
Refining Goal Models by Evaluating System Behaviour

Mirko Morandini, Loris Penserini, Anna Perini, and Angelo Susi

Fondazione Bruno Kessler - IRST, Via Sommarive 18, I-38050,Trento, Italy
{morandini,penserini,perini,susi}@itc.it

Abstract. Nowadays, information systems have to perform in complex, hetero-
geneous environments, considering a variety of system users with different needs
and preferences. Software engineering methodologies needto cope with the com-
plexity of requirements specification in such scenarios, where new requirements
may emerge also at run-time and the system’s goals are expected to evolve to
meet new stakeholder needs.
Following an agent-oriented approach, we are studying methods and techniques
to design adaptive and evolvable information systems able to fulfill stakeholders’
objectives.
In a previous work we defined an Agent-Oriented framework to design and code
system specifications in terms of goal models and we instantiated it in a tool sup-
ported process which exploits the Agent-Oriented SoftwareEngineering method-
ology Troposand the Multi-Agent Platform JADE/Jadex [11].
In this paper, we show how to use this framework to develop a system follow-
ing an iterative process, where the system execution allowsenriching the system
specification given in terms of goal models.
Experimental evaluation has been performed on a simple example and lead to the
refinement of the designed goal model upon the analysis of thesystem’s run-time
behaviour.

1 Introduction

Information systems are today expected to perform in complex environments which
make computing resources available to anyone, at any time and anywhere. In these
scenarios, complexity comes from the variety of system users (including organizations)
with their needs and preferences, which tend to evolve according to the dynamic nature
of users in the network, and from the heterogeneity of the environment a system is
deployed in. Therefore, systems should be aware of users’ goals and able to choose the
most suitable behaviour from various alternatives.

These scenarios motivate research on practices and methodologies for software de-
velopment. Traditional software development models, which assume that the require-
ments specification has been finalized before proceeding to design and then to imple-
mentation, need to be replaced by more flexible iterative models, able to take into ac-
count that new requirements may emerge also at run-time. Moreover, the traditional
concept of software maintenance has to be revised since systems are expected to evolve
to meet the needs of the changing environment rather than to preserve their original
structure [8].

Multi-Agent Systems (MAS) provide candidate technologiesfor building software
with adaptivity and evolvability qualities [6], while recently proposed Agent-Oriented
Software Engineering (AOSE) methodologies offer a complementary paradigm for the
analysis of system requirements and design [4]. Some of them, such as GAIA [17] and
Tropos[1] offer concepts and models to analyse the system and its environment in terms
of agent organizations. Moreover,Troposhas been recently proposed as a methodology
to support “high-variability software design” through theexplicit modelling of the dif-
ferent alternative design solutions to a given stakeholdergoal (requirement) [7].

We are studying methods and techniques to design information systems with quali-
ties such as adaptivity and evolvability, following an Agent-Oriented approach. That is,
we conceive an information system as an open network of software agents who interact
with each other and with human/organizational agents in their operational environment
in order to fulfil stakeholder objectives. Concretely, we propose a development frame-
work which adopts MAS technology as implementation platform and agent-oriented
methods and techniques for the analysis and the specification of system requirements
and design. In [11, 12] we instantiate this framework with respect to theTroposmethod-
ology and to the Jadex/JADE platform [14], and propose a tool-supported process to
derive agents that base on a Belief-Desire-Intention architecture [15] fromTroposgoal
models.

In this paper, we show how this framework can be used to develop a system fol-
lowing an iterative process, in which the system execution allows to enrich the system
specification expressed in terms of goal models. From a goal-oriented system model we
derive agent skeletons automatically in a tool-based process. We execute the modelled
system, simulating system users and observing system behaviour in correspondence
to variability in user desires and in environmental conditions. The different MAS be-
haviours can then be traced back to the specification of the alternatives in the goal
model, giving experimental evidence of the effectiveness of the proposed framework in
supporting traceability between run-time and design-timeartefacts. Moreover, run-time
observations could lead to a refinement of the design. For instance contribution rela-
tionships between model elements can be further qualified orquantitative analysis of
system qualities, which have been defined at design time in terms of system (soft)goals,
can be performed. We consider this work as a first step towardssetting up feedback
mechanisms from run-time to the design, a core aspect in the development of adaptive
systems.

The paper is structured as follows. In Section 2, we recall basic concepts of the
proposed development framework and describe the tool-supported process, which ex-
ploits theTroposmethodology and the JADE/Jadex MAS platform. A simple travel
agency system is used as example to illustrate the approach.The system handles re-
quests from different customer categories and gives proposals for a full travel package,
according to user preferences. Experimental evaluations,based on a run-time simula-
tion, are described and discussed in Section 3. Related workis presented in Section 4
and concluding remarks in Section 5.

2 Background

2.1 Conceptual Framework

We adopt concepts from recently proposed AOSE methodologies [4] and from BDI
MAS research [6] to define an Agent-Oriented approach to system design and cod-
ing. The Belief-Desire-Intention (BDI) architecture, as proposed in [15], bases on three
mental concepts:beliefswhich model the knowledge of an agent about himself and
about its environment,goalsthe agent can try to achieve, andintentions, sets of plans
an agent commits for execution to achieve a goal. Within our framework, we further use
knowledge level concepts such as those ofagent, which can be social, organizational,
human or software andsocial dependencythat defines the obligations of an agent to
others.

The key part in the analysis and design stages is the so calledGoal Model(GM).
Like in other approaches [5, 16], in our framework aGM is a goal graph consisting
of a forest of AND/OR decomposed goals, along with inter-dependency links between
goals and means-end relationships between leaf-level goals and plans that represent a
way to achieve these goals. During requirements analysis,GMs make easier to model
stakeholders’ goals and their relationships, showing how they really affect the system
functionalities. Moreover, deriving an agentGM at architectural design allows designers
to model dependencies between the system agent goals and stakeholder goals.

More operative concepts are needed during software agents specification. We define
a capabilityas the sub-graph rooted in a leaf goal containing a set ofmeans-endplans
with their inter-dependency relationships towards other goals. We callknowledge-level
design the process of building the higher level part of aGM andcapability-leveldesign
the process of refining leaf goals into plan means-end and inter-dependency relation-
ships. This last design step represents a way to operationalize goals, that is, to define
the possible behaviours of an agent. Therefore, aGM can be also seen as a schema for
the possible behaviours an agent can use to fulfil its goals.

More formally, letE be the set of events1 an agent can perceive,C the set of con-
straints (e.g. user preferences and system QoS),G the set of goals an agent can achieve,
Cp a set of capabilities an agent can exploit, andGL ⊆ G the set of leaf-level goals an
agent can operationalize, we give the following definitions:

behaviour-schemaBS is the set of all possible type of behaviours an agent can play
BS = {Bh1(X), ..., Bhn(X)}, where eachBhi is a sub-schema representing a set of
behaviours associated to a specific set of events and constraints. Formally,X is a list
of attributesX = {Events, Constraints, Goals}, whereEvents assumes values in
2E ; Constraints assumes values in2C , andGoals assumes values in2GL .

behaviour-schema function A behaviour-schema functionfBh associates a set of
events and constraints to a set of leaf-level goals:fBh : 2E × 2C → 2GL . It allows to
build theBh(X) specific to an occuring event and the constraints perceived.

1 Examples are goal triggering messages.

capability function For each sub-schemaBh, there exists a capability function
fCp : Bh → 2Cp such that, giving in input a behaviourbi, retrieves the different sets
of Capabilities an agent can execute to exhibit this behaviour.

Behaviour-schema- and capability-functions allow to query the behaviour-schema
and aGM structure about agent properties with reference to concrete instances of
behaviours and capabilities, each time an event occurs or environmental conditions
change. For example, each time an agent receives a request message (an event), it
interprets it in order to extract the goals to be triggered, and concurrently perceives
environmental conditions (C) to better choose the right behaviour.

2.2 Tool Supported Framework

In [11, 12] we instantiate the described framework using theTroposmethodology for
analysis and design, and JADE and the Jadex BDI agent platform for the implemen-
tation. TheTroposagent-oriented methodology borrows modelling and analysis tech-
niques from goal-oriented requirements engineering approaches and integrates them
into an agent-oriented paradigm (see [1] for details). The main idea inTropos is to
support knowledge level specification by providing a conceptual modelling language
which offers concepts likeactor, goal, plan, resource, capability, andsocial depen-
dencybetween actors. The methodology provides a graphical notation to depict views
of a model, along with analysis techniques and supporting tools [13].

Fig. 1. Troposarchitectural design: a fragment of knowledge and capability levels from the goal
model of agentTravelAgent.

In the rest of this section, we give an overview of the framework by defining ba-
sic process artefacts and their role in the main process stages, as depicted in Figure 2.
Moreover, we give more details on how aGM is automatically mapped into a BDI
agent specification that can, at execution time, give usefulfeedback to refine the orig-
inal design. To illustrate our approach we take as an examplea simple travel agency
system,TravelAgent. The system handles requests from several classes/categories of
customers (e.g. business customers, vacation customers orstudents) and gives propos-
als for a full travel package, according to the users’ preferences. These preferences are
modelled through softgoals. For example, as illustrated inFigure 1, possible softgoals
to characterize a customer category arereasonable cost, good comfort, andrelax
vacation. The agent tries to achieve them exploiting different alternatives for journey
and accommodation and selecting suitable additional activities.

Fig. 2.Process’s artefacts and their role inTropos. Feedback from system execution to design can
be obtained upon observing the system behaviour.

Process ArtefactsAdoptingTroposin our framework allows us to represent MAS with
GMs, resulting from the analysis of each actor’s point of view.Tropos GMs are based
on the i* notation [16]. They are represented in terms of a forest of AND- and OR-
decomposed goals, along with lateral contributions labelled+,− (for partial positive or
negative contribution to the satisfaction of a goal) or++ (for strong positive or negative

contribution). For example, ifg1
++
−→ g2 andg1 is fulfilled, so isg2. Additionally aGM

contains means-ends relationships among plans and goals, to define the means to satisfy
a goal.

In Tropos, GMs are built during requirements analysis to characterize domain stake-
holders, their needs and their dependencies from the system-to-be. In the architectural
design phase they are used to detail software agents. As thispaper work focuses on
getting feedback to design-time from the generated agents,here we consider mainly
GMs at theTroposarchitectural design phase. An example is given in Figure 1,which
illustrates a fragment of aGM for theTravelAgent, which represents the main actor of
the software system under development.

At Troposarchitectural design phase, aGM represents the agent intentionality in
terms of how the agent perceives the environment, applies strategies to fulfil its re-
sponsibilities, and chooses alternative ways to adapt to requirements changes. In other

words, like a human being, the agent perceives the environment and chooses a suit-
able behaviour. Notice that the set of possible agent behaviours can be characterized
in terms of perceivable events, environmental conditions and agent goals by applying
the behaviour-schema function,fBh, to theGM. The actual behaviour results from the
execution of the specific capabilities thanks to the capability function,fCp.

Figure 1 depicts the two different abstraction levels that characterize the agent
design:knowledge levelandcapability level. The knowledge level refers to the goal
AND/OR decomposition part of theGM that contributes to the description of the be-
haviours the specific agent role can play. The capability level brings about the exe-
cutable part of an agent and its connection to the agent’s leaf goals.

Capabilities (cp ∈ Cp, whereCp is the set of all capabilities of the agent) represent
the glue between the two agent modelling levels. A capability is defined by the concepts
of ability andopportunity. Theability refers to the plans for achieving a given goal and
is specified by a means-end relationship between the goal andthe plan. Theopportunity
represents user preferences (contributions between goalsand plans to softgoal,c ∈ 2C)
and environmental conditions represented by message events e ∈ 2E that affect the
agent’s beliefs. At run time, these preferences and conditions can enable or disable the
execution of an ability.

Following the design process sketched in Figure 2, acapability tableextracted from
the GM, and UML 2.0 diagrams, extracted by model transformation from theGMs
capability level, are used to generate JADE code in a capability library. The structure
of an agent’s reasoning part, that relies on a BDI architecture, can be automatically
generated from the knowledge level of theGM.

Capabilities Means End(goal,plan) List of Contributions
cp1 provide room, {reasonable cost --;good comfort ++;

search hotel relax vacation --}
cp2 provide room, {good comfort +;relax vacation +}

search BB
cp3 provide camping, {reasonable cost ++;good comfort --;

search camping relax vacation --}
... ... {...}

Table 1.Fragment ofTravelAgent capability Table.

Table 1 depicts a fragment of the capability table for theTravelAgent example,
which was obtained from theGM in Figure 1. If the goalselect accommodation is
triggered, as this is OR-decomposed in the two sub-goals, the agentTravelAgent has
two possible behaviours to satisfy the triggered goal: one that can achieve the goal
provide room (by cp1 or cp2) and one that can achieve the goalprovide camping (by
cp3).

The design artefacts (GMs, capability table, activity- and sequence diagrams) drive
agent code generation. Specifically, our tool supported framework allow us to generate
a library of capabilitiesfrom the capability table and the activity- and sequence dia-
grams, as detailed in [12]. Executable skeletons for theBDI agents, which are able to
use the capabilities in this library, can be automatically generated from the knowledge

level specification contained in theGM, through a mapping of theGM structures into a
BDI agent description for theJadexframework, specified by an Agent Description File
(ADF) in XML format, augmented with some Java code2.

The implementation consists of Jadex BDI agent definitions along with their ca-
pabilities. For the simulation we run instances of these agent definitions. The agents
are queried by simulated users sending request-messages and the resulting behaviour is
then used to give feedback to the design artefacts.

Coding the GM into BDI Agents In order to endow the generated BDI agents with
all the information included in theGM, the specification for the mapping process has
been conducted along two phases: basic concept mappings (goals, softgoals, plans,
resources) and structure mappings (AND/OR goal dependencies, means-end links,
contribution links, delegation and dependency links). A sketch of the mapping is given
below, while we remind the interested reader to see [11] for more details.

Goal. As a Jadex-goal can be only triggered by a Jadex-plan, aTroposgoal is mapped
to a pair of< goal, plan > in Jadex.
Softgoal. Softgoals are considered as abstract entities related more to beliefs and desires
than to goals and plans. In our prototype they are mainly usedto define opportunities
for the selection of the next goals or plans to pursue along theGM. That is, they model
domain constraintsc ∈ C to drive the selection of the most convenient behaviourb ∈
Bh(X), once an evente ∈ 2E occurs

A softgoal is therefore mapped only to a belief base entry, which contains its name
and a value that may be changed by the user at run-time. This value expresses the
softgoal’s actual importance and may change from time to time to reflect environmental
changes.
Plan. Troposplans that have a direct means-end relationship to leaf goals (root-level
plans) are mapped to Jadex plans according to our definition of capability.
AND-decomposition. If an AND-decomposed goal is activated, all subgoals have to
be dispatched. The following Jadex solution was adopted: anAND-decomposed goal
is set as trigger for exactly one plan, called AND-dispatch-plan (Figure 3). In the plan
body, all subgoals have to be dispatched in (random or user defined) sequence. If one
subgoal fails, the process has to be stopped and a failure hasto be returned. For this first
proposal, on failure no techniques for compensation of already executed actions have
been considered.

An analogous mapping for theOR-decomposition is described in [11], while
Troposmeans-endrelationship are mapped one-to-one to the Jadex plan triggering
mechanism. Having defined no conditions, every time the associated goal is activated,
plan execution is triggered. Notice that, in this case the Jadex plans are root-level plans
in Tropos, namely those required to build up agent capabilities. Jadex supposes that
every applicable plan for a goal is able to satisfy that goal completely. Therefore, if
more than one plan is applicable, Jadex meta-level reasoning is exploited to select the
appropriate plan, as in the case of alternative paths in OR-decomposition. The selection

2 Further details can be found in [14].

Fig. 3. Mapping of theTroposgoal AND-decomposition into an equivalent Jadex BDI structure.

of alternatives can be guided by preconditions and by softgoal contributions.

The generated agent can evaluate costs for every goal and plan. They include soft-
goal contribution and importance: negative contributionscause higher cost, lower im-
portance of the relative softgoal to the user can alleviate this penalty. Moreover, each
generated agent endows knowledge about its goal relationships from theGM in its be-
lief base: AND/OR decompositions, dependencies, delegations, and contribution links.

3 Experimental Setting and Evaluation

This Section describes a general experimental setting, suitable to be applied in several
kinds of scenarios, and the results obtained.

The objective of our experiment is twofold: on one hand, we aim at verifying the
behaviour of a MAS with respect to the designed specifications; on the other hand, we
aim at supporting the refinement (such as the introduction ofnew relationships) of the
GM by exploiting information retrieved from the simulation.

We refer to theTravelAgent example, partially depicted in Figure 1. The main idea
is to focus on the preferences of different customer categories recognized by the system
at run-time by profiling users from the set of queries they submitted. We observe the
system while it is adapting to each category, trying to maximize customer satisfaction
(customer’s softgoals delegated to theTravelAgent system) and providing evidence of
how such softgoals have different impact to the system’s owninternal softgoals (e.g.
maximize profit).

3.1 Experimental Setting

We refer to the fragment ofGM shown in Figure 1. Suppose that a genericCustomer
could be distinguished into three categories:business customer(BC),vacation customer

(VC) and student customer(SC), each one composed by individuals having similar
preferences and similar requests to the travel agency system. The simulation assumes
that these categories will be recognized by the system only at run-time.

In the simulation, theCustomer (in the following alsouser) interacts with the sys-
tem by submitting sets of queries that correspond to set of activation events for sys-
tem goals (belonging to2E). Moreover, the system is supposed to acquire information
from the environment in order to provide user profiling. Thiswould allow to activate
sets of softgoals that represent the users’ preferences (belonging to 2C). Basing on
this information our system is able to assume the best-suited behaviour, activating all
necessary capabilities. Table 2 shows the components for the run-time choice process
of sets of capabilities. In particular, the second column represents the input elements.
The former is given as a set of queries made by the different Customer Categories (i.e.
CC = {BC, V C, SC}), e.g. the business customers’ query will beqBC , whereas the
latter is given by the set of user preferences and constraints (e.g.CBC) perceived by the
system via an user profiling activity or by user-guided configuration. The third column
contains the set of behaviour instances suitable for each category (e.g.bBC

i) related to
the queries (e.g.qBC

i), while the fourth column contains the capability sets (e.g. CpBC
i)

able to realize the corresponding behaviours.

To choose appropriate capabilities, the system exploits thebehaviour-schemafunc-
tion fBh and thecapability functionfCp, defined in Section 2. In particular, the first
line of the table refers to a single query made by an user that belongs to the BC cat-
egory. Let us assume that such a category is characterized bya setQBC of m pos-
sible queries (QBC = {qBC

1 , ..., qBC
m }) and by a setCBC of preferences (CBC =

{sgBC
1 , sgBC

2 , ...}), which are inputs for the application of thebehaviour-schemafunc-
tion. With this input, the system is able to compute the set ofpossible behavioursbBC

1−m,
that can be exploited in order to accomplish user requests.

The application of thecapability functionfCp to a behaviourbi allows the system
to retrieve the different sets of capabilities that can be activated in order to operatively
execute this behaviour. The capability to execute can then be selected according to the
opportunities. This calculation process can be repeated for all user categories in the
model.

User class
(CC)

Trigger events
(2E × 2C)

Behaviours
(Bh(X))

Capabilitiy
sets(2Cp)

BC qBC
1

, CBC bBC
1

CpBC
1

.

qBC
m , CBC bBC

m CpBC
m

VC qV C
1

, CV C bV C
1

CpV C
1

.

qV C
n , CV C bV C

n CpV C
n

SC qSC
1

, CSC bSC
1

CpSC
1

.

qSC
k , CSC bSC

k CpSC
k

Table 2. System inputs (CC and2E × 2C) and outputs (Bh(X) and2Cp) for the simulation,
following the definition recalled in Section 2.1

A domain expert would be able to define contribution relationships between each
capability and internal softgoals, such asmaximize profit, but she cannot knowa-priori
which capabilities will be executed to satisfy a user query that occurs to the system.

Ci Vacation Customer Student Customer Business Customer
goodbusinesstravel 0 0 1
goodcomfort 0.6 0.2 1
actionvacation 0.4 1 0
good time utilization 0.3 0 1
reasonablecost 0.6 1 0.1
relax vacation 0.6 0.3 0

Table 3.Softgoals used by the system to profile the user preferences.These values are supposed
to be given by domain experts.

In Table 3 sample values for the importance of the contributions to softgoals adopted
to characterize the customer categories are given; those values refer to the three different
classes of customers and are expressed via numeric values.

We prepared the experiments, defining a set of queries for every different customer
category and identifying sets of softgoals that are typicalfor them. Table 4 gives ex-
amples for sets of queries for the three classes of users we considered. Moreover, for
each capability (cp), we define its contribution towards the internal system softgoals
(sgint1, . . . , sgintl), as illustrated in Table 5.

Query Vacation Customer Student Customer Business Customer
q1 give proposals give proposals give proposals
q2 provide camping, car journey, prop. act.propose activities provide room, flight journey
q3 provide room, train journey provide room, flight journeyselect journey
q4 select accommodation camping, train journey select accommodation

Table 4.Queries that characterize each customer category.

Capability Contribution to
maximize profit

Contribution to maxi-
mize travel miles

search hotel 0.8 0
search BB 0.4 0
camping 0.3 0
eurostar train 0.2 0.3
intercity train 0.1 0.2
business flight 0.9 1
low cost flight 0.2 0
gastronomy 0 0
nightlife 0 0
...

Table 5.Contribution values between each capability and the internal softgoals.

Table 6 can be built only after running the system along with simulated inputs and
getting information on which set of capabilities where executed by the system to satisfy
user queries. Specifically, the table shows the schema of therelationships among sets
of capabilities and internal softgoals (sgint1, . . . , sgintl), for each agent. These values
are then used to compute the cumulative contribution of the run-time sets of capabilities
cp, belonging to the selected behaviourbi, to a given internal softgoal, via the functions
favg(val1,j . . . valm,j) (at the bottom of the table). In our experimental setting we used
the function:

avg(val1,J . . . valm,J) =

m∑

i=1

(vali,J)/m (1)

Query Sets of Capabilitiessgint1 . . . sgintl

qBC
1

CpBC
1

val1,1 . . . val1,l

.

qBC
m CpBC

m valm,1 . . . valm,l

favg(val1,1 . . . valm,1) . . . favg(val1,l . . . valm,l)

Table 6.Contribution relationships among capability groups and internal system softgoals.

Notice that an analysis by simulation does not cope with the possible contribution
produced by all the different capability groupings. On the contrary, the simulation will
converge towards the only sets of capabilities requested bythe real customer categories.

3.2 Results and Discussion

After the simulation, the set of data related to the experiment for theTravelAgent sce-
nario has been collected. According to our first objective, we are able to monitor the
system behaviour (b), each time a query (e.g.qBC

4) occurs, along with some user pref-
erences (e.g.CBC={good comfort}), verifying thatb belongs to theGM behaviour
schema (b ∈ Bh(X)). Specifically, we can observe that the system has the ability to
adapt its behaviour to best accommodate with the current customer category. For exam-
ple, let us assume thatqBC

4 will trigger the system goalselect accommodation, along
with the softgoalgood comfort. Now, the system is able to navigate theGM in order
to maximize the user preference modelled by this softgoal.

Looking at theGM fragment illustrated in Figure 1, we can see that the goalselect
accommodation has two alternative ways to be achieved, i.e.provide room andpro-
vide camping. The system will first try to selectprovide room, because its capabilities
(characterized by the two planssearch hotel andsearch BB) give the biggest contri-
bution to the given user preference. The same procedure willbe used in a next step to
discriminate between the two available capabilities, thistime resulting in the selection
of search hotel.

These experiments confirmed the effectiveness of the framework in supporting
traceability between run-time and design-time artefacts.

To meet our second objective, we simulate the execution of a set of user queries
and preferences in order to revise softgoal relationships in theGM. Table 7 shows the

sets of capabilities activated by the system, i.e. the behaviour instances it selected at
run-time, as a response to the simulated user queries described in Table 4. In Table 7,
each row specifies a query from a particular category of users(BC, VC and SC). Con-
tributions tomaximize profitare calculated by summing the value of each capability
contribution as indicated in Table 5, e.g. in the case ofCpBC

1 : eurostar train+ search
hotel+ gastronomy= 0.2 + 0.8 + 0 = 1.

Query Sets of executed capabilities Contribution tomaximize profit
qBC
1

CpBC
1

: eurostar train, search hotel, gastronomy 1
qBC
2

CpBC
2

: business flight, search hotel 1.7
qBC
3

CpBC
3

: eurostar train 0.2
qBC
4

CpBC
4

: search hotel 0.8 favg = 0.925

qV C
1

CpV C
1

: low cost flight, search BB, culture 0.6
qV C
2

CpV C
2

: use own car, camping 0.3
qV C
3

CpV C
3

: intercity train, search BB 0.5
qV C
4

CpV C
4

: search BB 0.4 favg = 0.45

qSC
1

CpSC
1

: low cost flight, search camping, nightlife 0.5
qSC
2

CpSC
2

: nightlife 0
qSC
3

CpSC
3

: low cost flight, search BB 0.6
qSC
4

CpSC
4

: intercity train, camping 0.4 favg = 0.375

Table 7.Capability groups associated to every query at run-time.

The results of these queries allow to observe how the real (inour case simulated)
customer preferences affect system behaviour.

The capability groups corresponding to the different behaviours of theTravelAgent
can then be used to add or quantifyTroposcontribution links.

Figure 4 A), shows the values offavg computed according to 1, as shown in Table 7,
considering the internal softgoalmaximize profit. In Figure 4 B), a softgoalcustomer
satisfaction was introduced to aggregate the softgoals relevant to a specific customer
category. Contributions between them and the internal softgoalmaximize profit can be
drawn and quantified by the contribution values computed at run-time.

This result can contribute both to validate existing contribution links and to add
new ones. In the case run-time feedback is in contrast with the design-time models, a
revision of theGM could be required.

In a subsequent step, these new relations could be used by thesystem to adapt its
strategic behaviours, not only according to the user preferences (i.e. softgoalcustomer
satisfaction), but also according to its internal organizational objectives (i.e. softgoal
maximize profit), following a trade-off for the achievement of this two softgoals.

4 Related work

Different research lines are of interest to the work described in this paper. Here we focus
on research in AOSE methodologies, which aims at supportingtraceability between
process artefacts, and research on methods for evaluating design strategies.

Along the first research line, we shall mention the Prometheus methodology [9],
which makes use of goal models to describe system requirements. Analogous to [1],

Customer
Satisfaction

Contribution to
maximize profit

BC 0.925
VC 0.45
SC 0.375

A) B)

Fig. 4. A) Quantifying the contribution relationships between each customer satisfaction soft-
goal and themaximize profit softgoal; B) visualizing the results in terms of theTroposgoal
model refinement. The labels define the new relationship values.

after building a goal model, the designer identifies those goals that are related to sys-
tem functionalities (by the use ofdescriptors) and delegates them to specific system
actors. Then functionalities are grouped to characterize scenarios, namely sequence of
steps (functionalities) in order to achieve a goal. Notice that, this grouping mechanism
is also used to determine different agent types (roles). Agents’ awareness about their
goal model is limited in Prometheus. For example, designed agent behaviour is mainly
reactive rather than proactive and deliberative; the agentcannot automatically reason
on its goal model in order to deal with failures and to choose alternative behaviours.
Moreover, also traceability from and to design artefacts isnot supported.

Hermes [2] aims at overcoming the weak points of the above-mentioned methodol-
ogy, considering the goal model a core element of the implemented agent. In Hermes,
generated BDI agents are aware of their goal model, calledInteraction Goal Hierarchy
Diagram, which is used to characterize behavioural strategies to cope with social com-
mitments. This gives a more flexible approach in respect to traditional message-centric
agent interaction approaches. Hermes needs further research in order to deal with a
complete design framework, actually it does not cover the requirements analysis and
architectural design phases.

Along the second research line, several approaches have been proposed to evalu-
ate the different design strategies used in aGM, e.g. to achieve goals [3, 10]. In [10]
the authors propose three different evaluation criteria (symbolic, scenario based, and
quantitative) to characterize the cooperation strategies of an agent-based P2P system.
While thesymbolicandscenario basedcriteria are fulfilled at design time, thequanti-
tativecriterion takes advantage from run-time results. In particular, thesymbolicevalu-
ation criterion is elaborated through analysis of the contribution links in the agentGM.
A substantial difference to our approach is that their evaluation system has not been
automatically generated from design-time artefacts (e.g.GM). Besides, they have not
discussed how to correlate the run-time feedback to design-timeGM.

The approach presented in [3] proposes a formal framework toreason on generic
GMs, namely not only on those related to software systems. Specifically, the authors
adopt some well-known algorithms to navigate theGM relationships, proposing an as-

sessment criterion to propagate contribution values (labels) in order to verify the goal
achievement. The analysis is calledqualitativeif the labels range in{++, +,−,−−},
while it is calledquantitativeif the labels assume numeric values. The most significant
difference to our framework is that their analysis framework works only when applied
to aGM at design-time, while our approach considers run-time as a principal source of
feedback to the design.

5 Conclusions and future work

In this paper we described an Agent-Oriented framework for developing systems with
qualities such as adaptivity and evolvability. We showed how information gained from
the execution of a system can be used to refine the original design.

As example, we modelled a simple travel agency system. The system handles re-
quests from different customer categories and gives proposals for a full travel package,
according to user preferences. We tested our approach by simulating an environment
where several categories of users, which are characterizedby their own preferences and
typical requests, interact with the MAS. We observed the behaviour of the system in
order to verify that it is compliant with the designed specifications. This confirmed the
effectiveness of the framework in supporting traceabilityof Troposconcepts between
run-time and design-time artefacts. Moreover, starting from the run-time behaviour of
the system in response to the user queries, we described a wayto refine and extend the
relationships among a set of user preferences and the internal goals of the system.

We believe that this is a first step towards defining feedback mechanisms from the
real execution of the system back to design.

As future work we will revise the proposed framework, formalizing it and investi-
gating on some AI technique which will allow the system agentto automatically dis-
criminate the customer category (i.e. by user profiling) from a set of input queries.
Moreover we aim at experimenting the framework in a real environmental setting.

References

1. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An Agent-
Oriented Software Development Methodology.Autonomous Agents and Multi-Agent Sys-
tems, 8(3):203–236, July 2004.

2. C. Cheong and M. Winikoff. Hermes: Designing Goal-Oriented Agent Interactions. InIn
the proceedings of the 6th International Workshop on Agent-Oriented Software Engineering
(AOSE-2005) Utrecht, colocated with AAMAS05, 2005.

3. P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Reasoning with Goal Models.
In in Proc. of the 21th International Conference on ConceptualModeling (ER). Springer,
October, 2002.

4. B. Henderson-Sellers and P. Giorgini, editors.Agent-Oriented Methodologies. Idea Group
Inc., 2005.

5. N. Jennings.Foundations of Distributed Artificial Intelligence, chapter Coordination Tech-
niques for Distributed Artificial Intelligence. Wiley-IEEE, 1996.

6. N. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and development.
Autonomous Agents and Multi-Agent Systems, 1(1):7–38, 1998.

7. A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu. Towards Requirements-Driven Au-
tonomic Systems Design. InDesign and Evolution of Autonomic Application Software
(DEAS’05) at ICSE 2005, 2005.

8. P. Norvig and D. Cohn. Adaptive software.PC AI, 11(1):27–30, 1997.
9. L. Padgham and M. Winikoff. Prometheus: A practical agent-oriented methodology. In

B. Henderson-Sellers and P. Giorgini, editors,Agent-Oriented Methodologies. Idea Group,
2005.

10. L. Penserini, L. Liu, J. Mylopoulos, M. Panti, and L. Spalazzi. Modeling and Evaluating
Cooperation Strategies in P2P Agent Systems. Inin Proc. of the International Workshop on
Agent and Peer-to-Peer Computing (AP2PC 2002). Springer,LNCS 2530, July, 2002.

11. L. Penserini, A. Perini, A. Susi, M. Morandini, and J. Mylopoulos. A Design Framework
for Generating BDI-agents from Goal Models. In O. Sheory andM. Huhns, editors,6th
International Joint Conference on Autonomous Agents and Multi-Agent Systems, AAMAS’07,
Honolulu, Hawai’i, 2007. Extended version available as ITC-irst TR200601002at http:
//sra.itc.it/images/sepapers/bdiagents goalmodels.pdf.

12. L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. FromStakeholder Intentions to Software
Agent Implementations. InProceedings of the 18th Conference On Advanced Information
Systems Engineering (CAiSE’06), volume 4001 ofLNCS, pages 465–479, Luxemburg, 2006.
Springer-Verlag.

13. A. Perini and A. Susi. Automating Model Transformationsin Agent-Oriented Modelling. In
Agent Oriented Software Engineering VI: AOSE’05, volume 3950 ofLNCS, pages 167–178.
Springer-Verlag, 2006.

14. A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A bdi reasoning engine. In J. D. R. Bor-
dini, M. Dastani and A. E. F. Seghrouchni, editors,Multi-Agent Programming, pages 149–
174. Springer Science+Business Media Inc., USA, 9 2005. Book chapter.

15. A. S. Rao and M. P. Georgeff. Modeling rational agents within a bdi-architecture. InKR,
pages 473–484, 1991.

16. E. Yu.Modelling Strategic Relationships for Process Reengineering. PhD thesis, University
of Toronto, Department of Computer Science, University of Toronto, 1995.

17. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing multiagent systems: The gaia
methodology. ACM Transactions on software Engineering and Methodology, 12(3):317–
370, 2003.

