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Abstract. Autonomous agents and multi-agent systems have been proved to be
useful in several safety-critical applications. However, in current agent architec-
tures (particularly BDI architectures) the deliberation process does not include
any form of risk analysis. In this paper, we propose guidelines to implement Tro-
pos Goal-Risk reasoning. Our proposal aims at introducing risk reasoning in the
deliberation process of a BDI agent so that the overall set of possible plans is
evaluated with respect to risk. When the level of risk results too high, agents can
consider and introduce additional plans, called treatments, that produce an overall
reduction of the risk. Side effects of treatments are also considered as part of the
model. To make the discussion more concrete, we illustrate the proposal with a
case study on the Unmanned Aerial Vehicle agent.

1 Introduction

Agent technology is becoming more and more an emergent alternative to build safety-
critical systems [1, 2]. Humans are replaced by autonomous agents in high risk situa-
tions or safety-critical missions, such as reconnaissance and battle-combat. However,
developing autonomous agents for such tasks require to introduce and consider risk and
related problems within the agent’s deliberation process.

Many models dealing with agent’s mental states have been proposed in literature [3–
5]. Most of them describe agent’s mental states in terms of Belief, Desire, and Intention
(the BDI model). The BDI model has been initially introduced by Bratman [6] and
then refined by Rao and Georgeff [7, 4] for real implementation in agent based systems.
Currently, agent tools and frameworks, such as Jack [8], Jadex [9], and Jason [10], use
effectively the BDI model in their implementations. Here the deliberation process of
an agent is supported by a meta-level reasoning, where the most appropriate plan for
achieving a given goal is selected on the basis of specific criteria such as priority and
beliefs. Unfortunately, these implementations do not consider uncertain events and, in
particular, risks (i.e., uncertain events with negative impacts [11]) as integral part of
the meta-level reasoning. On the other hand, several approaches have been proposed in
literature to reason about uncertainty [12, 13], but often their complexity made almost
impossible the implementation in real agent-based applications [12, 14].

In this paper, we adopt and adapt Tropos Goal-Risk (GR) Framework [15] within
the deliberation process of a BDI agent. The GR framework extends the Tropos Goal
Model [16] adopting the idea of the three layers analysis introduced by Feather et



al. [17] in their Defect Detection and Prevention (DDP) framework. The GR frame-
work consists of three layers: goal, event/risk, and treatment. These three layers are
used to reason about uncertain events that obstruct goals and to evaluate the effective-
ness of treatments.We propose an implementation of the GR framework in Jadex [9].
The idea is to encode the GR framework into the Jadex platform so that the deliberation
process of an agent takes into account risks and associated costs.

The paper is structured as follows. Section 2 provides a brief description of the
Unmanned Aerial Vehicle agent that will be used as an example to explain the whole
framework. Section 3 explains the Tropos Goal-Risk framework, and Section 4 details
its implementation in Jadex. Finally, Section 5 discusses related work and Section 6
gives final remarks.

2 Unmanned Aerial Vehicle

An Unmanned Aerial Vehicle (UAV) is an aircraft without pilot, that either is controlled
remotely or flies autonomously. UAVs are typically used in a number of critical mis-
sions, such as decoy, reconnaissance, combat, and even for research and civil purposes.
In the early time, UAVs were called drones because they were not more than aircraft
remotely controlled by human.

Recently, several efforts have been made to apply intelligent agents to control air-
craft [18–20]. Attempts to use intelligent agents in managing UAVs are addressed to
avoid the risk of human life loss. In this setting, agents can respond to event occurrences
autonomously without waiting for instructions from the ground control. This capability
results to be essential in critical and dangerous missions (e.g., reconnaissance, decoy,
and combat) where the response time has to be as short as possible. For instance, if a
drone understands that it has been detected by the enemy, it informs the ground control
about the danger. However, it will still proceed with the mission according to the pre-
vious plan until it receives new instructions from the ground control. It is possible that
these new instructions are sent to the UAV too late for ensuring the success of the mis-
sion. The ambitious objective of the agent paradigm is to provide UAV with facilities to
react autonomously and so to take countermeasures in the appropriate time.

There are still open problems for completely replacing human with agents. For in-
stance, a human pilot can learn from past experience so that it can adopt adequate
measures when a new occurrence of events is detected. This paper aims at improving
software agents with such a capability.

3 Tropos Goal-Risk Model

Tropos is a software engineering methodology that adopts the concept of agent and
its related mentalistic notions (e.g., goals, tasks, and resources) along the whole soft-
ware development process [21]. The Tropos Goal-Risk (GR) framework [15, 22] en-
hances the Tropos goal model by extending the conceptual model with constructs and
relations specific to risk analysis. Basically, a GR model is represented as a graph
〈N ,R 〉, where N are nodes and R are relations. N is comprised of goals, plans,



and events, and R consists of decomposition (AND/OR), contribution, and means-
end relations. Goals are defined as strategic interests that an agent may have, while an
event is an uncertain circumstance/state of affair that may affect (positively or nega-
tively) the achievement of a goal. Typically, events are out of agents’ control. A plan
is defined abstractly a course of actions, which can be used to achieve a goal or to
reduce/treat/mitigate the effects of an event. To distinguish between the plans used to
achieve a goal (hereafter plan) and the ones for mitigating the risk, we call mitigating
plans treatments.

Goals, plans, treatments, and events are characterized by two attributes: satisfac-
tion (SAT) and denial (DEN). SAT represents the supporting evidence one has about the
achievement of a goal, the execution of a plan, or the occurrence of an event. DEN rep-
resents the evidence about the failure in fulfilling a goal, executing a task, or the occur-
rence of an event. Though they have similar intuition with probability theory, SAT and
DEN are not related and cannot be derived one from the other. The values of attributes
are qualitatively represented as {F}ull, {P}artial, and {N}one, with intended meaning
F > P > N . For instance, Sat(G) = P means that there is (at least) partial evidence
that goal G will be achieved, whereas Den(G) = N means that there is no evidence
about the failure in achieving goal G. For plans and treatments, these attributes are
called success-rate and represent how likely a plan or a treatment will be successfully
executed. Besides success-rate, plans and treatments are also associated with the cost for
their execution. In the UAV scenario, for instance, it may refer to the power consumed
to execute a plan. SAT and DEN are also used to represent the likelihood of an event,
following the idea of the Theory of Evidence proposed by Dempster and Shaffer [23].
In a GR model 〈N ,R 〉, relations in R are represented as (N1, . . . , Nn)

r7−→ N, where
r is the type of the relation, N1, . . . , Nn are called source nodes and N is the target
node. The formal framework adopts the axioms for the semantic of relations from [24].
This framework is presented in [22] along the rules used to propagate evidence from
source nodes to the target node.

A GR model is composed of three different layers: goal layer, event layer, and treat-
ment layer. The goal layer models the strategic interests of an agent (i.e., goals) and
corresponding plans to obtain them. For instance, Fig. 1 shows the GR model of the
UAV agent (goals are represented as ovals and plans as hexagonal). The UAV agent
has as main goal to investigate the enemy area (G1) which is AND-decomposed
into define the flight airways to the target (G4), fly to the target (G5) based on
the defined airways, identify the target (G6) whether it is a relevant target or just a
decoy, and take the picture of target(G7). According to the rules, which is adopted
from [24], the SAT value for G1 is calculated as the minimum of all SAT values of
subgoals G4, G5, G6, and G7. Inversely, the DEN value for a target goal is calculated
as the maximum of all DEN values of its subgoals. Differently, for OR-decomposition
the achievement of a subgoal implies the achievement of its root goal. For instance, to
achieve goal take the picture of target (G7), the UAV agent can use take-store
schema(G8) or use take-transmit schema(G9). The refinement process terminates
when all leaf goals are tangible, i.e., for each leaf goal there is at least a plan that can
be used to achieve it. For instance, to achieve goal fly to the target(G5), the UAV can
adopt two alternative plans: fly at high altitude(P3) or fly at low altitude(P4). These



Fig. 1. Goal-Risk model of the UAV Agent

plans are connected by means-end relation to their end G5 (indicated as P3 7−→ G5

and P4 7−→ G5, respectively). Each plan may further be refined using decomposition
relations.

Additionally, there are situations where the achievement of a goal can contribute
positively or negatively (denoted by +,++,−,−−) to the achievement of other goals.
In our example, the goal use take-transmit schema (G9) requires more energy and
so it negatively contributes (−S) to the satisfaction of goal reduce the energy con-
sumption (G2) (indicated as G9

−S7−→ G2). The contribution −S states that the SAT
value of the source goal is propagated to the DEN value of the target goal with the
maximum value Partial . −−S has a similar semantics but they can contribute till Full.
Negative contribution relations for denial (−−D and −D) have dual propagation rules.
Similar considerations can be applied to positive contribution. For instance, the denial
of goal identify the target(G6) contribute positively (+D) to the denial of goal take
the picture of target (G7) since the UAV has to decide whether or not the target is
relevant before taking the picture. Similar rules apply for positive contribution relations



for satisfaction (++S and +S). Finally, there could be situations where both +S and
+D are required for the same goals. In this case, we simply use Gx

+7−→ Gy which
means that both Gx

+S7−→ Gy and Gx
+D7−→ Gy hold.

In the event layer uncertain events (depicted as pentagons) are analyzed along their
influence to the goal layer using contribution relations (Fig. 1). Notice that the occur-
rence of events can affect the fulfillment of goals and the execution of plans, but their
absence do not affect them. This is because the occurrence of an event (e.g., heavy
storm (E7)) delivers negative evidence to the goal layer (especially the goal reduce
energy consumption (G2)), while the absence of the event does not deliver any ev-
idence neither positive nor negative. Based on this observation, we assume that con-
tribution relations from the event layer to other layers propagate only SAT evidences
(denoted by ++S , +S , −−S , and −S). Though in this paper we are particularly in-
terested to the negative effect of event (risk), the GR model also handles events with
positive impacts over goals.1 For instance, the event heavy storm (E7) can cause an
increment of the fuel consumption, that negatively contributes (−) to the achievement
of goal reduce energy consumption (G2). At the same time, E7 reduces the likeli-
hood of being detected by land-patrols (E8). As in the Probabilistic Risk Analysis
(PRA) [25], we characterize an event with two attributes: likelihood of its occurrence
and severity once it occurs. As mention before, likelihood is realized as SAT and DEN
values representing the evidence that support or prevent an event to be occurred. Sever-
ity is represented as the sign of a contribution relation (e.g., +,++,−,−−). As in Fault
Tree Analysis [26], an event can be analyzed using decomposition relations. The formal
semantics of these relations are the same with the one in the goal layer.

Typically, events are out of an agent’s control and the only thing that the agent can
do is to try mitigating their impacts. An agent can adopt specific treatments to either
reduce the likelihood or reduce the severity of risk. In the treatment layer specific
plans are introduced and related to the goal and event layer. As shown in Fig. 1, goal
apply stealth mode (T4) technology reduces the likelihood of risk being detected
by enemy’s radar (E4). This relation is depicted as T4

−7−→ E4. In case of storm,
the UAV agent can hibernate the system (T3) to reduce the negative impacts of the
event E7 towards the achievement of goal reduce the energy consumption (G2).
This relation is depicted as a line ending with a black circle in Fig. 1 and represented
as T3

−−7−→ (E7
−−7−→ G2). We call this relation alleviation relation, but for sake of

simplicity, we do not detail it in this paper. The level of risk effect reduction from a
treatment depends on the success-rate of the treatment and the sign of the relation to the
event layer.

The overall GR model represents exactly what an agent can do to achieve its goals
(i.e., applying the right plans) and to mitigate associated risks (i.e., adopting necessary
treatments). To choose among the possible plans and treatments, an agent needs to
reason on its GR model, and later the combination of plans and treatments is called
as strategy. To this end, we proposed a risk analysis process (or risk reasoning) [22] to
select appropriate plans and treatments, such that the risk is acceptable and the cost (i.e.,
power consumption) is affordable. Suppose an UAV agent must be operated within the

1 Notice that a negative event for an agent, may be positive for another agent.



maximum risk level (called RISK) and the affordable cost (called COST) that is needed
to proceed its strategy. In particular, the process synthesizes a strategy (i.e., plans and
treatments) from GR model 〈N ,R 〉such that the agent can satisfies its top goals (e.g.,
G1 , G2 , and G3 ) with the risk below RISK and the total cost of the strategy below
COST. The risk of this strategy is calculated using forward reasoning [24] with taking
the likelihood of events and the success-rate of plans and treatments, in terms of SAT
and DEN values, as inputs, and the SAT and DEN values of the top goals must be below
the RISK. The total cost is defined as the sum of the cost to execute selected plans and
to employ necessary treatments.

Initially, the agent generates all possible solutions (i.e., sets of leaf subgoals) for
achieving top goals in 〈N ,R 〉. For instance, the UAV agent has top goal G1 that can
be fulfilled by fulfilling two sets of input-goals, {G4, G5, G6, G8} or {G4, G5, G6, G9}
(Fig. 1). Goal models are AND/OR trees and the problem of finding all the possible
combinations of subgoals that satisfy top goals corresponds to a boolean satisfiability
problem [27]. Our approach is based on the solution proposed in [28], where Tropos
goal models are encoded into satisfiability formulas and SAT solvers are then used
to find input-goals (i.e., goals that must be satisfied) that satisfy the top goals. For a
given set of input-goals, the agent finds all possible set-of-plans that are means for the
input-goals (i.e., a plan that is connected by means-end relation to a goal). For instance,
{P1, P3, P6, P11, P12} is one of the possible set-of-plans that satisfies the top goal G1

(Fig. 1).
Once the cost of the set-of-plans is affordable (i.e., less than COST), the agent con-

tinues to assess the risk of the set-of-plans. If the risk is also acceptable (i.e., less than
RISK), the set-of-plans is defined as the strategy to be executed by the agent. Otherwise,
if the risk is unacceptable (i.e., higher than RISK), the agent must find applicable treat-
ments to mitigate risk such that the risk is acceptable. For instance, the set-of-treatments
{T4, T5} is one of the possible measures that the UAV can adopt to reduce the risk to
be detected by the enemy. Before adding the set-of-treatments as part of the strategy,
the agent needs to verify whether the total cost and risk are still affordable. If they are
acceptable, the set-of-treatment and the set-of plans are considered as the strategy of
the agent, otherwise the agent restart to analyze other set-of-plans.

At the end, the risk assessment process returns a strategy (i.e., plans and treatments)
used to fulfill top goals considering the level of risk and the total cost associated with
them. In this paper, we assume that there is always a solution for each attempt finding a
strategy.

4 Framework Realization

Several agent infrastructures based on BDI concepts, such as Jack [8], Jadex [9], and
Jason [10], have been proposed in the last years. Typically, agent platforms follow the
Reactive Reasoning and Planning (PRS) computational model [29] to implement their
reasoning engine. PRS-like systems are event-based where events2 are used to denote
incoming messages, a new goal to be processed, or a change in the state of an exist-
ing goal. Once an event is generated, the agent dispatches the event to the deliberation

2 The notion of event supported by agent platforms is a different from the one in Tropos.



mechanism (called meta-level reasoning) to choose the most appropriate plan to handle
it. In some PRS-system, like Jack and Jason, goals are represented as special type of
event, called goal-event. Thus, agents implemented in Jack or Jason platform do not
know the current pursuing goals. They execute the plan only as a response to the occur-
rence of an event.

On the contrary, the notion of goal plays a key role in the Jadex platform. This
has spurred us to choose Jadex as platform to implement the GR framework. Jadex
requires to specify agents’ goals explicitly. These goals must be related to the plans
that provide means to achieve them. Jadex represents agents’ beliefs as Java objects and
stores them in the beliefbase, that is, the database of agents’ beliefs. Moreover, Jadex
allows one to specify the plan that has to be executed when a belief is changed. Those
BDI descriptions are represented in an XML file, called Agent Definition File (ADF)
by a Jadex agent. The Jadex reasoning engine starts the deliberation process by
considering the goals requested by the agent. To this end, it adopts the goals stored in
the database that contains all adopted goals by the agent, called the agent’s goalbase. To
distinguish between just adopted and actively pursued goals, Jadex distinguishes a goal
into three states: option, active, and suspended. When a goal is adopted, it becomes an
option goal in the agent’s goalbase. Once the agent pursues the goal, it becomes active
and a goal-event is triggered. The event is then dispatched to the meta-level reasoner in
order to find the most appropriate plan to achieve the goal.

The process to implement the GR models of the UAV agent into the Jadex platform
starts by defining its beliefs (Fig. 2(a)). The agent’s beliefs include: the thresholds of
risk level and cost (line 2-7) that are acceptable for the UAV agent; the current cost and
risk level of adopted strategies are encoded in (line 8-10) and (line 11-13) respectively.
The success rate for plans, the likelihood of events, and the success rate for treatments,
which are depicted as Goal-Risk labels, are also included as the beliefs (line 17-32). We
also provide the agent with facilities for risk analysis by representing the GR model as a
Java object and storing it as a belief (line 14-16). We also specify assess risk plan (line
2-9 in Fig. 2(b)) in case there is a change in these belief values. Essentially, assess risk
calculates the risk level and cost of adopted strategy (i.e., plans and treatments) using a
Jadex implementation of Forward Reasoning [24].

To contain the risk level and cost, the UAV agent needs to introduce two addi-
tional goals: maintain risks (line 2-9 in Fig. 2(c)) below the risk threshold and main-
tain costs below the cost threshold. If such goals are denied, plan re-planning (line 10-
15 in Fig. 2(b)) is executed to recover the desired conditions. Essentially, re-planning
is the Jadex implementation of Risk Reasoning and is used to synthesize a strategy on
the basis of the current beliefs. As mentioned previously, we assume that there is always
a strategy for each re-planning attempt.

We also need to represent goals, plans, and treatments of the GR model in the ADF,
so that the Jadex implementation of the agent behaves accordingly to the GR model at
execution time. Goals are declared in the ADF goal-base, while plans and treatments
are depicted as plans section of ADF. This transformation starts by declaring all goals,
plans, and treatments occurring in the GR model as XML entries in the ADF (Fig. 2(c)
and Fig. 2(b)). Additional Jadex-goals and Jadex-plans may be introduced to mimic
the behaviors supported by the GR framework, that are missing in the Jadex platform.
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Fig. 2. UAV agent description in Jadex-ADF
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Fig. 3. Goal-Risk model to Jadex

A Jadex-plan can introduce a new goal, instead only performs a course of action (as
denoted in Jadex-Legend Fig. 3).

Goals, plans and treatments in Tropos can be AND/OR-decomposed, while in Jadex
a goal can only be AND-decomposed. Indeed, Tropos decompositions represent the
knowledge of agents about the relations between goals. On the other hand, Jadex in-
troduces subgoals as a result of a plan. For instance, G1 is AND decomposed into G6

and G7 (left-side in Fig. 3). To realize this behavior during execution of a Jadex agent
(right-side in Fig. 3), we need to introduce an additional plan P-G01. This plan intro-
duces (and later dispatches) subgoals G6 and G7, as depicted in the right-side of Fig. 3.
P-G01 is means to achieve G1 (depicted by arrow line), and the ADF description
is shown in Fig. 2(b) (line 16-21). However, both Tropos and Jadex require the fulfill-
ment of all AND-subgoals for having evidence about the fulfillment of upper-level goal.
AND-decompositions of plans/treatments have a similar intuition, with introducing ad-
ditional goals to activate the subplans. For instance, plan P8 will introduce additional
goals (i.e., G-P12, G-P13, and G-P14) that later activate subplans P12, P13, and P14.

To mimic goal OR-decompositions, we introduce additional plans where each plan
is used to activate a new subgoal. These plans represent alternative means that an agent
can adopt to achieve the upper-level goal. For instance, G7 is OR-decomposed into G8

and G9 (Fig. 3). This is represented in the ADF by introducing the additional plans P-
G08 and P-G09 that respectively activate G8 and G9 , as ways to achieve goal G7. The
agent will perform meta-level reasoning on meta-goal of G7 (called choose planG07
in Fig. 2(c) line 17-22) to decide which plan should be adopted. In other words, we over-



ride the Jadex meta-level reasoning by defining a new plan (chooseG07 in Fig. 2(c))
to determine the least risky alternative. Such a plan has body RiskReasoning which is
a Java implementation of Risk Reasoning. OR-decompositions of plans/treatments can
be mimicked by defining a task that introduces an additional goal, and all subplans are
defined as means to achieve the additional goal. Moreover, we must override the Jadex
meta-level reasoning with a similar plan with chooseG07 which uses RiskReasoning
as the body.

Finally, we need to represent Tropos means-end relations in a Jadex agent. Means-
end relations correspond to the trigger mechanism in Jadex. For instance, P7 7−→G8 is
represented by adding G8 as the trigger of P7 in the ADF (line 30-32 in Fig. 2(b))
or denote by relating P07 to G08 with an arrow line (right-side in Fig. 3). This map-
ping scheme holds if the plan is not related with any treatments (i.e., direct or indirectly
through the event layer). On the contrary, if the plan is related with a treatment, the map-
ping schema is slightly different because several combinations of plans and treatments
can be used to achieve the goal (e.g., it can adopt only the plan, the plan with a treat-
ment, the plan with some treatments, or the plan and all treatments). For instance, the
success of plan establish communication with ground control(P11) is obstructed by
the risk due to loss the link of communication(E1) (Fig. 3). In this setting, the UAV
agent can adopt treatment have fault tolerant communication link(T1) for retention
purpose. The agent may adopt only P11 (or P11a in Fig. 3 (right-side)), whereas in
others it needs to adopt P11b, which is the combination of P11 and T1, for ensuring
the success of P11 execution. This mapping is getting more complicated when several
treatments can be applied since the number of combinations of plans and treatments to
achieve a goal is exponential (Numb(plan) × 2Numb(treatment)). For instance, if G1

is obstructed by E2 directly and by E3 indirectly and the agent knows a single plan to
achieve G1 and three treatments (e.g., T2, T4, and T5) to mitigate E2 and E3, the agent
has eight possible strategies to achieve goal G1.

The proposed Jadex-implementation allows an agent to perform meta-level reason-
ing using GR framework. In particular, we have taken advantages of combining GR and
Jadex reasoning facilities. The Tropos approach explores all alternative solutions and
chooses an acceptable (and optimal) sequence of plans and treatments, whose execution
allows the agent to achieve the top goals from the current condition. Conversely, Jadex
reasoning only elicit a plan to achieve the goal, and later could be the case that the plan
will introduce other goals or trigger the execution of other plans. We have implemented
Risk Reasoning using Jadex approach. Thus, the agent keeps performing Risk Reason-
ing each time there are several applicable plans, though Risk Reasoning has already
provided a strategy for pursuing a goal. Ideally, the reasoning mechanism is executed
in the beginning, and it will be executed again if there is a change in the agent’s beliefs
to revise the existing strategy.

5 Related Work

In artificial intelligent community, a lot of effort has been devoted to develop reasoning
mechanisms dealing with uncertainty [12, 14, 13]. Here, the focus was on determining
how subtle uncertainties affect the reasoning mechanisms. Differently, the autonomous



agent community is mainly focusing on how to implement agent platforms (e.g., Jack,
Jason and Jadex) with reasoning mechanisms to deal with existing event and situa-
tion [30, 31, 20].

Helpern [12] proposes a framework to reasons about uncertainty from a single
agent viewpoint and multi-agent environments. An environment (i.e., entities outside
the agent) is treated as black boxes, with no structure. Therefore, the likelihood of
events is viewed as a collection of random variables. In the multi-agent framework,
the environment can be structured on the basis of the interactions among agents. The
framework also models uncertainty values in terms of functions of time.

Markov Decision Process (MDPs) [13] is a mathematical framework to model a
decision-making process where outcomes are partly random and partly controlled by
agents. MDPs address optimization problems. They are represented as tuples 〈S, A, P,R〉,
where S is a set of possible states, A is a set of actions that caused state transitions, P
is a set of probabilities of action occurrences, and R is a set of rewards that are gained
if an action is executed. The framework uses value iteration algorithms to determine the
set of actions that minimize and maximize the reward. If risks are encoded as rewards,
the agent can use such algorithms to identify the least risk strategy by searching the
solution with minimal reward. Moreover, Samari and Parson [32] investigated on the
relation between MDPs and BDI architectures. Their results open the way for using
MDPs as reasoning mechanisms in the BDI architecture.

Another proposal is the Abstract Agent Programming Language3 (3APL), a cog-
nitive agent programming language that employs logical representation and reasoning
features based on the BDI model. In this setting, the beliefs are assumed to be certain,
either true or false. Kwisthout and Dastani [14] propose an extension of 3APL that
allows an agent to reason about uncertain beliefs. The authors recognized that 3APL
is not sufficient to reason about uncertain beliefs that result essential for dealing with
many real cases. This extension uses Dempster-Shafer theory [23] to model uncertainty
in agent’s beliefs. Those reasoning frameworks are really sufficient for reasoning about
uncertainty, even sometime it is too complex, but those frameworks does not specify
how an agent must react to deal with the effects of uncertainty.

In the autonomous agent community, the proposals, such as [31, 20], present imple-
mentations of the UAV agent (called Wingman) in the Jack platform. The Wingman is
provided with basic plans (e.g., flying quietly and at low altitude) in order to achieve its
goals (e.g., taking picture of enemy installations). The Wingman is also provided with
additional plans (e.g., flying as fast as possible) to deal with malicious events such as
being detected by enemy. When a malicious event occurs, the Wingman reasons about
its plans and changes the adopted basic plan with an additional plan to guarantee the
achievement its goals. However, the Wingman does not try to anticipate the occurrence
of malicious events, but it just reacts when they happen. Similar works have been done
in [18, 33]. On the contrary, our approach allows the UAV agent to anticipate malicious
events by employing treatments when the risk is unacceptable. Another implementa-
tion of reasoning in an autonomous agent has been proposed by Braubach et al. [30].
They propose an implementation of the Cleaner World agent in Jadex. Such an agent
is designed to pick all wastes and throw them in trash bins. In this implementation, the

3 http://www.cs.uu.nl/3apl/



agent moves to a location once its sensors detect the existence of wastes. However, it
would be more efficient if agent movements are not only driven by the appearance of
wastes, but they are anticipated by reasoning about the likelihood of having new wastes
in a certain location.

Finally, this paper propose a middle way between those two approaches to reason
about uncertainty and react accordingly. Our work starts from using the existing rea-
soning mechanism in the agent platforms (i.e., Jadex), and extends it with Goal-Risk
reasoning mechanism [22]. This approach is taken because we intend to have the rea-
soning mechanism which is implementable in an agent platform, especially the ones
that are based on BDI. Moreover, the reasoning looks so trivial comparing with the
ones that are proposed by AI community. the GR framework is not meant to assess
the uncertainty precisely, but it is used for supporting an agent in constructing a strat-
egy which is not risky. Thus, the GR framework can use a simple metric to calculate
uncertainty.

6 Conclusions and Remarks

In this paper, we have presented a Jadex implementation of the Tropos Goal-Risk frame-
work. The GR framework and Jadex differ in concepts and reasoning features and their
integration was not straightforward. In particular, we have shown that there are lim-
itations in Jadex to adopt all concepts supported by the GR framework, but we have
also shown that this mapping does not limit the expressiveness of the intended goal
deliberation process.

The initial GR reasoning mechanisms allow agents to perform cost-benefit analysis
on a strategy to be adopted, but require an exhaustive knowledge before the agent starts
pursuing its goals. On the other hand, the Jadex approach results faster in choosing a
strategy for a given goal and more adaptive to the current conditions of the agent. We
have taken advances of combining GR and Jadex reasoning features by implementing
complete plans and facilities for reasoning about them in the belief of the agent. The
intuition is to use complete plans as a baseline for the Jadex reasoning. Then, during
the pursuing of its goals, the agent evaluates the baseline by reasoning about risks in
the current situation.

We are currently extending the risk reasoning to cope with multi-agent environ-
ments. In this setting, an agent should be able to reason about risks when it depends
on other agents for the fulfillment of its goals. Yet, treatments may be introduced when
risks are unacceptable or when the agent has no alternatives to achieve its goal besides
depending on other agents.
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