
Tool-supported Development with Tropos:
The Conference Management System Case

Study.

M. Morandini, D. C. Nguyen, A. Perini, A. Siena, and A. Susi

Fondazione Bruno Kessler - IRST
Via Sommarive, 18
38050 Trento, Italy

{morandini, cunduy, perini, siena, susi}@itc.it

Abstract. The agent-oriented software engineering methodology Tro-
pos offers a structured development process and supporting tools for
developing complex, distributed systems.
The objective of this paper is twofold: first, to illustrate the use of Tro-
pos to develop a Multi-Agent System, performing basic analysis and
design activities, code generation and testing, with the support of a set
of tools; second, to enable the comparison with other, tool-supported,
agent-oriented software engineering methodologies through a description
of the main steps of these activities and of excerpts of the resulting arte-
facts, with reference to a common case study, namely, the Conference
Management System case study.

1 Introduction

Many Agent-Oriented Software Engineering (AOSE) methodologies have been
proposed over the last years [13, 7]. This fact motivated research on how to
compare and evaluate these methodologies, with the purpose of pointing out
differences and complementarities, and of giving criteria for selecting the most
appropriate methodology, for a given development scenario [13, 5].

While this research field is becoming more mature, a need is emerging for
detailed guidelines when applying a methodology along core phases in the soft-
ware development process, and for supporting tools. This is considered a crucial
step towards the adoption of AOSE methodology by industry.

The Tropos methodology, proposed in [3], is an agent-oriented methodology
for developing complex, distributed systems. A peculiarity of Tropos is that
it adopts a requirement driven approach to software development, recognizing
a pivotal role to the modelling of domain stakeholders and to the analysis of
their goals, before generating a design for the system-to-be. System design then
consists in specifying software agents who have their own goals and capabilities
that are intended to support the fulfilment of stakeholder goals.

Further research on the Tropos methodology focused on its application in
developing specific classes of applications, as for instance distributed knowledge

management systems [23]. Moreover, extensions of its modelling language have
been proposed to support the analysis of crucial issues in distributed systems,
such as trust and security [10]. Several tools have been built as well. TAOM4e, for
supporting a model-driven, agent-oriented approach to software development [19,
17], the T-Tool [9], for performing model-checking of Tropos specifications, the
GR-Tool for supporting formal reasoning on goal models [12], multi-agent plan-
ning for supporting the selection among alternative networks of delegations [4].

The main objectives of this paper are: first, to illustrate how to use Tropos
to develop a Multi-Agent System (MAS), performing basic analysis and design
activities, generating code and performing testing on it, with the support of a
set of tools; second, to enable the comparison with other tool-supported AOSE
methodologies through a description of the main steps of these activities and
of excerpts of the resulting artefacts, with reference to a common case study,
namely, the Conference Management System (CMS) case study [6].

The paper is structured as follows. Section 2 recalls basic development ac-
tivities in Tropos and gives a short description of the tools that support them.
Requirements analysis is described in Section 3, system design is described in
Section 4, code generation and testing in Section 5. Considerations emerged dur-
ing the development of the CMS case study are discussed in Section 6. Finally,
conclusion and future work are presented in Section 7.

2 Tropos Development Process and Tools

The software development process in Tropos is structured in five main phases,
namely: early requirements analysis that focuses on the understanding of the
existing organizational setting where the system-to-be will be introduced; late
requirements that deals with the analysis of the system-to-be; architectural de-
sign that defines the system’s global architecture in terms of subsystems; detailed
design that specifies the system agents micro-level; implementation that concerns
code generation according to the detailed design specifications.

This development process is model-based, that is, requirements and design
models are core artefacts. They are built using a conceptual modelling lan-
guage, derived from the i* framework [24]. This modelling activity, called Agent-
Oriented (AO) modelling in Fig. 1, spans the first four phases in the software
development process. Basic concepts of the modelling language are those of actor,
goal, plan and dependency for goal achievement. 1 AO modelling can be per-
formed using the TAOM4e modelling tool [19]. The tool has been extended to
support automatic code generation from the Tropos specification into JADE [1]
or Jadex [20] MAS, by exploiting a mapping between the Tropos meta-model
concepts and the target implementation languages constructs [18, 15].

Other tool-supported analysis techniques are available in Tropos, such as
validation of requirements specification via model-checking (see T-Tool [9]) or
formal analysis on goal models of requirements and system design (see GR-

1 UML activity and sequence diagrams may be used as well for detail design in Tropos.

Fig. 1. Development Process Phases: Activities and Supporting Tools.

Tool [12]). These types of analysis are particularly useful in case of complex
models. They will be not described in this paper.

Goal-Oriented testing has been recently proposed as a complementary activ-
ity to AO modelling and code generation activities [16]. The basic idea is that
of deriving test cases directly from the AO specifications produced along the
development process with the aim to support testing and validation along the
process phases. In this paper we will illustrate agent and integration testing as
supported by the eCAT tool [16].

A high-level architecture of the tooled environment is described below, while
the use of the tools during the development of the CMS system will be illustrated
in the following sections.

Fig. 2. Architecture of TAOM4e and eCAT .

2.1 TAOM4e and Code Generation functions

TAOM4e 2 is a graphical Tropos modelling framework, which supports modelling
in all phases of the Tropos process. It is realized as a plug-in for the Eclipse 3

project and extends existing plug-ins, as shown in Fig. 2: the EMF plug-in4 offers
a modelling framework and code generation facility for building tools and other

2 http://sra.itc.it/tools/taom4e
3 http://www.eclipse.org
4 http://www.eclipse.org/emf

applications based on a model specification described in XMI; the Graphical
Editing Framework (GEF) plug-in5 allows to create a graphical editor from an
existing application model; the Tefkat plug-in6 provides a rule-based language
to implement model to model transformation.

The Tropos metamodel has been implemented on top of EMF (TAOM4e
model), GEF is used to realize the graphical representation of the model and
the different views on it (TAOM4e platform), whereas the Tefkat plug-in is
used to transform top-level plans and their decompositions into UML activity
diagrams. The resulting diagrams can be edited using any UML2 editor and
further detailed with sequence diagrams, which define communication protocols
among agents.

Fig. 3 shows a screen-shot of the TAOM4e GUI.
The TAOM4e modeller is enriched with TAOM4e generators to derive skele-

tons of code for the JADE and Jadex agent platforms, directly from an UML
specification of detailed design artefacts or from a Tropos goal model. TAOM4e
generators include UML2JADE, t2x, and Tropos2UML. Tropos2UML can be used
to generate UML activities diagrams from Tropos goal model, while UML2JADE
can generate JADE agent code from UML activity and sequence diagrams that
specify Tropos plans (capabilities), details are given in [17].

The part of an agent that is responsible for choosing the right plans at run-
time in order to reach the desired goals is called knowledge level. In an agent’s
GM , the knowledge level consists of goals and their decomposition, contributions,
dependencies to other agents and means-end relations to plans. These are inputs
for the t2x (namely Tropos to Jadex) tool. The tool generates skeletons for agents
following the BDI architecture, and they are executable on the Jade BDI agent
platform [21]. The mapping between Tropos goal model elements and Jadex
construct is described in [18, 14].

The generated code skeleton implements the reasoning part of a software
agent. It consists of an Agent Definition File (ADF), in XML format, which
defines goals, plans, beliefs and messages for every system agent in the GM .
The single plans can be implemented in Java files, which can be associated to
the elements in the ADF.

2.2 eCAT

eCAT 7 implements our method for automated continuous testing of MAS, sup-
porting a goal-oriented testing approach [16]. The tool facilitates test suites
derivation from goals analysis and generates semi-automatically test suites from
goal analysis diagrams produced with TAOM4e. It also provides GUIs to help
human testers specifying test inputs and oracles. Moreover, eCAT can evolve
and generate more test inputs during the course of testing, and run these test

5 http://www.eclipse.org/gef
6 http://tefkat.sourceforge.net
7 http://sra.itc.it/people/cunduy/ecat

inputs continuously to test the MAS. In this way, the MAS under test is tested
more thoroughly and is stressed more extensively.

eCAT consists of three main components: Test Suite Editor, Autonomous
Tester Agent , and Monitoring Agents. Its operation is described as follows:

– Based on agent specifications and design (e.g. outputs of AO modelling with
TAOM4e), the Test Suite Editor generates initial test suites and then pro-
vides a GUI for end-users to edit them.

– The Autonomous Tester Agent takes those test suites and/or generates
other test suites randomly. It then continuously executes them against the
multi-agent system under test. During the course of test execution, the Au-
tonomous Tester Agent can evolve test suites by applying a mutation and
evolutionary technique in order to create more test suites, which aim at
revealing more bugs.

– The Monitoring Agents assist the Autonomous Tester Agent during testing.
By monitoring events and interactions happened in the multi-agent system
and its environment, it provides useful information to the Autonomous Tester
Agent in order to judge if a test passes or fails, and a trace to the found bug
when failed.

3 Requirements Analysis

Starting software development in Tropos using TAOM4e requires to create a
“Tropos project” that will collect all the artefacts generated during the develop-
ment process, such as models, actor and goal diagrams that represent views on
these models, agent code, test cases and logs generated during test execution.

Two models are built in the requirements analysis phases: the Early Re-
quirements and the Late Requirements models. They are in charge of de-
scribing the domain setting as is and the same domain once the system-to-be
will have been introduced, respectively.

A guide to start building the Early Requirements model is given by the
following analysis questions: Who are the stakeholders in the domain? What
are their goals and how are they related to each other? What are there strategic
dependencies between actors for goal achievement?

The Conference Management System domain is modelled in terms of its
main stakeholders (actors), namely papers’ authors, by the actor Author, the
conference’s program committee and its chair, by the PC and the PC Chair
actors respectively, papers reviewers by the actor Reviewer and the proceedings
publisher by the actor Publisher. Stakeholders’ goals are then identified and, for
every goal, the analyst can decide, on the basis of the domain documentation,
if the goal is achievable by the actor itself or if the actor has to delegate it to
another actor, revealing a dependency relationship between the two actors, such
as in the case of the dependency between Author and PC for the achievement
of the goal Publish proceedings. An analogous analysis can be carried on for the
domain tasks and resources, according to the Tropos modelling process described
in [11].

Fig. 3. A snapshot of the TAOM4e’s GUI including: the tool’s button menu (top);
the project’s artefacts browser (left); model views, e.g. the Early requirements Actor
Diagram (centre); the modeller’s palette (right).

In practice, using TAOM4e, the Early Requirements model is built by creat-
ing a first Actor Diagram into the project and adding actors, goals, etc. into the
model using the graphical editor. Fig. 3 shows a view of the Early Requirements
model (actor diagram) for the CMS case study. Circles represent actors, ovals
the goals, rectangles the resources and the double arrows links between pairs
of actors the dependencies between the two actors for the achievement of the
goal or resource connected by the two dependency links. For every entity in the
model, some properties, such as formal properties related to the Formal Tropos
language [8], can be specified in the tool, according to the metamodel defined in
[2].

AO modelling can be further pursued by decomposing a goal into sub-goals
and by exploring the possible alternatives to achieve a goal. Alternatives are
represented by OR-decomposition and characterized by multiple contributions.
At this stage, also non-functional requirements can be represented as soft-goals.
Choosing one alternative with respect to another, leads to different soft-goals
achievement. By this way, it is possible to compare different alternatives and
select the most appropriate one.

In Fig. 4, an Early Requirements goal diagram is shown. This diagram rep-
resents a (partial) view on the model. Only two actors of the model, PC and
PC Chair, are represented with two goal dependencies, Manage conference and
Decide deadlines. The goal Manage conference is analyzed from the point of view
of its responsible actor, PC Chair, through an AND decomposition into sev-

Fig. 4. Early Requirements of CMS: Goal Diagram.

eral goals: Get papers, Select papers, Print proceedings, Nominate PC and Decide
deadlines. Moreover, softgoals can be specified inside the actor goal diagram,
with their contribution relationships to/from other goals (see for example the
softgoal Conference quality and the positive contribution relationship from the
softgoal Better quality papers).

Goal diagrams can be dynamically created in TAOM4e. The tool allows, for
every actor in the model, to open (close) their goal diagrams, which appear as
balloons attached to the relative actors. This allows to dynamically visualize the
internal perspective of each single actor. Notice also that the tool supports the
analyst in identifying the elements to be analyzed. For instance, goals that have
been delegated to an actor through dependency relationships, appears automat-
ically in the actor goal diagrams, as for instance in the case of the PC Chair actor
and the goal Manage conference in Fig. 4.

The results of the first phase are the Early Requirements model and the set
of Actor and Goal diagrams produced during its specification.

The Late Requirements phase is intended to capture the changes in the do-
main caused by the introduction of the system-to-be and the actual properties
of the system. The phase starts by introducing in the domain model a new actor
representing the system-to-be.

A partial view of the resulting model is shown in Fig. 5 where the CMS System
actor is represented. In practice, the analyst creates a new diagram inside the

Fig. 5. Late Requirements: Actor Diagram.

Fig. 6. Late Requirements: Goal Diagram.

project that, again, is a view on the model under construction, and adds the
new actor. specifying its property of being a system actor.8

The driving analysis questions here can be stated as follows: what are the
goals that can be assigned to the system-to-be and which dependencies can be
redirected from domain actors to the system?

According to these questions, several existing or new dependencies can be
respectively redirected and established between the other actors in the domain
and the new CMS System actor, such as the new goal dependencies Coordinate
conference and Manage proceedings.

These goals are then analyzed from the system actor perspective. In Fig. 6,
the relative goal diagram is shown. The goals Coordinate conference and Man-

8 The tool can be customized to show system actors with a different color with respect
to domain actor to facilitate model reading.

age proceedings are decomposed in new sub-goals. Moreover, operative plans are
specified and associated to the system goals as means to achieve them (means-
ends relationships), such as in the case of the goal Manage decision that is oper-
ationalised by the plans accept and reject.

The resulting artefacts of this phase are the extended domain model and all
the Late Requirements diagrams defined by the engineer. The model will be the
input for the Design phases.

4 Design

The Late Requirements model is the basis for the definition of the actual system
architecture. It is comprised by both the overall multi-agent system structure,
and the detailed design for each single agent of the system.

The Architectural Design artefact consists of the system’s overall struc-
ture: it is represented in terms of its sub-systems and of their inter-dependencies.
Adopting the multi-agent system paradigm, sub-systems are agents that can act
independently and communicate with others through message passing. In or-
der to build the architectural design, the engineer will refine the system actor
by introducing sub-actors, which are responsible for actually carrying out the
system’s top goals. The aim is to split the complexity of the system, which is
described in terms of high-level goals, into smaller components, easier to design,
to implement and to manage. During this refinement activity, the engineer has to
face possible alternative decompositions. Among alternative decompositions, one
that results in sub-systems with stronger internal cohesion and lower coupling
should be selected.

TAOM4e gives the possibility to create an Architectural Design diagram for
every system actor defined in Late Requirements Analysis. In this diagram, a
dashed box associated to the system actor represents the system. In the box,
new system agents can be created. Subsequently, a single goal, the whole goal
tree or parts of them can be delegated from the system to the new system agents.

Fig. 7 displays the resulting architectural design diagram for the CMS System
actor. Analyzing this actor’s goal model (see fig. 6), the engineer should be able
to extract a proper decomposition into sub-actors. In our example we introduce
four new actors. The Conference Manager manages the top-level goal coordinate
conference, delegated to the system by the program committee actor PC. The
Paper Manager deals with the goal support paper submission from the domain
actor Author, moreover some internal agents depend on it to manage papers. To
do this, the agent depends on authors to get papers. Similarly, to the Review
Manager and Proceedings Manager the corresponding goals are delegated.

Once the sub-actors have been modelled, together with the goals and tasks
delegated to them, the next step consists in analyzing and detailing the goal
model of these new agents. Similarly to the late requirements analysis phase,
the engineer ”opens” the balloon of an agent or creates a new view for the
agent under consideration, to analyze the goals delegated to it. Goals can be
decomposed and plans can be added as means for achieving goals.

Fig. 7. Architectural Design: CMS System Decomposition into Sub-actors.

Fig. 8 shows an excerpt of the goal models for two of the sub-actors, namely
Paper Manager and Proceedings Manager. We focus on the analysis of the goal
get proceedings delegated from the Publisher actor, and the resulting dependency
between the two system actors. The delegated goal is AND-decomposed into sub-
goals, which are either operationalised by defining a plan or further decomposed.
To be achieved, one of the sub-goals, deal with proceedings, causes the Proceedings
Manager to depend on the Paper Manager for the goal collect finals.

Fig. 8. Architectural Design: Simplified Goal Model of two Sub-actors of CMS.

Plans are defined as means to achieve the goals that are not delegated to
other agents. Defining more than one plan for a goal (as for the goal format
proceedings), leads to modelling alternatives. One possible way to format the
proceedings is to recompile them, an alternative way is to control the style of
posted papers. However, the applicability of the plans can depend on availability
of resources (the source files in this example) and the selection of alternatives
can be guided by looking at positive and negative contributions to softgoals, for
example consistent formatting (not shown in the figure).

Opening the internal view of the PaperManager actor, the engineer can now
find the goal collect finals that has been previously delegated to it. This goal can
now be decomposed to sub-goals and operationalised by plans. Furthermore,
plans can also be detailed, by decomposing them in AND and OR to more
concrete sub-plans. See for instance the AND decomposition of the plan store
finals in DB into the sub-plans retrieve finals, control format, store in DB, in Fig. 8.

The system design can be completed with the Detailed Design artefact
that specifies in detail the plans associated to each agent goal and the agent
interaction protocols.

UML activity diagrams are automatically generated from the Tropos plan
diagrams, by model transformation, using the Tropos2UML tool. The resulting
diagrams can be further detailed and modified with any UML2 editor able to
import files in XMI format. Sequence diagrams are associated to activities that
contribute to the definition of the communication protocols used. Starting from
these diagrams, JADE Behaviour code can be generated. These modelling steps
are not used in the case study and therefore will be not further detailed in this
paper, we focus instead on BDI code generation from goal models.

5 Code and Test Suites Generation

The goal models created in the design phase are the basis for the implementa-
tion of software agents. Using the t2x tool, Jadex agent definition files can be
generated by selecting a system agent in the GM and starting the automatic
generation process. Regarding the present case study, code was generated for
the two system agents ProceedingsManager and PaperManager.

The generated code implements the agent’s reasoning mechanisms needed to
select correct plans at run-time to achieve desired goals. The t2x tool analyses a
GM exploring goal decomposition trees. The goal hierarchy is mapped to Jadex
goals along with Java files containing the decomposition logic, while plans are
implemented in Java files and connected to the relative goals by a triggering
mechanism. These goal decomposition graphs are also stored in the agent’s be-
lief base, together with all contributions to softgoals and dependencies to other
agents. Therefore, at run-time the agent can control its behaviour by navigating
the modelled goal graph.

The generated code skeleton can be executed on the Jadex platform. It ex-
hibits a basic behaviour corresponding to the designed goal model and can be
modified and customized as needed. In particular, it can be extended with code,

Fig. 9. Simplified goal diagram for PaperManager, part of generated Jadex XML code,
and example Jadex run-time agent instance with activated goals and plans, visualized
by the Introspector tool provided by the Jadex platform.

Tester
Agent

REQUEST(collect_final_in_DB...)

REPLY

Paper
Manager

Branch

not-null

� ���������
	���
������������������������� !�#"�����$�����%�&('!)�*+�,��-�.��!"�.�/����!�!���10���������2
3 ��4�5�6�7�8�9�:!7�5 ;�<�/��#��� ��=!-�-�>�?A@�@B�+
1.C�D�!-# E�D�!-�@B����@!&+����-#F#G��!-��B�
;�<�/��#�H?I;+����� ��=!-�-�>�?A@�@�J�J�JK�LJ(M(���N
O$!@ 3 ������@�P�QBR�F� #=!�!<�.�)!���#��-�.��� ��B�
;+����?S�! #=!�!<�.�R��� �.�-�������� ��=!-�-�>�?A@�@B�+
1.C�D�!-# E�D�!-�@+>!����>�/!��@� #G��!"�G�0�@#;+��"�@!&+����-#F#G��!-��C�I;+��"B� 2

M ��T�5�U!5BV�W���2
X �#Y�Z�2�&BF#����[�Y�Z�2
\ �#]�W���5�2�&+����-^��G��!-��_����[�]�W���5�2
` �!a�V�5�W�7�5�b�c�d�2��!e�f#&_g����!��
1.�-��N
h��[�a�V�5�W�7�5�b�c�d�2
i ��j�5BV�6�:lk�U!2�����[�j�5BV�6�:lk�U!2
* �!a�V�5�W�7�5�b�Z�W�7�5�2 3 ��� i)�� i) 3 Mlm#� 3 ?�������[�a�V�5�W�7�5�b�Z�W�7�5�2
n ��Z�5�6�oBV�:�p�7�:lk�U!2�&+����-^��G��!-��_�rq!�N
s.�$#���!-C?ut�.�>!��
vQ�.��!.�$#��
h��[#Z�5�6�oBV�:�p�7�:lk�U!2
��� ��[!T�5�U!5BV�W���2
��� ��w!9�U!o�7�:lk�U!W���2
� 3 ��x�y�5�U#7!Y#U�a�z!WBV�y�5�2�t�.�>!��
hQ�.��!.�$#��
h��[�x�y�5�U#7!Y#U�a�z!WBV�y�5�2
��M ��T#k�W���{���W�U!2
� X ��T#k�W���2� !��/�/!�# �-�|�q#���!.�/#�O|����1|B}�~���[!T#k�W���2
� \ ��{���W�U!2+��-��N
1��|�q#���!.�/#�O|����1|B}�~���[�{���W�U!2
� ` ���!5���W�7�:lk�U#6�z�:�p�2�Q���.��#�#)��!�!"!��[��!5���W�7�:lk�U#6�z�:�p�2
� i ��[!T#k�W���{���W�U!2
��* ��[+w!9�U!o�7�:lk�U!W���2
� n ��U#6��(��4�5�6�7�a�W�6�5 ;�<�/��#�H?D�#����� ��=!-�-�>�?A@�@B�+
1.C�D�!-# E�D�!-�@B����@!&+����-!e�.����B� 2
3 � ��U#6��(��Y�Z�2�t�.�>!��
hQ�.��!.�$#��
S&�e�����[�U#6��(��Y�Z�2
3 � ��U#6��(��]�W���5�2�&+����-
e�.����_����[�U#6��(��]�W���5�2
3�3 ��U#6��(��Z�5�6�oBV�:�p�7�:lk�U!2�'l�N
s-�����-�����$�t�.�>!��
hQ�.��!.�$#��
h��[�U#6��(��Z�5�6�oBV�:�p�7�:lk�U!2
3 M ��U#6��(��8�o�5�U!WBV�:lk�2
3 X ��U#6�����8�5���9!5�U!o�5
3 \ ;�<�/��#�H?D�#� 3 � ��=!-�-�>�?A@�@B�+
1.C�D�!-# E�D�!-�@B����@!&+����-#F� ����!.�
������ 2
3�` ��U#6�����Y�Z�2�&�e���F��1�����!}���������������[�U#6�����Y�Z�2
3 i ��U#6�����8�5���9!5�U!o�5�4�d�p�5�2������!-��!.�/���[�U#6�����8�5���9!5�U!o�5�4�d�p�5�2
3 * ��U#6�����]�5��B7�8�5���9!5�U!o�5�2�&�e���F��1�B���!}���������������[�U#6�����]�5��B7�8�5���9!5�U!o�5�2
3�n ��[�U#6�����8�5���9!5�U!o�5�2
M�� ��U#6#�H��8�5���9!5�U!o�5
M�� ;�<�/��#�H?D�#��Ml� ��=!-�-�>�?A@�@B�+
1.C�D�!-# E�D�!-�@B����@!&+����-#F� ����!.�
������ 2
M 3 ��U#6#�H��Y�Z�2�&�e���F��1�B���!}���������������[�U#6#�H��Y�Z�2
M�M ��U#6#�H��Y#U�:!7�:�W�7�k�V�2�&+����-���
Df+$#���!-!��[�U#6#�H��Y#U�:!7�:�W�7�k�V�2
M X ��U#6#�H���!5�6!p�k�U!b�5BV�2�t�.�>!��
hQ�.��!.�$#��
h��[�U#6#�H���!5�6!p�k�U!b�5BV�2
M \ ��U#6#�H��8�5���9!5�U!o�5�4�d�p�5�2� !��<�<�G����� �.�-���������[�U#6#�H��8�5���9!5�U!o�5�4�d�p�5�2
M ` ��U#6#�H��]�5��B7�8�5���9!5�U!o�5�2�&�e���F��1� 3 �!}���������� 3 ��[�U#6#�H��]�5��B7�8�5���9!5�U!o�5�2
M i ��U#6#�H����5�6�6�W�y�5�2
M�* ��U#6�������:�p�W�����5�6�6�W�y�5 .# �-!� �����1�+%���F�&(�
M n !����	���
���.�-�������)!�!"!� �1e��!}�����* \ � n�n X�X�i `�` M#�
X � ;�<�/��#�H?D�#� X � ��=!-�-�>�?A@�@�J�J�JK��q#��>!.C���N
O$!@�f�eBR�F� #=!�!<�.B� 2
X � ��U#6�������6�y���p�WBV�W���2
X 3 ��U#6�����o!k�U#7�5�U#7�2� !��/�/!�# �-�|�q#���!.�/#�O|����1|B}�~

&��+)!�!��)�
1��>�/!.# ���"!��[�U#6�����o!k�U#7�5�U#7�2
X M ��U#6�������W�U!y�9!W�y�5r[#2
X�X ��U#6����Ak�U#7�k��!k�y�d_[#2
X�\ ��[�U#6�������6�y���p�WBV�W���2
X ` ��[�U#6�������:�p�W�����5�6�6�W�y�5�2
X�i ��[�U#6#�H����5�6�6�W�y�5�2
X * ��U#6#�H��4�:���5!k�9#7�2�����������[�U#6#�H��4�:���5!k�9#7�2
X n ��[�U#6#�H��8�5���9!5�U!o�5�2
\ � ��U#6#�H��8�5���9!5�U!o�5
\ � ;�<�/��#�H?D�#� \ � ��=!-�-�>�?A@�@B�+
1.C�D�!-# E�D�!-�@B����@!&+����-#F� ����!.�
������ 2
\ 3 ��U#6#�H��Y�Z�2�&�e���F��1� 3 �!}���������� 3 ��[�U#6#�H��Y�Z�2
\ M ��U#6#�H��Y#U�:!7�:�W�7�k�V�2�t�.�>!��
hQ�.��!.�$#��
h��[�U#6#�H��Y#U�:!7�:�W�7�k�V�2
\1X ��U#6#�H���!5�6!p�k�U!b�5BV�2�&+����-���
Df+$#���!-!��[�U#6#�H���!5�6!p�k�U!b�5BV�2
\�\ ��U#6#�H��8�5���9!5�U!o�5�4�d�p�5�2� !��<�<�G����� �.�-���������[�U#6#�H��8�5���9!5�U!o�5�4�d�p�5�2
\ ` ��U#6#�H��]�5��B7�8�5���9!5�U!o�5�2�&�e���F��1�NM��!}����������BMl��[�U#6#�H��]�5��B7�8�5���9!5�U!o�5�2
\�i ��U#6#�H��4�:���5!k�9#7�2�����������[�U#6#�H��4�:���5!k�9#7�2
\ * ��[�U#6#�H��8�5���9!5�U!o�5�2
\ n ��U#6!�C��8�5���9!5�U!o�5
` � ;�<�/��#�H?D�#� ` � ��=!-�-�>�?A@�@B�+
1.C�D�!-# E�D�!-�@B����@!&+����-#F� ����!.�
������ 2
` � ��U#6!�C��Y�Z�2�&�e���F��1�NM��!}����������BMl��[�U#6!�C��Y�Z�2
`#3 ��U#6!�C��8�5���9!5�U!o�5�4�d�p�5�2��B
1.��� #=���[�U#6!�C��8�5���9!5�U!o�5�4�d�p�5�2
` M ��U#6!�C��]�5��B7!Y��14NV�9!5�2�&�e���F��1� X �!}���������� X ��[�U#6!�C��]�5��B7!Y��14NV�9!5�2
` X ��U#6!�C��]�5��B7!Y���w�W���6�5�2�&�e���F��1� ` �!}���������� ` ��[�U#6!�C��]�5��B7!Y���w�W���6�5�2
` \ ��U#6!�C�Aa�k�U!b+:!7�:lk�U!2
`�` ��U#6!�C��o!k��#p�WBV�5���p�7�2����#-�)!��G�/�/���[�U#6!�C��o!k��#p�WBV�5���p�7�2

Fig. 10. Example of a Test Scenario. An excerpt of the XML specification is depicted
in the right part.

generated by UML2JADE, corresponding to the activity diagrams that can be
specified at detailed design.

As an example, Fig. 9 briefly shows the generated Jadex code, in XML for-
mat, of the agent Paper Manager. This fragment of code corresponds to the
Tropos goal model on the top-left side of the figure, and its reasoning trace at
run-time is presented on the bottom-left corner of the figure.

Following the goal-oriented testing methodology presented in [16], eCAT gen-
erates test suites for every elementary relationship, i.e. relationship between a
goal and a plan. The underlining idea is to use the test suite as a guideline for the
Autonomous Tester Agent to trigger the goal in order to verify the execution
of the corresponding plan. In the case of CMS, eCAT takes the architectural
diagram, Fig. 8, as an input and generate a set of test suites for each agent.
Developers can choose when generating test suites which communication proto-
cols the Autonomous Tester Agent will use to communicate with the agents of
CMS. As an example, Fig. 10 illustrates a test suite that tests whether the agent
PaperManager is able to fulfil the goal collect finals in DB or not. The graphical
part of the figure gives an intuitive understanding of the test suite, formalized
in XML: when executing test, the Autonomous Tester Agent will send a request
that has “REQUEST” as its performative and the name of the goal collect finals
in DB as message content to Paper Manager. Then, it will wait for a reply and
decide to finish the test or to continue with other requests.

6 Discussion

For sake of simplicity we have not described iterations along different phases
that usually occur in the development process. For instance, iterations along
the Early and Late requirements phases, in order to explicit domain entities
that are relevant when specifying the impact of the system-to-be in the original
organizational setting, and that may have not been captured in the initial Early
Requirements model. Tropos allows model refinement through iterative steps.
This process is managed manually since, up to now, TAOM4e does not provide
versioning functions. Moreover, formal techniques to support goal analysis and
consistency checking of the requirements model have not been exploited.

We shall mention also the fact that the CMS case study offers interesting
problems that have not been considered in this paper, due to lack of space. For
instance, non-functional requirements, which may emerge in case of large-size
conferences and may require more complex MAS architecture, should be taken
into account.

Moreover, rules and norms that characterize the CMS domain were not mod-
elled in the case study. For example, rules for manging possible conflicts between
the reviewers and the authors of papers to be reviewed should have been mod-
elled. We also have not addressed the rules related to the instances, such as those
related to the number of reviews for every paper or the policy of distribution of
the papers to the reviewers. Some of these rules can be represented in Tropos in
the form of Linear Temporal Logics constraints imposed on the entities of the

model via the Formal Tropos language. As pointed out in Section 3, TAOM4e
allows for the representation of these constraints in the form of annotated prop-
erties on the model entities. Moreover, starting from the Early requirements
phase, the formal annotations give the possibility to formally check the model
via model checking techniques as described in [19]. An alternative approach to
norm modelling with an AO approach is described in [22].

7 Conclusion and Future Work

This paper illustrated how to use the Tropos methodology and a set of supporting
tools, to develop a MAS for the Conference Management System case study. In
particular, analysis, design, code generation and testing activities have been
illustrated together with examples of the resulting process’s artefacts.

Work is ongoing to consolidate the tool-supported development process in
Tropos. In particular, we are deserving particular effort to the integration of
requirements and design modelling with the Goal Oriented testing methodology.
Moreover, we are studying mechanisms for supporting automatic traceability
between process artefacts, e.g. design artifacts and code.

References

1. F. Bellifemine, A. Poggi, and G. Rimassa. JADE: A FIPA Compliant agent frame-
work. In Practical Applications of Intelligent Agents and Multi-Agents, pages 97–
108, April, 1999.

2. D. Bertolini, A. Novikau, A. Susi, and A. Perini. TAOM4E: an Eclipse ready tool
for Agent-Oriented Modeling. Issue on the development process. Technical report,
Fondazione Bruno Kessler - irst, 2006.

3. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, July 2004.

4. V. Bryl, P. Giorgini, and J. Mylopoulos. Designing cooperative IS: Exploring and
evaluating alternatives. In OTM Conferences (1), pages 533–550, 2006.

5. K. Dam and M. Winikoff. Comparing Agent-Oriented Methodologies. In Pro-
ceedings of the 5th Int’l Bi-Conference Workshop on AgentOriented Information
Systems (AOIS), Melbourne, Australia, 2003.

6. S. A. DeLoach. Modeling organizational rules in the multi-agent systems engi-
neering methodology. In R. Cohen and B. Spencer, editors, Canadian Conference
on AI, volume 2338 of Lecture Notes in Computer Science, pages 1–15. Springer,
2002.

7. M.-P. G. Federico Bergenti and F. Zambonelli, editors. Methodologies and Soft-
ware Engineering for Agent Systems : The Agent-Oriented Software Engineering
Handbook. Springer, 2004.

8. A. Fuxman, L. Liu, J. Mylopoulos, M. Roveri, and P. Traverso. Specifying and
analyzing early requirements in tropos. Requir. Eng., 9(2):132–150, 2004.

9. A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model checking early
requirements specifications in Tropos. In IEEE Int. Symposium on Requirements
Engineering, pages 174–181, Toronto (CA), Aug. 2001. IEEE Computer Society.

10. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modeling security re-
quirements through ownership, permission and delegation. In Proceedings of the
13th IEEE International Requirements Engineering Conference (RE’05), 2005.

11. P. Giorgini, J. Mylopoulos, A. Perini, and A. Susi. The Tropos Methodology and
Software Development Environment. In P. Giorgini, N. Maiden, J. Mylopoulos,
and E. Yu, editors, Social Modelling for Requirements Engineering. MIT Press. To
appear.

12. P. Giorgini, J. Mylopoulous, and R. Sebastiani. Goal-Oriented Requirements Anal-
ysis and Reasoning in the Tropos Methodology. Engineering Applications of Arti-
ficial Intelligence, 18(2):159–171, 2005.

13. B. Henderson-Sellers and P. Giorgini, editors. Agent-Oriented Methodologies. Idea
Group Inc., 2005.

14. M. Morandini. Knowledge Level Engineering of BDI Agents. Master’s thesis,
Dept. of Computer Science, University of Trento, Italy, 2006. Available at http:

//dit.unitn.it/∼morandini/resources/ThesisMirkoMorandini.pdf.
15. M. Morandini, L. Penserini, A. Perini, and A. Susi. Refining goal models by

evaluating system behaviour. In 8th International Workshop on Agent-Oriented
Software Engineering, AAMAS, May 2007.

16. D. C. Nguyen, A. Perini, and P. Tonella. A goal-oriented software testing method-
ology. In 8th International Workshop on Agent-Oriented Software Engineering,
AAMAS, May 2007.

17. L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. From Stakeholder Intentions
to Software Agent Implementations. In Proceedings of the 18th Conference On
Advanced Information Systems Engineering (CAiSE’06), volume 4001 of LNCS,
pages 465–479, Luxemburg, 2006. Springer-Verlag.

18. L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. From Stakeholder Intentions
to Agent Capabilities. In Sixth International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS’07), Haway, USA, 2007. ACM Press.

19. A. Perini and A. Susi. Agent-Oriented Visual Modeling and Model Validation
for Engineering Distributed Systems. Computer Systems Science & Engineering,
20(4):319–329, 2005.

20. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: Implementing a bdi-
infrastructure for jade agents. EXP - in search of innovation (Special Issue on
JADE), 3(3):76–85, 9 2003.

21. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A bdi reasoning engine.
In J. D. R. Bordini, M. Dastani and A. E. F. Seghrouchni, editors, Multi-Agent
Programming, pages 149–174. Springer Science+Business Media Inc., USA, 9 2005.
Book chapter.

22. A. Siena. Engineering Normative Requirements. In Proceedings of the First Inter-
national Conference on Research Challenges in Information Science, RCIS 2007,
Ouarzazate, Morocco, pages 439–444, 2007.

23. R. G.-S. Souza and A. Perini. Analyzing requirements of knowledge management
systems with the support of agent organizations. Journal of the Brazilian Computer
Society (JCBS), 11(1):51–62, 2005. ISSN 0104-6500.

24. E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto, Department of Computer Science, University of Toronto,
1995.

