Development through
Social Structures”. In Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering (SEKE'02), Ishia, Italy, July 2002.

[Kol02a] M. Kolp, P. Giorgini, and J. Mylopoulos. “Organizational Multi-Agent Architecture:
A Mobile Robot Example”. In Proceedings of the 1st International Conference on
Autonomous Agent and Multi Agent Systems (AAMAS'02), Bologna, Italy, July 2002.

[Kon02] Konrad, S., and Cheng, B., “Requirements Patterns for Embedded Systems”,
Proceedings of the Tenth IEEE Joint International Requirements Engineering Conference
(RE’02), Essen, September 2002.

[Min92] H. Mintzberg, Structure in fives : designing effective organizations, Englewood Cliffs,
N.J., Prentice-Hall, 1992.

[Mor99] J. Morabito, I. Sack and A. Bhate. Organization Modeling : Innovative Architectures
for the 21st Century, Upper Saddle River, N.J., Prentice Hall PTR, 1999.

[Sco98] W. R. Scott. Organizations: rational, natural, and open systems, Upper Saddle River,
N.J., Prentice Hall, 1998.

[Seg96] L. Segil. Intelligent Business Alliances: How to Profit Using Today's Most Important
Strategic Tool, New York, Times Business, 1996.

[Sha96] Shaw, M., and Garlan, D. Software Architecture: Perspectives on an Emerging
Discipline, Upper Saddle River, N.J., Prentice Hall, 1996.

[Yos95] M.Y. Yoshino and U. Srinivasa Rangan. Strategic alliances : an entrepreneurial
approach to globalization, Boston, Mass., Harvard Business School Press, 1995.

[Yu93] E. Yu, “Modeling Organizations for Information Systems Requirements Engineering”,
Proceedings of the First IEEE International Symposium on Requirements Engineering, San
Jose, USA, January 1993, pp. 34-41.

[Yu95] E. Yu. Modeling Strategic Relationships for Process Reengineering, Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada, 1995.

