
Architectural Styles for Information Systems:

An Organizational Perspective

Manuel Kolp John Mylopoulos

Department of Computer Science
University of Toronto
6 King’s College Road

Toronto M5S 3H5, Canada
{mkolp, jm}@cs.toronto.edu

ABSTRACT

Enterprise information systems such as ERP, Knowledge Management
or e-business systems need to deploy information system architectures
which match the organization of the enterprise within which they
operate. This calls for system architectures which adopt models from
research in organization theory. With this idea in mind, we offer a set of
organization–oriented architectural styles for information systems. Our
approach complements well proposals for multi-agent architectures
which are becoming increasingly important for business information
systems. In this paper, we adopt an e-business example to illustrate how
to design an organizational architecture for a business-to-consumer
application. The research is conducted in the context of a comprehensive
information system development methodology called Tropos.

Keywords
Architectural design, organization theory, multi-agent systems, software
architectures, organization models.

1 INTRODUCTION

Enterprise information systems have traditionally suffered from an impedance mismatch. While the
information system itself is conceived as a collection of (software) modules -- including objects, data
structures and interfaces -- the enterprise operational environment for/in which the system is designed is
understood in terms of agents, positions, roles, responsibilities, objectives, tasks, resources and organizational
structures. This mismatch is one of the factors for the poor quality of enterprise information systems, also the
frequent failure of their development processes.

Development methodologies for ERP, Knowledge Management and e-business systems need to integrate
organizational and software system models to avoid this semantic gap. Indeed, ERP systems are designed to
implement a process view of the enterprise to meet organizational goals, tightly integrating all functions from
the enterprise organization. Knowledge management systems are designed to help the enterprise gain insight
and understanding from its own knowledge and expertise. Much of this knowledge is tacitly hidden in the
enterprise organization itself. Finally e-business systems are designed to implement “virtual enterprises”
based on organizational patterns that drive their business processes.

This realization calls for information system architectures which adopt models from research in organizational
theory and strategic alliances. In this paper, we offer a set of information system architectural styles which
are motivated by organizational theory. Our perspective complements well, but also subsumes, proposals for

 2

multi-agent architectures. Multi-agent systems are organizations composed of agents - autonomous entities
who can act and interact with their environment. Coordination is achieved through inter-dependencies which
define potential interactions and cooperations in order to achieve common goals.

Section 2 sketches the context of the Tropos project, which offers a comprehensive methodology for agent-
oriented information system development. Section 3 describes an e-commerce example and introduces the
primitive concepts offered by i* [Yu95], the organizational modelling framework we have adopted for
Tropos. In section 4 we present our organization-inspired architectural styles modeled with i*, while in
section 5 we present a set of software quality attributes in terms of which one can evaluate architectural
alternatives, using the non-functional requirements framework [Chu00]. Based on such a comparison, we
propose a system architecture for our example. Finally, section 6 summarizes the contributions of the paper
and points to further work.

2 A METHODOLOGICAL CONTEXT : TROPOS1

Tropos [Cas00a] is an information system development methodology which is founded on the concepts of
actor and goal. Tropos is intended as a seamless methodology which describes in terms of the same concepts
the organizational environment within which an information system will eventually operate, as well as the
system itself. The proposed methodology supersedes traditional development techniques, such as structured
and object-oriented ones in the sense that it is tailored to information systems that will operate within an
organizational context and is founded on concepts used during early requirements analysis. To this end, we
adopt the concepts offered by i* [Yu95], a modeling framework offering concepts such as actor, agent,
position and role, as well as social dependencies among actors, including goal, softgoal, task and resource
ones. Previous versions of Tropos appeared in [Myl00, Cas00].

The proposed methodology spans four phases of software development:

• Early requirements, concerned with the understanding of a problem by studying an organizational setting;
the output is an organizational model which includes relevant actors, their goals and tinter-dependencies.

• Late requirements, where the system-to-be is described within its operational environment, along with
relevant functions and qualities.

• Architectural design, where the system’s global architecture is defined in terms of subsystems,
interconnected through data, control and other dependencies.

• Detailed design, where behaviour of each architectural component is defined in further detail.

3 MODELING A B2C SYSTEM WITH I*2

Media Shop is a store selling and shipping different kinds of media items such as books, newspapers, audio
CDs, videotapes, and the like. Media Shop is supplied with the latest releases by Media Supplier and
customers can use a catalogue describing available media items to specify their order. To increase market
share, Media Shop has decided to open up a retail sales front on the internet. With the new setup, a customer
can order Media Shop items in person, by phone, or through the internet. The system, Medi@, is available on
the web using communication facilities provided by Telecom Cpy. It also uses financial services supplied by
Bank Cpy, which specializes on on-line transactions.

The basic objective for the new system is to allow an on-line customer to examine the items in the Medi@
internet catalogue, and place orders. Customers can search the on-line store by either browsing the catalogue
or querying the item database. An on-line search engine allows customers with particular items in mind to
search title, author/artist and description fields through keywords or full-text search.

1 For a detailed description of Tropos, see [Cas00a].

2 For a detailed description of the Medi@ case study, see [Cas00a].

 3

During early requirements analysis, the analyst captures the intentions of stakeholders. These are modeled as
goals which, through some form of a goal-oriented analysis, eventually lead to the functional and non-
functional requirements of the system-to-be [Dar93]. In i*, early requirements are assumed to involve social
actors who depend on each other for goals to be achieved, tasks to be performed, and resources to be
furnished. The i* framework includes the strategic dependency model for describing the relationships among
actors, as well as the strategic rationale model for supporting the reasoning that each actor goes through
concerning its relationships with other actors.

A strategic dependency model is a graph, where each node represents an actor, and each link between two
actors indicates that one actor depends on another for something in order that the former may attain some
goal. We call the depending actor the depender and the actor who is depended upon the dependee. The object
around which the dependency centers is called the dependum. Figure 1 shows the beginning of an i* model.

Items
Buy Media

Increase
Market Share

Orders
Customer

Handle
Customers

Happy

Media
Shop

Customer

Figure 1: Requirements and needs for Customers and Media Shop

The two main stakeholders for our e-commerce application are Customer and Media Shop. The customer has
one relevant goal Buy Media Items (represented as an oval-shaped icon), while the media store has goals
Handle Customer Orders, Happy Customers, and Increase Market Share. Since the last two goals are not
well-defined, they are represented as softgoals (shown as cloudy shapes).

A strategic rationale model determines through a means-ends analysis how these goals (including softgoals)
can actually be fulfilled through the contributions of other actors. A strategic rationale model is a graph with
four types of nodes -- goal, task, resource, and softgoal -- and two types of links -- means-ends links and
process decomposition links. It captures the relationship between the goals of each actor and the
dependencies through which the actor expects these dependencies to be fulfilled.

Figure 2 focuses on one of the (soft)goal Increase Market Share. The analysis postulates a task Run Shop
(represented in terms of a hexagonal icon) through which it can be fulfilled. Tasks are partially ordered
sequences of steps intended to accomplish some (soft)goal. Tasks can be decomposed into goals and/or
subtasks, whose collective fulfillment completes the task. In the figure, Run Shop is decomposed into goals
Handle Billing and Handle Customer Orders, tasks Manage Staff and Manage Inventory, and softgoal
Improve Service which together accomplish the top-level task. As shown in the figure, subgoals and subtasks
can be specified more precisely through refinement (see [Cas00a]).

Means-ends link

Legend Actor Boundary

Actor

Softgoal

Task

Ressource

Goal

Decomposition link

Dependency
XDepender Dependee

Happy
Customers

Process
InternetBank Cpy

Market Share
Increase

Accounting

Cpy
Telecom Communication

Services Medi@

Supplier
Media

Items
Media

Orders

Customer

Items
Buy Media

Service
Improve

Phone
OrderBy

Be Friendly

Enhance
Catalogue

Run Shop

Select
Items

Consult
Catalogue

OrderBy
Internet

Staff
Training

Billing
Handle

Business
Continuing

Orders
Customer
Handle

Person
OrderIn

Determine
Amount

Sell Stock

Shop
Manage
Staff

Inventory
Manage

Media

Desires
Customer
Satisfy

Figure 2: Means-ends analysis for the softgoal Increase Market Share

Late requirements analysis results in a requirements specification which describes all functional and non-
functional requirements for the system-to-be. In Tropos, the system is represented as one or more actors

 4

contributing to the fulfillment of stakeholder goals, along with other actors from the system’s operational
environment. For our example, the Medi@ system is introduced as an actor in the strategic dependency model
depicted in Figure 3.

Increase
Market Share

Browse
Catalogue

Buy Media

Telecom
Cpy

Media
Supplier

Items

Services
Internet

Services
Communication

Customer

Orders
Internet
Process

Place Order

Keyword
Search

Bank Cpy

Find User
Medi@

Business
Continuing

Media Shop

Media Items

New Needs

Security

Transactions
Money

Process
On-line

Accounting

Happy
Customers

Adaptability

Availability

Figure 3: Strategic dependency model for a media shop

With respect to the actors identified in Figure 2, Customer depends on Media Shop to buy media items while
Media Shop depends on Customer to increase market share and remain happy (with Media Shop service).
Media Shop depends on Medi@ for processing internet orders and on Bank Cpy to process business
transactions. Customer, in turn, depends on Medi@ to place orders through the internet, to search the database
for keywords, or simply to browse the on-line catalogue. With respect to relevant qualities, Customer requires
that transaction services be secure and usable, while Media Shop expects Medi@ to be easily adaptable.
Further dependencies are shown on Figure 3 and explained in [Cas00a].

Internet

Available

Process

++

Place

Availability

-

++

Form

+

Media

Order

On-line
Money

Transactions

Process

Get

Buy

Secure

-

-
Search

Keyword

Catalogue

Consulting

+

Browse

Media

+

-

+

Cpy
Telecom

Detail

Order

++

Market Share

Cpy
Bank

Media
Shop

Orders

Items

Supplier

Catalogue

Secure

Catalogue

Identification

Customer
Attract New

Customer
Produce
Statistics

Update

Services

Shop

Internet
Handled

Adaptation

Increase

Item

Internet

Managed

Security
Adaptability

Medi@

Find User
New Needs

Internet

Orders
Handled

Internet

Handled
Searching

Order

MonitoringSystem

Available Non Available
Pre-Order

Item

System
Database

Communication

Shopping
Cart

Querying

Classic

Evolution

Item

Order

Form

Fax

Pick

Phone

Check Out

Order

Adaptable

Standard

Handled

Add Item
Select Item

Update GUI

Figure 4: Strategic rationale model for Medi@

 5

As late requirements analysis proceeds, Medi@ is given additional responsibilities, and ends up as the
depender of several dependencies. This responsibility assignment is realized using the same kind of means-
ends analysis illustrated in Figure 2. Hence, the analysis in Figure 4 focuses on the system itself, instead of a
external stakeholder starting from a root task Internet Shop Managed providing sufficient support (++)
[Chu00] to the softgoal Increase Market Share.

Softgoal contributions are introduced to model sufficient or partially positive (++ and +) or negative (- - and -)
support to softgoals Secure, Available, Adaptable, Attract New Customers and Increase Market Share. The
result of this means-ends analysis is a set of (system and human) actors who are dependees for some of the
dependencies that have been postulated.

4 ORGANIZATIONAL ARCHITECTURE STYLES

Architectural design has emerged as a crucial phase of the design process of an information system. A system
architecture constitutes a small intellectually manageable model of system structure, which describes how
system components work together. Several works have identified architectural styles (see e.g., [Sha96]) to
guide high-level system design and have discussed how these drive the composition of a system from
particular types of components. However, such work does not focus on multi-agent architectures. Moreover,
previously developed styles are not applicable to agent-oriented systems. For instance, the client-server
architecture that executes a program on the server triggered by a client is no longer relevant with mobility and
nomadic features, such as those that are available for agent software.

Organizations exist primarily to coordinate the actions of many individuals for some purpose. That purpose
could be to develop and manage structures as business units, profitable enterprises, multi-national alliances,
governmental institutions, public administrations, charitable associations, theatre companies or sport leagues.
Furthermore, real world organizations are not constructed with a population of identical individuals doing the
same thing; instead, they diversify, delegate, negotiate, manage, cooperate, compete, and so on. Using real
world organizations as an analogy, systems involving many software entities, such as mutli-agent systems
(MAS), could benefit from the same organizational models and architectural designs understood in terms of
organizational concepts. Moreover, when designing enterprise MAS, this approach is particularly relevant to
match the enterprise operational environment.

We represent such styles inspired by organizational theory (such as [Min93, Sco98]) as well as strategic
alliances (e.g., [Gom96, Seg96, Yos95]) in terms of the i* modeling framework.

The flat structure has no fixed structure and no control of one actor over another is assumed. The main
advantage of this architecture is that it supports autonomy, distribution and continuous evolution of an actor
architecture. However, the key drawback is that it requires an increased amount of reasoning and
communication by each participating actor.

Agency_3Agency_2Agency_1 Agency_n
Ressource
ExchangeSharing

Knowledge Support

Flat Structure

Maintains
Autonomy

Handles
Tasks

Figure 5 : Flat Structure

The structure-in-5 style consists of the typical strategic and logistic components generally found in many
organizations. At the base level one finds the operational core where the basic tasks and operations -- the
input, processing, output and direct support procedures associated with running the system -- are carried out.
At the top of the organization lies the apex composed of strategic executive actors. Below it sit the logistics,
control/standardization and management components respectively support, coordination and middle agency.
The support component assists the operation core for non-operational services that is outside the basic flow of
operational tasks and procedures. The coordination component carries out the tasks of standardizing the
behavior of other components, in addition to applying analytical procedures to help the system adapt to its

 6

environment. Actors who join the strategic apex to the operational core make up the middle agency.

The pyramid style is the well-known hierarchical authority structure exercised within organizational
boundaries. Actors at the lower levels depend on actors of the higher levels. The crucial mechanism is direct
supervision from the apex. Managers and supervisors are then only intermediate actors routing strategic
decisions and authority from the apex to the operating level. They can coordinate behaviors or take decisions
by their own but only at a local level. This style can be applied when deploying simple multi agent systems.
Moreover, it encourages dynamicity since coordination and decision mechanisms are direct, not complex and
immediately identifiable. Evolvability and modifiability can thus be implemented in terms of this style at low
costs. On the contrary, it is not suitable for huge MAS requiring many kinds of agents. However, it can be
used by these MAS to manage and resolve crisis situations. For instance, a complex agent system faced with a
non-authorized intrusion from external and non trustable agents could dynamically, for a short or long time,
decide to migrate itself into a pyramid organization to be able to resolve the security problem in a more
efficient way. When considering this style for applications in which the computation can appropriately be
defined via a hierarchy of procedure definitions, it can also be related to the classical main program and
subroutines architectural style [Sha96].

Apex

Standardize

Coordination

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non-operational

Logistics Support

Structure-in-5

Control

Apex

bilities
Responsa-

Delegate Strategic
Authority

Manager Supervisor

Operator_1 Operator_2 Operator_3 Operator_4

MonitorCoordinateDelegation
Route Resolve

Conflicts

Pyramid

Delegation
Authority

Partner_1
Principal

Principal
Partner_n

Ressource
Exchange

Principal
Partner_2

Partner_1
Secondary Secondary

Partner_n

Knowledge
Sharing

Management
Joint

Support

Joint Venture

Coordination
Added
Value

Contractual
Agreement

Supplying
Services

Figure 6: Structure-in-5, Pyramid and Joint Venture

The joint venture style involves agreement between two or more principal partners to obtain the benefits of
larger scale, partial investment and lower maintenance costs. Through, the delegation of authority to a specific
joint management actor that coordinates tasks and operations and manages sharing of knowledge and
resources, they pursue joint objectives and common purpose. Each principal partner can manage and control
itself on a local dimension and interact directly with other principal partners to exchange, provide and receive
services, data and knowledge. However, the strategic operation and coordination of such a system and system
partner actors on a global dimension are only ensured by the joint management actor. Outside the joint
venture, secondary partners supply services or supports tasks for the organization core.

The arm’s-length style implies agreements between independent and competitive but partner actors. Partners
keep their autonomy and independence but act and put their resources and knowledge together to accomplish
precise common goals. No authority is delegated or lost from a collaborator to another. Since this style is
suitable for applications that involve a collection of distinct, largely independent computations whose
execution should proceed competitively, it can be considered a derivation of the classical communicating
processes architectural style [Sha96].

The bidding style involves competitivity mechanisms and actors needed to run an auction. The auctioneer
actor runs the show, advertises the auction issued by the auction issuer, receives bids from bidder actors and
ensure communication and feedback with the auction issuer. The auctioneer might be a system actor that
merely organizes and operates the auction and its mechanisms. It can also be one of the bidders (for example
selling an item which all other bidders are interested in buying). The auction issuer is responsible for issuing
the bidding. This style implies fast response time and adjustability for the system.

 7

Service
Auctionned

Start Bid
at the lowest

price

Run
Auction

Bidder_1 Bidder_2

Bid Higher No Higher
Bid

Bidder_n

Auctioneer

Issuer

Best

Bid
Possible

Auction/Bidding

Resources

Tasks
Handling

Providing Agency_3Agency_2

Agency_n

Takeover

Agency_1

Authority
Delegation

Takeover

Control

Collaborator

Collaborator Collaborator
2 3

1

Collaborator
n

Autonomy

Performance
Evaluation

CooperativeMaintain
Objectives

Competitive
Assets

Knowledge
Audit

Arm’s-Length Agreement

Figure 7 : Bidding, Takeover and Arm’s-Length Agreement

The takeover style involves the total delegation of authority and management from two or more partners to a
single collective takeover actor. The takeover style is similar in many ways to the joint venture style. The
major and crucial difference is that while in a joint venture identities and autonomies of the separate units are
preserved, the takeover absorbs these critical units in the sense that no direct relationships, dependencies or
communications are tolerated except those involving the takeover.

The hierarchical contracting style identifies coordinating mechanisms that combine arm’s-length agreement
features with aspects associated with pyramidal authority. Coordination mechanisms developed to manage
arm’s-length (independent) characteristics involve a variety of negotiators, mediators and observers at
different levels handling conditional clauses to monitor and manage possible contingencies, negotiate and
resolve conflicts and finally deliberate and take decisions. Hierarchical relationships, from the executive apex
to the arm’s-length contractors (top to bottom) restrict autonomy and underlie a cooperative venture between
the contracting parties. Such dual and admittedly complex contracting arrangements can be used to manage
conditions of complexity and uncertainty deployed in high-cost-high-gain (high-risk) applications. Since this
style is suitable for applications that involve distinct classes of layered services that can be arranged
hierarchically, it can be considered a specialization of the classical layered architectural style [Sha96].

Controller

Negociator Deliberator

Routing Brokering

Observer

Executive

Mediator

Hierarchical Contracting

Conflict
Solving

Contractor_1 Contractor_2 Contractor_3 Contractor_n

Authority
Strategic
Decisions

Coordinate

Monitoring Matching

Raw
Data

 Vertical Integration

Supplier

Merger

Wrapping

Control

Synchro-
nization

Workshop
Final

Workshop
Intermediate

Scheduling

Setup

Initialization

Conditioning

Raw
Ressources

Switch

Semi-Finite

Coordinate

Knowledge
Sharing

Support

Cooptated_1

Contractor_1 Contractor_n

Co-optation

Services
Foreign

Provides
Assets Cooptated_2 Cooptated_n

Ressource
External

Figure 8 : Hierarchical Contracting, Vertical Integration and Co-optation

The vertical integration style merges, backward or forward, one or more system actors engaged in related
tasks but at different stages of a production process. A merger synchronizes and controls interactions between
each of the participants that can be considered as workshops. Since this style is suitable for applications that
require a defined series of independent computations to be performed on ordered data, it can be viewed as a

 8

specialization within organization boundaries of the classical pipe and filter architectural style [Sha96].

The co-optation style involves the incorporation of representatives of external systems into the decision-
making or advisory structure and behavior of an initiating organization. By co-opting representatives of
external systems, organizations are, in effect, trading confidentiality and authority for resource, knowledge
assets and support. The initiating system, and its local contractors, has to come to terms with what is doing on
its behalf; and each co-optated actor has to reconcile and adjust his own views with the policy of the system
he has to communicate. The receiving system’s boundary is also crossed and the local contractors have to
come to terms with the intrusion from the external environment and with the temporary or permanent addition
to their number.

5 EVALUATING ARCHITECTURES WITH NFRS

During architectural design we concentrate on the key system actors, defined during requirements analysis,
and their responsibilities. These include the desired functionality of the system-to-be, as well as a number of
non functional requirements (also called software quality attributes) related to usability, security, availability,
reusability, evolvability, extensibility, reusability, …

Due to the organizational nature of multi-agent systems, we have found the following non functional
requirements relevant for architectural evaluation when deploying a MAS.

• Predictability [Woo99]. Agents have a high degree of autonomy in the way that they undertake action
and communication in their domains. It can be then difficult to predict individual characteristics such as
timeliness and latency as part of determining the behavior of a multi-agent system at large.

• Security. Agents are often able to identify their own data sources and they may undertake additional
actions based on these sources [Woo99]. Protocols and strategies for verifying authenticity for these data
sources by individual agents are an important concern in the evaluation of overall system quality since, in
addition to possibly misleading information acquired by agents, there is the danger of hostile external
agents spoofing the system to acquire information accorded to trusted domain agents.

• Adaptability. Agents may be required to adapt to modifications in their environment. They may include
changes to the agent’s communication protocol or possibly the dynamic introduction of a new kind of
agent previously unknown or the manipulations of existing agents.

• Coordinability. Agents are not particularly useful unless they are able to coordinate with other agents.
This can be realized in two different antagonist ways:

Cooperativity. Agents must be able to coordinate with other agents to achieve a common purpose.

Competitivity. Agent must be able to coordinate with other agents except that the success of one
agent implies the failure of others.

• Availability. Agents that offer services to other agents must implicitly or explicitly guard against the
interruption of offered services. Availability must actually be considered a sub-attribute of security
[Chu00]. Nevertheless, we prefer to deal with it as a top-level non functional requirements due to its
increasing importance in multi-agent system design.

• Failability-Tolerance. A MAS is composed by several agents and a failure of one agent does not
necessarily imply a failure of the whole system. To prevent system failure, different agents can have
similar or replicated capabilities and refer to more than one agent for a specific behavior. However, this
replication of capabilities induces redundancy in the system.

• Modularity [She98] increases efficiency of task execution, reduces communication overhead and usually
enables high flexibility. On the other hand, it implies constraints on inter-module communication.

• Aggregability. Some agents are components of other agents. They surrender to the control of the
composite agent. This control results in efficient tasks execution and low communication overhead,
however prevents the system to benefit from flexibility.

Figure 9 resumes the correlation catalogue for the ten architectural styles and nine top-level quality sofgoals

 9

we have identified. HELP, MAKE, HURT, BREAK, respectively model partial/positive, sufficient/positive,
partial/negative and sufficient/negative contributions.

Correlation Catalog Predict. Secur. Adapt. Cooperat. Compet. Availab. Failabil. Modul. Aggreg.

Flat Structure BREAK BREAK MAKE HELP HELP MAKE HURT

Structure-in-5 HELP HELP HELP HURT HELP MAKE MAKE

Pyramid MAKE MAKE HELP MAKE BREAK HELP BREAK HURT

Join Venture HELP HELP MAKE HELP HURT MAKE HELP MAKE

Bidding BREAK BREAK MAKE HURT MAKE HURT BREAK MAKE

Takeover MAKE MAKE HURT MAKE BREAK HELP HELP HELP

Arm’s-Length HURT BREAK HELP HURT MAKE BREAK MAKE HELP

Hierarch. Cont. HELP HELP HELP HELP HELP HELP

Vert. Integ. HELP HELP HURT HELP HURT HELP BREAK BREAK BREAK

Co-optation HURT HURT MAKE MAKE HELP HURT HELP

Figure 9 : Correlation Catalogue for Organizational Architectures and Top-Level Quality Softgoals.

To cope with these quality softgoals, the software architect goes through a means-ends analysis refining them
to sub-goals that are more precise and evaluates alternative architectural styles against them, as shown in
Figure 10. The analysis is intended to make explicit the space of alternatives for fulfilling the top-level quality
softgoals. The styles are represented as operationalized softgoals (saying, roughly, “make the architecture of
the multi agent system pyramid, takeover, co-optation, joint venture, arm’s-length-based, …”).

Pyramid

Claim

can aquire
trusted information"]

["External Agents

Availability

Consistency
ExternalValidation

Integrity

Adaptability

++

-
+

+++

++

-

-

+ +

+
Identification

++

Claim

Completness
Usability Authentication Confidentiality Run-time

Maintainability
Extensibility

Modifiability
Run-time

Updatability

Elasticity Authorization

["Possible Conflicts"] Dynamicity

!

Security

!

Evolvability

++

Co-optation

Adjustability
ResponseTime

Claim
["Possible Conflicts"]

+

+

+

Joint Venture

--

+
-

++

++

++

++

++

++

+

+
+

-

Accuracy

+

++

......
Other Styles

- - - - ++

+
+

Figure 10 : Partial Architecture Evaluation for Organizational Styles.

The evaluation results in contribution relationships from the architectural styles to the quality softgoals,
labeled “+” (HELP), “++” (MAKE), “-” (HURT), “--” (BREAK). Design rationale is represented by claim
softgoals drawn as dashed clouds. They make it possible for domain characteristics (such as priorities) to be
considered and properly reflected into the decision making process, e.g., to provide reasons for selecting or

 10

rejecting possible solutions (+, -). Exclamation marks (! and !!) are used to mark priority softgoals while a
check-mark “✔ ” indicates an accepted softgoal and a cross “✕ ” labels a denied softgoal.

In Figure 10, the Adaptability softgoal has been AND-decomposed into subgoals Dynamicity and
Updatability. For our e-commerce example, dynamicity should deal with the way the system can be designed
using generic mechanisms to allow web pages and user interfaces to be dynamically and easily changed.
Indeed, information content and layout need to be frequently refreshed to give correct information to
customers or simply be fashionable for marketing reasons. Frameworks like Active Server Pages (ASP),
Server Side Includes (SSI) to create dynamic pages make this softgoal easier to achieve. Updatability should
be strategically important for the viability of the application, the stock management and the business itself
since Media Shop employees have to very regularly bring up to date the catalogue by for inventory
consistency. Comparable analysis are carried out in turn for newly identified quality subgoals as well as for
the other top-level quality softgoals Security and Availability.

Eventually, the analysis shown in Figure 10 allows us to choose the joint venture architectural style for our e-
commerce example (the operationalized softgoal is marked with a “✔ ”). The analysis uses the correlation
catalogue depicted in Figure 9 and the top level softgoals Adaptability, Security and Availability identified
during late requirements analysis (Figures 3 and 4). They are respectively marked MAKE, HELP, MAKE for
the selected style. More specific softgoals have also been identified during the NFR decomposition process,
such as Integrity (Accuracy, Completeness), Usability, Response Time, Maintainability, Updatability,
Confidentiality, Authorization (Identification, Authentication, Validation) and need to be considered in the
system architecture.

Figure 11 suggests one possible assignment of system responsibilities, based on the joint venture architectural
style. The system has the structure described for this style in Figure 6. It is decomposed into three principal
partners (Store Front, Billing Processor and Back Store) controlling themselves on a local dimension and
exchanging, providing and receiving services, data and resources with each other. Each of them delegates
authority to and is controlled and coordinated by the joint management actor (Joint Manager) managing the
system on a global dimension. Store Front interacts primarily with Customer and provides her with a usable
front-end web application. Back Store keeps track of all web information about customers, products, sales,
bills and other data of strategic importance to Media Shop. Billing Processor is in charge of the secure
management of orders and bills, and other financial data; also of interactions to Bank Cpy. Joint Manager
manage all of them controlling security gaps, availability bottlenecks and adaptability issues.

Browser
Item

Item
Detail

Profiler
Customer

Customer
DataShopping

Cart

Information
Cart

Delivery
Processor

Processor
Statistics

Integrity

Usability

Order
Processor

Confiden-
tiality

Detail
Delivery

Information
Billing

Profile
Customer

Selected
Items

Ratings

Updatability

Accounting
Processor

Check
Out

Authori-
zation

Security
Checker

Response
time

Payment
Request

Front
Store

Catalogue
On-line

Consult
Catalogue

Item
Select

Invoice
Processor

ability
Adapt-

Manager

Avail-
ability

Manager

Processor
Billing

Store
BackJoint

Manager

Invoice
Process

Maintain-
ability

Monitor

Observe

Figure 11 : The e-commerce system architecture in joint venture

 11

To accommodate the responsibilities of Store Front, we introduce Item Browser to manage catalogue
navigation, Shopping Cart to select and custom items, Customer Profiler to track customer data and produce
client profiles, and On-line Catalogue to deal with digital library obligations. To cope with the non-functional
requirement decomposition proposed in Figure 10, Joint Manager is further refined into four new system sub-
actors Availability Manager, Security Checker and Adaptability Manager each of them assuming one of the
main softgoals (and their more specific subgoals) and observed by a Monitor. Further refinements are shown
on Figure 11.

6 CONCLUSIONS

Software designers rely on informal styles, patterns, or idioms, to describe the architectures of their systems
— i.e., the configurations of components that make up the systems. We argue that the architecture of
enterprise information systems should be organized the same way enterprises are. In other words the
development process should consider the organizational models of the enterprise for/in which they are
designed. The research is conducted in the context of Tropos, a software development methodology driven by
early requirements notions such as those of actor and goal.

This paper has focused on architectural styles taking inspiration from organizational models defined in
organizational theory and the strategic alliances literature. This organizational perspective complements well
proposals for multi-agent architectures, increasingly used for e-business and enterprise knowledge systems.
Indeed, considering real world organizations as a metaphor, systems involving many software actors, such as
MAS could benefit from the same organizational models. After all, human organizations diversify, delegate,
negotiate, manage, cooperate, compete, and the like. Software architectures could greatly benefit from such
qualities. The contributions of this paper include an application of the NFR framework to evaluate relevant
software qualities for different architectural styles.

The organizational styles we have described should eventually constitute an architectural macrolevel. At a
micro level we will be focusing on the notion of patterns. Many existing patterns can be incorporated into
system architecture, such as those identified in [Gam95, Pre95, Bus96]. For agent inherent characteristics,
patterns like the broker, matchmaker, embassy, mediator, wrapper, mediator are more appropriate [Hay99,
Woo99]. Another direction for further work is to relate the architectural styles proposed in this work to lower-
level architectural components involving (software) components, ports, connectors, interfaces, libraries and
configurations.

ACKNOWLEDGEMENTS

The Tropos project has been partially funded by the Natural Sciences and Engineering Research Council
(NSERC) of Canada, and Communications and Information Technology Ontario (CITO), a Centre of
Excellence funded by the province of Ontario.

We are grateful to Jaelson Castro (Federal University of Perambuco), Paolo Giorgini (University of Trento),
Eric Yu (University of Toronto), and Axel van Lamsweerde (University of Louvain) for helpful suggestions
and feedback to this research.

REFERENCES

[Bus96] F. Buschmann, R. Meunier, H. Rohnet, P. Sommerland and M. Stal. A System of Patterns: Pattern-
Oriented Software Architecture. John Wiley & Sons, 1996.

[Cas00] J. Castro, M. Kolp and J. Mylopoulos. Developing Agent-Oriented Information Systems for the
Enterprise, Proceedings of the Second International Conference On Enterprise Information Systems
(ICEIS00), Stafford, UK, July 2000.

 12

[Cas00a] J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-Driven Software Development
Methodology,” submitted to the Conference on Advanced Information Systems Engineering (CAiSE’01.

[Chu00] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos. Non-Functional Requirements in Software
Engineering, Kluwer Publishing, 2000.

 [Dar93] A. Dardenne, A. van Lamsweerde and S. Fickas. “Goal–Directed Requirements Acquisition”,
Science of Computer Programming, 20, 1993, pp. 3-50.

[Gam95] E. Gamma., R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable Object-
oriented Software. Addison-Wesley, 1995

[Gom96] B. Gomes-Casseres. The alliance revolution : the new shape of business rivalry, Cambridge, Mass.,
Harvard University Press, 1996.

[Hay99] S. Hayden, C. Carrick and Q. Yang. “Architectural Design Patterns for Multiagent Coordination,” In
Proceedings of the International Conference on Agent Systems '99 Agents'99, Seattle, WA, May 1999.

[Min92] H. Mintzberg, Structure in fives : designing effective organizations, Englewood Cliffs, N.J., Prentice-
Hall, 1992.

[Myl00] J. Mylopoulos and J. Castro. “Tropos: A Framework for Requirements-Driven Software
Development”, Brinkkemper, J. and Solvberg, A. (eds.), Information Systems Engineering: State of the Art
and Research Themes, Springer-Verlag, June 2000, pp. 261-273.

[Pre95] W. Pree. Design Patterns for Object-Oriented Software Development. Addison-Wesley, 1995.

 [Sco98] W. Richard Scott. Organizations : rational, natural, and open systems, Upper Saddle River, N.J.,
Prentice Hall, 1998.

[Seg96] L. Segil. Intelligent business alliances : how to profit using today's most important strategic tool,
New York, Times Business, 1996.

[Sha96] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline, Upper
Saddle River, N.J., Prentice Hall, 1996.

[She98] O. Shehory. “Architectural Properties of Multi-Agent Systems,” Technical report CMU-RI-TR-98-
28, Carnegie Mellon University, 1998.

 [Woo99] S. G. Woods and M. Barbacci. “Architectural Evaluation of Collaborative Agent-Based Systems.”
Technical Report, CMU/SEI-99-TR-025, Software Engineering Institute, Carnegie Mellon University, PA,
USA, 1999.

[Yos95] M.Y. Yoshino and U. Srinivasa Rangan. Strategic alliances : an entrepreneurial approach to
globalization, Boston, Mass., Harvard Business School Press, 1995.

 [Yu95] E. Yu. Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis, Department of
Computer Science, University of Toronto, Canada, 1995.

