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Abstract. Nowadays, information systems have to perform in compleiero-
geneous environments, considering a variety of systens ug#r different needs
and preferences. Software engineering methodologiesto@ege with the com-
plexity of requirements specification in such scenariosnemew requirements
may emerge also at run-time and the system’s goals are expaztevolve to
meet new stakeholder needs.

Following an agent-oriented approach, we are studying aastland techniques
to design adaptive and evolvable information systems akidfill stakeholders’
objectives.

In a previous work we defined an Agent-Oriented frameworkesigh and code
system specifications in terms of goal models and we ingidtiit in a tool sup-
ported process which exploits the Agent-Oriented SoftviEmgineering method-
ology Troposand the Multi-Agent Platform JADE/Jadex [11].

In this paper, we show how to use this framework to developstesy follow-
ing an iterative process, where the system execution akmwishing the system
specification given in terms of goal models.

Experimental evaluation has been performed on a simple giecaind lead to the
refinement of the designed goal model upon the analysis aitem’s run-time
behaviour.

1 Introduction

Information systems are today expected to perform in comelerironments which
make computing resources available to anyone, at any tirdeaagpwhere. In these
scenarios, complexity comes from the variety of systemau$ecluding organizations)
with their needs and preferences, which tend to evolve daogto the dynamic nature
of users in the network, and from the heterogeneity of therenment a system is
deployed in. Therefore, systems should be aware of usea$s god able to choose the
most suitable behaviour from various alternatives.

These scenarios motivate research on practices and métlyaetofor software de-
velopment. Traditional software development models, Whkissume that the require-
ments specification has been finalized before proceedingdigu and then to imple-
mentation, need to be replaced by more flexible iterativeetsydble to take into ac-
count that new requirements may emerge also at run-timeeder, the traditional
concept of software maintenance has to be revised sinaansystre expected to evolve
to meet the needs of the changing environment rather thanesegve their original
structure [8].



Multi-Agent Systems (MAS) provide candidate technolod@sbuilding software
with adaptivity and evolvability qualities [6], while rextty proposed Agent-Oriented
Software Engineering (AOSE) methodologies offer a completary paradigm for the
analysis of system requirements and design [4]. Some of,theahn as GAIA [17] and
Tropos[1] offer concepts and models to analyse the system andvtsomment in terms
of agent organizations. Moreov@rpposhas been recently proposed as a methodology
to support “high-variability software design” through téeplicit modelling of the dif-
ferent alternative design solutions to a given stakehajdaf (requirement) [7].

We are studying methods and techniques to design informayistems with quali-
ties such as adaptivity and evolvability, following an Ag€riented approach. That s,
we conceive an information system as an open network of softagents who interact
with each other and with human/organizational agents iim tperational environment
in order to fulfil stakeholder objectives. Concretely, wegwse a development frame-
work which adopts MAS technology as implementation platfand agent-oriented
methods and techniques for the analysis and the specificatisystem requirements
and design. In[11, 12] we instantiate this framework witspect to th@roposmethod-
ology and to the Jadex/JADE platform [14], and propose as$oplported process to
derive agents that base on a Belief-Desire-Intention techire [15] fromTroposgoal
models.

In this paper, we show how this framework can be used to dpwelsystem fol-
lowing an iterative process, in which the system executltmwa to enrich the system
specification expressed in terms of goal models. From agoatted system model we
derive agent skeletons automatically in a tool-based p0d&e execute the modelled
system, simulating system users and observing system ioginas correspondence
to variability in user desires and in environmental comdis. The different MAS be-
haviours can then be traced back to the specification of tieenatives in the goal
model, giving experimental evidence of the effectivendsh@proposed framework in
supporting traceability between run-time and design-timiefacts. Moreover, run-time
observations could lead to a refinement of the design. Féaris contribution rela-
tionships between model elements can be further qualifiegantitative analysis of
system qualities, which have been defined at design timerimstef system (soft)goals,
can be performed. We consider this work as a first step towsetlsig up feedback
mechanisms from run-time to the design, a core aspect inehelapment of adaptive
systems.

The paper is structured as follows. In Section 2, we recaldeoncepts of the
proposed development framework and describe the toolestggbprocess, which ex-
ploits the Troposmethodology and the JADE/Jadex MAS platform. A simple ttave
agency system is used as example to illustrate the apprdaehsystem handles re-
quests from different customer categories and gives padpdésr a full travel package,
according to user preferences. Experimental evaluatlmssed on a run-time simula-
tion, are described and discussed in Section 3. Related iwgmiesented in Section 4
and concluding remarks in Section 5.



2 Background

2.1 Conceptual Framework

We adopt concepts from recently proposed AOSE methodaddieand from BDI
MAS research [6] to define an Agent-Oriented approach toegystesign and cod-
ing. The Belief-Desire-Intention (BDI) architecture, asposed in [15], bases on three
mental conceptsbeliefswhich model the knowledge of an agent about himself and
about its environmengoalsthe agent can try to achieve, aimdentions sets of plans
an agent commits for execution to achieve a goal. Within mamework, we further use
knowledge level concepts such as thoseg@ént which can be social, organizational,
human or software ansiocial dependencthat defines the obligations of an agent to
others.

The key part in the analysis and design stages is the so datietiModel(GM).
Like in other approaches [5, 16], in our frameworlGM is a goal graph consisting
of a forest of AND/OR decomposed goals, along with interetefency links between
goals and means-end relationships between leaf-leves goa plans that represent a
way to achieve these goals. During requirements anal@dits make easier to model
stakeholders’ goals and their relationships, showing Hmy really affect the system
functionalities. Moreover, deriving an ag&€aM at architectural design allows designers
to model dependencies between the system agent goals &atiaitier goals.

More operative concepts are needed during software agestgisation. We define
acapabilityas the sub-graph rooted in a leaf goal containing a sete#ns-engblans
with their inter-dependency relationships towards ottealg We calknowledge-level
design the process of building the higher level part G\ andcapability-leveldesign
the process of refining leaf goals into plan means-end amd-dependency relation-
ships. This last design step represents a way to operaidergdals, that is, to define
the possible behaviours of an agent. Therefo®Macan be also seen as a schema for
the possible behaviours an agent can use to fulfil its goals.

More formally, letE be the set of eventsin agent can perceiv€, the set of con-
straints (e.g. user preferences and system @e8)e set of goals an agent can achieve,
C'p a set of capabilities an agent can exploit, & C G the set of leaf-level goals an
agent can operationalize, we give the following definitions

behaviour-schema BS is the set of all possible type of behaviours an agent can play
BS ={Bhy1(X),..., Bh,(X)}, where eactBh; is a sub-schema representing a set of
behaviours associated to a specific set of events and camistr&ormally, X is a list

of attributesX = {Events, Constraints, Goals}, where Events assumes values in
2F; Constraints assumes values 2f', andGoals assumes values 2f'~.

behaviour-schema function A behaviour-schema functiofiz;, associates a set of
events and constraints to a set of leaf-level godls; : 27 x 2¢ — 2G¢_ It allows to
build the Bh(X) specific to an occuring event and the constraints perceived.

! Examples are goal triggering messages.



capability function For each sub-schem#h, there exists a capability function
fep + Bh — 2€P such that, giving in input a behaviouy, retrieves the different sets
of Capabilities an agent can execute to exhibit this behavio

Behaviour-schema- and capability-functions allow to guée behaviour-schema
and aGM structure about agent properties with reference to comdrettances of
behaviours and capabilities, each time an event occursoroemental conditions
change. For example, each time an agent receives a requssagee(an event), it
interprets it in order to extract the goals to be triggered] aoncurrently perceives
environmental conditiong{) to better choose the right behaviour.

2.2 Tool Supported Framework

In [11, 12] we instantiate the described framework usingTimwosmethodology for
analysis and design, and JADE and the Jadex BDI agent piafimr the implemen-
tation. TheTroposagent-oriented methodology borrows modelling and analgsih-
niques from goal-oriented requirements engineering aapres and integrates them
into an agent-oriented paradigm (see [1] for details). Ttanndea inTroposis to
support knowledge level specification by providing a comealpmodelling language
which offers concepts likactor, goal, plan, resource capability, and social depen-
dencybetween actors. The methodology provides a graphicalinattd depict views
of a model, along with analysis techniques and supportiats {d 3].
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In the rest of this section, we give an overview of the framdway defining ba-
sic process artefacts and their role in the main processstag depicted in Figure 2.
Moreover, we give more details on how@M is automatically mapped into a BDI
agent specification that can, at execution time, give usetdback to refine the orig-
inal design. To illustrate our approach we take as an exampleple travel agency
system,TravelAgent. The system handles requests from several classes/dategbr
customers (e.g. business customers, vacation customsiisdents) and gives propos-
als for a full travel package, according to the users’ pegfees. These preferences are
modelled through softgoals. For example, as illustrateigure 1, possible softgoals
to characterize a customer category sgasonable cost, good comfort, andrelax
vacation. The agent tries to achieve them exploiting different alstives for journey
and accommodation and selecting suitable additionalitietv
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Fig. 2. Process’s artefacts and their rolelimpos Feedback from system execution to design can
be obtained upon observing the system behaviour.

Process ArtefactsAdoptingTroposin our framework allows us to represent MAS with
GMs, resulting from the analysis of each actor’s point of viémwpos GM are based
on thei* notation [16]. They are represented in terms of a forest oDAKNd OR-
decomposed goals, along with lateral contributions l&lolell, — (for partial positive or
negative contribution to the satisfaction of a goal}or (for strong positive or negative

contribution). For example, if; R g2 andgy is fulfilled, so isg,. Additionally aGM
contains means-ends relationships among plans and godéjite the means to satisfy
a goal.

In Tropos GMs are built during requirements analysis to characterineaiio stake-
holders, their needs and their dependencies from the sytstdra. In the architectural
design phase they are used to detail software agents. Apdbisr work focuses on
getting feedback to design-time from the generated agbetge, we consider mainly
GMs at theTroposarchitectural design phase. An example is given in Figukehlch
illustrates a fragment of @M for the TravelAgent, which represents the main actor of
the software system under development.

At Troposarchitectural design phaseGM represents the agent intentionality in
terms of how the agent perceives the environment, appliategtes to fulfil its re-
sponsibilities, and chooses alternative ways to adaptjoirements changes. In other



words, like a human being, the agent perceives the envirohar& chooses a suit-

able behaviour. Notice that the set of possible agent bebewican be characterized
in terms of perceivable events, environmental conditions agent goals by applying

the behaviour-schema functiofiz;,, to theGM. The actual behaviour results from the
execution of the specific capabilities thanks to the cajigifilnction, fc,.

Figure 1 depicts the two different abstraction levels thadracterize the agent
design:knowledge leveand capability level The knowledge level refers to the goal
AND/OR decomposition part of th&M that contributes to the description of the be-
haviours the specific agent role can play. The capabilitgllévings about the exe-
cutable part of an agent and its connection to the agenf'gtess.

Capabilities &¢p € Cp, whereCyp is the set of all capabilities of the agent) represent
the glue between the two agent modelling levels. A capgliditiefined by the concepts
of ability andopportunity Theability refers to the plans for achieving a given goal and
is specified by a means-end relationship between the godharpdan. Thepportunity
represents user preferences (contributions between gioaislans to softgoat, € 2¢)
and environmental conditions represented by messagesavent2” that affect the
agent’s beliefs. At run time, these preferences and camgittan enable or disable the
execution of an ability.

Following the design process sketched in Figure@gability tableextracted from
the GM, and UML 2.0 diagrams, extracted by model transformatiemfithe GMs
capability level, are used to generate JADE code in a capalifirary. The structure
of an agent’s reasoning part, that relies on a BDI archite¢tcan be automatically
generated from the knowledge level of {G#.

Capabilities MeansEnd(goal,plan) List of Contributions

cp1 provi de room {reasonabl e cost --;good confort ++;
search hotel rel ax vacation --}

cpa provi de room {good confort +;relax vacation +}
search BB

cps provi de canping, {reasonable cost ++;good confort --;

search canping relax vacation --}

Table 1. Fragment offravelAgent capability Table.

Table 1 depicts a fragment of the capability table for ThavelAgent example,
which was obtained from théM in Figure 1. If the goakelect accommodation is
triggered, as this is OR-decomposed in the two sub-goasadgienflravelAgent has
two possible behaviours to satisfy the triggered goal: dra tan achieve the goal
provide room (by ¢p; or ¢p2) and one that can achieve the gpedvide camping (by
cp3)-

The design artefact$5Ms, capability table, activity- and sequence diagrams)driv
agent code generation. Specifically, our tool supportadérmork allow us to generate
a library of capabilitiesfrom the capability table and the activity- and sequence dia
grams, as detailed in [12]. Executable skeletons foBBé¢ agents which are able to
use the capabilities in this library, can be automaticaiperated from the knowledge



level specification contained in ti@&M, through a mapping of theM structures into a
BDI agent description for thdadexframework, specified by an Agent Description File
(ADF) in XML format, augmented with some Java céde

The implementation consists of Jadex BDI agent definitidoagwith their ca-
pabilities. For the simulation we run instances of thesenadefinitions. The agents
are queried by simulated users sending request-messatjfeearesulting behaviour is
then used to give feedback to the design artefacts.

Coding the GM into BDI Agents In order to endow the generated BDI agents with
all the information included in th&M, the specification for the mapping process has
been conducted along two phases: basic concept mappingks,(goftgoals, plans,
resources) and structure mappings (AND/OR goal depenegnmeans-end links,
contribution links, delegation and dependency links). Atsk of the mapping is given
below, while we remind the interested reader to see [11] forendetails.

Goal. As a Jadex-goal can be only triggered by a Jadex-plam@osgoal is mapped
to a pair of< goal, plan > in Jadex.

Softgoal Softgoals are considered as abstract entities relatee tmbeliefs and desires
than to goals and plans. In our prototype they are mainly tsetfine opportunities
for the selection of the next goals or plans to pursue aloa@GM. That is, they model
domain constraints € C to drive the selection of the most convenient behaviogr
Bh(X), once an event € 2 occurs

A softgoal is therefore mapped only to a belief base entrjclvbontains its name
and a value that may be changed by the user at run-time. This expresses the
softgoal’s actual importance and may change from time te tmreflect environmental
changes.

Plan. Troposplans that have a direct means-end relationship to leakdoabt-level
plans) are mapped to Jadex plans according to our definitioapability.
AND-decomposition If an AND-decomposed goal is activated, all subgoals have t
be dispatched. The following Jadex solution was adoptedsMdiD-decomposed goal
is set as trigger for exactly one plan, called AND-dispgitdm (Figure 3). In the plan
body, all subgoals have to be dispatched in (random or ugired@ sequence. If one
subgoal fails, the process has to be stopped and a failute bageturned. For this first
proposal, on failure no techniques for compensation ofdlyeexecuted actions have
been considered.

An analogous mapping for th®R-decompositionis described in [11], while
Tropos means-endrelationship are mapped one-to-one to the Jadex plan tifgge
mechanism. Having defined no conditions, every time theciet®al goal is activated,
plan execution is triggered. Notice that, in this case thiexdalans are root-level plans
in Tropos namely those required to build up agent capabilities. ¥Jad@poses that
every applicable plan for a goal is able to satisfy that gaahgletely. Therefore, if
more than one plan is applicable, Jadex meta-level reagasiexploited to select the
appropriate plan, as in the case of alternative paths in ¢t position. The selection

2 Further details can be found in [14].
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of alternatives can be guided by preconditions and by saftgantributions.

The generated agent can evaluate costs for every goal amdTjilay include soft-
goal contribution and importance: negative contributioagse higher cost, lower im-
portance of the relative softgoal to the user can allevisite genalty. Moreover, each
generated agent endows knowledge about its goal relatfwmBlom theGM in its be-
lief base: AND/OR decompositions, dependencies, delegstand contribution links.

3 Experimental Setting and Evaluation

This Section describes a general experimental settintatdaito be applied in several
kinds of scenarios, and the results obtained.

The objective of our experiment is twofold: on one hand, we at verifying the
behaviour of a MAS with respect to the designed specification the other hand, we
aim at supporting the refinement (such as the introductiareof relationships) of the
GM by exploiting information retrieved from the simulation.

We refer to thelravelAgent example, partially depicted in Figure 1. The main idea
is to focus on the preferences of different customer categoecognized by the system
at run-time by profiling users from the set of queries theynsitted. We observe the
system while it is adapting to each category, trying to mazénctustomer satisfaction
(customer’s softgoals delegated to firavelAgent system) and providing evidence of
how such softgoals have different impact to the system’s mtarnal softgoals (e.g.
maximize profit).

3.1 Experimental Setting

We refer to the fragment d&M shown in Figure 1. Suppose that a gen€icstomer
could be distinguished into three categorlassiness customéBC), vacation customer



(VC) and student customefSC), each one composed by individuals having similar
preferences and similar requests to the travel agencyrsy3tiee simulation assumes
that these categories will be recognized by the system dmiynatime.

In the simulation, th&ustomer (in the following alsousel) interacts with the sys-
tem by submitting sets of queries that correspond to set tdfation events for sys-
tem goals (belonging t2¥). Moreover, the system is supposed to acquire information
from the environment in order to provide user profiling. Thiguld allow to activate
sets of softgoals that represent the users’ preferencésn(ieg to 2¢). Basing on
this information our system is able to assume the bestesbigbaviour, activating all
necessary capabilities. Table 2 shows the componentsdautirtime choice process
of sets of capabilities. In particular, the second colunpresents the input elements.
The former is given as a set of queries made by the differestdbuer Categories (i.e.
CC = {BC,VC,SC}), e.g. the business customers’ query will{g&’, whereas the
latter is given by the set of user preferences and consirgrg.C2¢) perceived by the
system via an user profiling activity or by user-guided camfigion. The third column
contains the set of behaviour instances suitable for eaegagy (e.gbP) related to
the queries (e.g>“), while the fourth column contains the capability sets (€°¢)
able to realize the corresponding behaviours.

To choose appropriate capabilities, the system explaitbehaviour-schemiunc-
tion fp;, and thecapability function fc,,, defined in Section 2. In particular, the first
line of the table refers to a single query made by an user thiahigs to the BC cat-
egory. Let us assume that such a category is characterizedseyQ?¢ of m pos-
sible queries QB¢ = {¢P¢,...,¢B°}) and by a seC5¢ of preferences@?¢ =
{sgB¢, sgB, ...}), which are inputs for the application of thehaviour-schemfunc-
tion. With this input, the system is able to compute the sgioskible behavioutg® @,
that can be exploited in order to accomplish user requests.

The application of theapability functionfc, to a behavioub; allows the system
to retrieve the different sets of capabilities that can b&aied in order to operatively
execute this behaviour. The capability to execute can tieesebected according to the
opportunities. This calculation process can be repeatedlfaser categories in the
model.

User clasg Trilgger events|Behaviours Capabilitiy
(cc) (2% x 29) (BR(X)) sets(2€7)
BC P, CcPC bPC CpP°
qﬁc7 CBC biC Cpﬁc
VvC /%, Ccve by @ Cpy©
q;\b/'c, ove bxc CPT‘L/C
sC a7, C%% b7” Cpi®
qsc, CSC bEC Cpfc

Table 2. System inputs@C and2¥ x 2¢) and outputs Bi(X) and2°?) for the simulation,
following the definition recalled in Section 2.1



A domain expert would be able to define contribution relathips between each
capability and internal softgoals, suchraaximize profit, but she cannot knoa+priori
which capabilities will be executed to satisfy a user qubat bccurs to the system.

C; Vacation Customer |Student Customer [Business Customer
goodbusinesgravel |0 0 1

good.comfort 0.6 0.2 1

actionvacation 0.4 1 0
goodtime._utilization {0.3 0 1

reasonableost 0.6 1 0.1

relax.vacation 0.6 0.3 0

Table 3. Softgoals used by the system to profile the user preferefbese values are supposed
to be given by domain experts.

In Table 3 sample values for the importance of the contrilmgtito softgoals adopted
to characterize the customer categories are given; thdsessefer to the three different
classes of customers and are expressed via numeric values.

We prepared the experiments, defining a set of queries foy eNféerent customer
category and identifying sets of softgoals that are typioakhem. Table 4 gives ex-
amples for sets of queries for the three classes of users mgdawved. Moreover, for
each capability ¢p), we define its contribution towards the internal systemigsfls

(sginty, ..., sgint;), as illustrated in Table 5.
Query|Vacation Customer Student Customer Business Customer
q1 give proposals give proposals give proposals
q2 provide camping, car journey, prop. apropose activities provide room, flight journey
qs provide room, train journey provide room, flight journejselect journey
qa select accommodation camping, train journey select accommodation

Table 4. Queries that characterize each customer category.

Capability Contribution  to [Contribution to maxi-
maximize profit mize travel miles

search hotel 0.8 0

search BB 0.4 0

camping 0.3 0

eurostar train 0.2 0.3

intercity train 0.1 0.2

business flight 0.9 1

low cost flight 0.2 0

gastronomy 0 0

nightlife 0 0

Table 5. Contribution values between each capability and the iatesoftgoals.



Table 6 can be built only after running the system along wiitiu¢ated inputs and
getting information on which set of capabilities where axed by the system to satisfy
user queries. Specifically, the table shows the schema akthgonships among sets
of capabilities and internal softgoalsyinty, . . ., sgint;), for each agent. These values
are then used to compute the cumulative contribution ofuhetime sets of capabilities
¢p, belonging to the selected behavidurto a given internal softgoal, via the functions
favg(valy j ... valy, ;) (at the bottom of the table). In our experimental setting wedu
the function:

m
avg(valy y...valy,j) = g (val; g)/m 1)
=1
Query|Sets of Capabilitiegsgint .. sgint
q]B(“ Cpf(“ valy 1 valy
qﬁc Cpﬁc valm, 1 o valy,
favg(valy 1 ... valym 1) ... Favg(valy ;... valy, ;)

Table 6. Contribution relationships among capability groups andrimal system softgoals.

Notice that an analysis by simulation does not cope with thesile contribution
produced by all the different capability groupings. On tbatcary, the simulation will
converge towards the only sets of capabilities requestdidéseal customer categories.

3.2 Results and Discussion

After the simulation, the set of data related to the expeninfiar the TravelAgent sce-
nario has been collected. According to our first objective,axe able to monitor the
system behaviounj, each time a query (e.gf“) occurs, along with some user pref-
erences (e.g0P“={good comfor}), verifying thatb belongs to theGM behaviour
schemal{ € Bh(X)). Specifically, we can observe that the system has theahilit
adapt its behaviour to best accommodate with the curretwicues category. For exam-
ple, let us assume thaf will trigger the system goalelect accommodation, along
with the softgoabood comfort. Now, the system is able to navigate {&&1 in order
to maximize the user preference modelled by this softgoal.

Looking at theGM fragment illustrated in Figure 1, we can see that the geksct
accommodation has two alternative ways to be achieved, pevide room andpro-
vide camping. The system will first try to sele@rovide room, because its capabilities
(characterized by the two plassarch hotel andsearch BB) give the biggest contri-
bution to the given user preference. The same procedurdevilised in a next step to
discriminate between the two available capabilities, tinie resulting in the selection
of search hotel.

These experiments confirmed the effectiveness of the framewm supporting
traceability between run-time and design-time artefacts.

To meet our second objective, we simulate the execution et afsuser queries
and preferences in order to revise softgoal relationshipgse GM. Table 7 shows the



sets of capabilities activated by the system, i.e. the hehainstances it selected at
run-time, as a response to the simulated user queries deddri Table 4. In Table 7,
each row specifies a query from a particular category of U&%€s VC and SC). Con-
tributions tomaximize profitare calculated by summing the value of each capability
contribution as indicated in Table 5, e.g. in the cas€pf“: eurostar train+ search
hotel+ gastronomy=0.2 + 0.8 + 0 = 1.

Query Sets of executed capabilities Contributiomt@ximize profit

qP° CpPT: eurostar train, search hotel, gastronomy 1

¢2¢  CpPC: business flight, search hotel 1.7

¢ CpZC: eurostar train 0.2

q?c CpZ€: search hotel 0.8 favg = 0.925
/¢ CpY ©: low cost flight, search BB, culture 0.6

qy© CpY ©: use own car, camping 0.3

qy © CpY ©: intercity train, search BB 0.5

qy © Cp) ©: search BB 0.4 favg = 0.45
a7 ° Cp7 ©: low cost flight, search camping, nightlife 0.5

q5¢ Cp3; € nightlife

q%c Cp%ci low cost flight, search BB 0.6

a: ¢ Cpy ©: intercity train, camping 0.4 favg = 0.375

Table 7. Capability groups associated to every query at run-time.

The results of these queries allow to observe how the reauircase simulated)
customer preferences affect system behaviour.

The capability groups corresponding to the different bahae of theTravelAgent
can then be used to add or quanfifpposcontribution links.

Figure 4 A), shows the values ¢, , computed according to 1, as shown in Table 7,
considering the internal softgoalaximize profit. In Figure 4 B), a softgoatustomer
satisfaction was introduced to aggregate the softgoals relevant to afpeestomer
category. Contributions between them and the internagjsaftnaximize profit can be
drawn and quantified by the contribution values computedratime.

This result can contribute both to validate existing cdmttion links and to add
new ones. In the case run-time feedback is in contrast wahd#sign-time models, a
revision of theGM could be required.

In a subsequent step, these new relations could be used Bysten to adapt its
strategic behaviours, not only according to the user peefags (i.e. softgoalustomer
satisfaction), but also according to its internal organizational ohyexs (i.e. softgoal
maximize profit), following a trade-off for the achievement of this two gmfals.

4 Related work

Different research lines are of interest to the work desctin this paper. Here we focus
on research in AOSE methodologies, which aims at suppottamgability between
process artefacts, and research on methods for evaluatsigndstrategies.

Along the first research line, we shall mention the Promethmathodology [9],
which makes use of goal models to describe system requirtsn¥enalogous to [1],
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Fig. 4. A) Quantifying the contribution relationships betweenteaastomer satisfaction soft-
goal and themaximize profit softgoal; B) visualizing the results in terms of theoposgoal
model refinement. The labels define the new relationshipegalu

after building a goal model, the designer identifies thossEgthat are related to sys-
tem functionalities (by the use afescriptory and delegates them to specific system
actors. Then functionalities are grouped to charactedgeaarios, namely sequence of
steps (functionalities) in order to achieve a goal. Notie#,tthis grouping mechanism
is also used to determine different agent types (roles) négjawareness about their
goal model is limited in Prometheus. For example, desiggetibehaviour is mainly
reactive rather than proactive and deliberative; the agenhot automatically reason
on its goal model in order to deal with failures and to chodterative behaviours.
Moreover, also traceability from and to design artefactwissupported.

Hermes [2] aims at overcoming the weak points of the abovetioreed methodol-
ogy, considering the goal model a core element of the impteatcagent. In Hermes,
generated BDI agents are aware of their goal model, chlkedaction Goal Hierarchy
Diagram, which is used to characterize behavioural strategiespe woth social com-
mitments. This gives a more flexible approach in respectiitional message-centric
agent interaction approaches. Hermes needs further obsegaorder to deal with a
complete design framework, actually it does not cover tlygiirements analysis and
architectural design phases.

Along the second research line, several approaches havepbegosed to evalu-
ate the different design strategies used iBM, e.g. to achieve goals [3, 10]. In [10]
the authors propose three different evaluation critesyampolic scenario basedand
quantitativg to characterize the cooperation strategies of an agesgeb@2P system.
While thesymbolicandscenario basedriteria are fulfilled at design time, thguanti-
tativecriterion takes advantage from run-time results. In paldiG thesymbolicevalu-
ation criterion is elaborated through analysis of the dbation links in the agenGM.

A substantial difference to our approach is that their eatidun system has not been
automatically generated from design-time artefacts @M). Besides, they have not
discussed how to correlate the run-time feedback to designGM.

The approach presented in [3] proposes a formal frameworkason on generic
GMs, namely not only on those related to software systems.if8adly, the authors
adopt some well-known algorithms to navigate @i relationships, proposing an as-



sessment criterion to propagate contribution values gl order to verify the goal
achievement. The analysis is callgdalitativeif the labels range if++, +, —, ——},
while it is calledquantitativeif the labels assume numeric values. The most significant
difference to our framework is that their analysis framewworks only when applied

to aGM at design-time, while our approach considers run-time ataipal source of
feedback to the design.

5 Conclusions and future work

In this paper we described an Agent-Oriented framework &wetbping systems with
qualities such as adaptivity and evolvability. We showed hdformation gained from
the execution of a system can be used to refine the originejrdes

As example, we modelled a simple travel agency system. Téiersyhandles re-
quests from different customer categories and gives padpdésr a full travel package,
according to user preferences. We tested our approach lmading an environment
where several categories of users, which are charactdnztebir own preferences and
typical requests, interact with the MAS. We observed theabieur of the system in
order to verify that it is compliant with the designed spegifions. This confirmed the
effectiveness of the framework in supporting traceabibtylroposconcepts between
run-time and design-time artefacts. Moreover, startiognfthe run-time behaviour of
the system in response to the user queries, we described ®wefjne and extend the
relationships among a set of user preferences and the ahgoals of the system.

We believe that this is a first step towards defining feedbag&hanisms from the
real execution of the system back to design.

As future work we will revise the proposed framework, forimialg it and investi-
gating on some Al technigue which will allow the system agerdutomatically dis-
criminate the customer category (i.e. by user profilinghfra set of input queries.
Moreover we aim at experimenting the framework in a realemrental setting.
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