Automating Model Transformationsin Agent-Oriented
modelling

Anna Perini and Angelo Susi

ITC-irst, Via Sommarive, 18, I-38050 Trento-Povo, Italy
{perini,susi}@tc.it

Abstract. Current Agent-Oriented Software Engineering (AOSE) métho-
gies adopt a model-based approach for analysis and desigrintorder to be-
come of practical use, they should include it in a clear arsiauizable software
development process and provide CASE tools that support it.

In this regards, the Model-Driven Architecture (MDA) iritive of OMG is pro-
viding useful concepts and techniques. The MDA ultimatesctiye is that of
improving quality and software maintainability by allowifor the reuse of mod-
els and mappings between models. It offers standards ahdigges for model
interoperability and for automating model transformasion

Our goal in this paper is to address the role of model transdtipns in AOSE
by discussing a practical example, with reference toTrapos methodology.
In particular, we will focus on the automatic transformatiof a Troposplan
decomposition into a UML 2.0 activity diagram.

We will show how to use the transformation technique to aattenmodel map-
pings and describe how a CASE tool, based on a modular actinige has been
extended to automate models transformations.

1 Introduction

Modeling techniques are largely used in Agent-OrientedV@ok Engineering (AOSE).
Current methodologies, like Gaia [24], PASSI [8], Prometh§21], Adelfe [3],Tro-
pos|[4], propose their own conceptual modeling language and afséiagrams (or
views on the model) to support specific steps in the analysisiasign of software. In
order to become of practical use the following issues ned&e addressed.

First, a model-driven software development process shbeldlearly defined by
specifying the analysis and design steps, with their olvjest set of artifacts to be
produced, guidelines and techniques to be exploited tal iioém.

Second, CASE tools should be provided, at support of themifft tasks in model
based design such as analysis and verification of modelstomaitic transformation
from one specification language to another, in a transparehsimple manner. These
latter aspects are at the core of the Model-Driven ArchitectMDA) initiative of OMG
[19].

The ultimate goal of MDA is that of improving the quality offs@are products
and of the development process, by allowing for the reuseaafets and the mappings
between models. Basically, MDA proposes an approach taoétdevelopment based
on modeling and on the automated mapping of source modetsgettmodels. Code

can be seen as a target model as well. So, there is a lot of &ffMDA to develop
model interoperability standards, as well as model-to-ehtdnsformation concepts
and techniques for their automation.

The MDA initiative refers mainly to Object Oriented softwadevelopment and
proved to be effective in relevant application domain, sastweb services (business
process integration) [18]. Recently, a few proposals tda@xMDA ideas and tech-
niques in Agent Oriented software engineering have begmgsexd [11, 15, 22].

We think that MDA standards and technological infrastruetare relevant to make
AO methodologies usable by practitioners. In particuldgming MDA standards for
model interoperability and for model-to-model automatimsformation could, on one
side, support a flexible and customizable software devedmpmprocess, on the other
side, offer a complementary approach to the definition ofraraon metamodél

In this paper we focus on model transformation concepts ectthiques in an AO
approach to software development, with reference toltbposmethodology. In this
methodology the concept of transformation has been intredialso in previous work.
Here we will revise and discuss the role of automatic tramsé&tions inTroposand
describe a tool that supports them.

The paper is structured as follows. Section 2 recalls taangdtion concepts and
techniques in MDA, previous work ifiroposand discuss the role of model transfor-
mations inTropos Section 3 and 4 present our approach, focusing on a pantityyde
of transformation infropos(i.e. synthesis), and present a CASE tool, that supports it.
Related works are discussed in Section 5. Finally, conotuand future work are pre-
sented in Section 6.

2 MDA and model transformationsin Tropos

Actar

1 +PointOfView 0.n
1 +PointOfView

1 +PointOfview O.n

0.n |Contribution
metric

01 0.n 0n

+contributed 1

++++++

Fig. 1. An excerpt of theTroposmetamodel.

L A currently ongoing effort pursued by the AOSE TechnicaltFoiGroup of AgentLink [2].

The Troposmethodology [4] supports an agent-oriented approach twvacd de-
velopment organized in five major phases or discipfin&bey areEarly Requirement
where a description of the application domain is produtatt Requirementi which
the system-to-be is introduced in the domain and its impéttinvthe environment is
analyzedArchitectural Desigiwhere a representation of the internal architecture of the
system is given in terms of subcomponents of the system gettibreships among them;
Detailed Desigrwhich focuses on the specification of agents capabilitiesiaterac-
tion; Implementationi.e. the production of code from the detailed design spetifin,
according to the established mapping between the implatientplatform constructs
and the detailed design notions.

For the first three disciplineEoposadopts a modeling language that allows to rep-
resent intentional and social concepts, such as actor aaldmian, resource, and a set
of relationships between them, such as actor dependenalypgplan decomposition,
means-end and contribution relationships. While for thimitked design discipline the
use of UML activity diagrams for the agent capabilities sfieation and of sequence
diagrams for agent interactions specification have beepgzexd. In [4] a preliminary
mapping to the JACK multi-agent platform was defined andiegpb a case-study.

Modeling in Troposhas been conceived as an incremental process where ah initia
model is refined by adding new elements and properties by snefthe analysis of
each actor goals and plans. A description of this proce®sing of a non deterministic
concurrent algorithm has been given in [4]. Moreover, a firsposal to characterize it
in terms of an iterative application of simple transforroat has been described in [5].

In the following we will revise the role of transformationsthe Troposmethodol-
ogy in the light of the MDA framework. We will first recall theaBic goals and concepts
of MDA, then discuss how they can be adopted in CASE toolsdppsrtingTropos

MDA considers models as corporate assets which can evallependently of the
relative code. Models can be partially reused or mixed witteomodels to generate a
new system [19]. Models can be specified from different viawd can be represented
at different levels of abstractions.

Concerning model transformation, the basic idea propas8DA is that of defin-
ing the meta-models of source and target modeling languagmEsding to a standard
and to define mapping and transformation mechanisms betmetarmodel elements.
The transformation of a source model into a target modeldelive in a straightfor-
ward way from the transformation mechanisms defined at tha-medel level, since
the models are instances of the correspondent languagenodta

The MDA's meta-modeling standard is the Meta Object Fac{MOF) [16] which
defines a set of modeling construct that allow to manage meidels interoperability.
For instance, it offers a standard mechanisms for autoaitideriving a concrete syn-
tax based on XML DTDs and/or schemas known as XML Model Ititange (XMI).
An example of MOF compliant meta-model is illustrated ind¥ig 1 which depicts an
excerpt of thelroposmodeling language metamodel.

A language for describing the generic transformation of weil formed model is
not yet available in a standard form. A first step in the stadidation process has been

2 The term discipline is used according to the definition gierthe Unified Process [14],
namely a set of activities to be performed in order to procuparticular set of artifacts.

a
A
5 I I E,_.»—':E‘
= | | migration} 4 “‘
[5
I;-’
| 3
e L= _
2l L E .
!’ I o ot
s ||
e CI
=1 <
=} (]
= @ I I 1
3 ° |
< (]
e <g,| I —
3 =
|
S =
! a | I =
w2
< | 4

Fig. 2. Model Translation in MDA: an adaptation of the schema pregas [18] to theTropos
methodology. The model abstraction level increases freatfdtim Specific Model (PSM), rep-
resented by JACK code, to Platform Independent Model (Ptbfresented by UML an@iropos
models.

performed by OMG by issuing a request for proposal on QuéewXransformation

(MOF QVT [12]) which should take into account requirementstsas that of defining
alanguage for querying MOF models; giving a language farsiarmation definitions;

allowing for the creation of views of a model. Several tecjueis for model transforma-
tion have already been proposed.

The role of transformations ifiroposcan be discussed referring to a classification
of QVT model transformations that have been proposed in, iBich uses the termi-
nology introduced by Visser for program transformation][23anguagetranslation
and languageephrasingare top level processes. Basically, in the former, a model is
transformed into a model of a different language, and in dlted, a model is changed,
in some way, into a same language model.

Figure 2 depicts the different translation processes in M@8zZording to this clas-
sification.Migration is a type of translation in which a model is transformed totheo
one, or to a language dialect, at the same level of abstradiar instance, if we intend
to integrateTroposarchitectural design with UML design we may need to migredenf
actor diagrams to package / class diagrams. Another exaohpiés type of transfor-
mation occurs when we need to specify behavioral propesfiesmodel by temporal
logic annotationET). An automatic transformation mechanism, from informapos
to FT, has been built adopting a visitor-based approach, asideddn [22].Synthesis
is a type of translation in which a model is transformed totaeoone at a lower level
of abstraction. This type of transformation Tmoposoccurs when building the detalil
design model from the architectural design model, that isrwive need to add spec-
ification of agent capabilities and of agent interactionghis paper we will focus on
this example considering, in particular how an actor (agaian decomposition can be

automatically translated into a capability diagram (UMD Activity diagram)Reverse
engineerings the inverse transformation.

Rephrasingefers to different transformations that may occur whendig and
refining a modelnormalizationconsists in a transformation of a model by reducing
it to a sub-languagegfactoring concerns restructuring a model with the objective to
improve it; correction i.e. fixing possible model errors; aadaptationof a model in
order to bring it up to date with new or modified requiremeiitse previously cited
work on defining the modeling process in terms of an increalexgplication of basic
transformations was intended to support this type of tansétion processes. More-
over, a first proposal of applying graph transformation téghes to its automation is
described in [20].

We are currently interested in exploring the problem of¢farmation between two
modeling languages defined by different metamodels, andaiticplar in maintain-
ing the synchronization between the models. This is redquiréhe Troposmethodol-
ogy when we deal with the transition fromTaoposArchitectural Design model, to a
Detailed Design specification. Notice that the Architeatidesign model is specified
according to thelroposmetamodel as defined in [4], while for the second (which in-
cludes UML activity diagram, sequence diagram) we aim ataétipg the UML 2.0
metamodel and at maintaining the traceability between theais.

3 Automating Tropos-to-UML model transformation. An example

Among the different approaches for model-to-model trams&gions that have been
recently proposed, we focused on two of them namely: the IGfpnsformation
(GT) [13] and a Frame Logics [17]. In [20] we describe how t@lgaGT to Tropos
model rephrasing transformation. Briefly GT approach iedam set of rules that rep-
resents the status of a certain sub-graph of the modelsebafmt after the application
of the rule. In particular these rule’s sub-graphs can ksedIrespectively to the source
and target metamodel. Some problem arises when we deal Witsp@&cifications. In
fact this framework introduces non determinism in at least phases: in order to ap-
ply a rule we have first to choose it, and then we have to chduseub-graph of
the source model in which the rule has to be applied. Thetre$tthe transformation
strictly depends on these choices. Some restrictions caddyeted in order to reduce
this phenomenon: the next rule to be applied can be choseheobaisis of the rules
applied before, or the application of the rules can be exetan the basis of a priority
list. Another possible problem is the possibility to asdietermination of a sequence
of rule application. Also in this case some hypothesis caméade in order to limit the
problem.

We are exploiting a Frame Logics based approach describgs] o deal with
Metamodel transformation between fi@posand the UML 2.0.

In particular this approach is based on the definition of sproperties of the target
model in terms of the source model, avoiding the specifioadiothe process used to
obtain the target, and it takes into account the mandatayyirements of the MOF
QVT consortium related to the Query/View/Transformaticemnfiework. In particular
the proposal defines a language for querying MOF-compliatats (or set of models)

and a subset of this language can be used to specify trarsiomof MOF-compliant
models. The transformations can be automated and views@éisioan be obtained via
transformations. This approach leads to a simpler semianatitel, respect, for example,
to the GT techniques; this made easier the understandingeafansformation rule.
Moreover it does not need any hypothesis related to the iogiér which the rules
have to be applied or to the termination of the transfornmatio

The transformation language proposed in the approachstersithree major con-
cepts:pattern definitionstransformation rulestracking relationshipsPattern defini-
tionsare generated in order to identify structures that are usegkral times in a given
transformationTransformation rulesllow to specify the target configuration in terms
of the entities in the source configuratidmacking relationshipgre used to associate
the target elements with the source elements that leaditatieation allowing to main-
tain the traceability between source and target modelriesgentities. Moreover the
work proposes a syntax for the rules composed by some clasme® of them (e.g.
theForall andWherg are used by the rule to recognize some pattern in the instainc
the source model, while other (eldakeandSe) are used to build the instance of the
target model.

We will show how we applied it iMfroposshowing an example of transformation
from Troposplan decomposition structure to a UML 2.0 Activity Diagrams

A Troposplan decomposition represents a graph describing a hiecateelation-
ship between the root plan and the sub-plans. Let us cortsidease of an AND plan
decomposition as the one represented in Figure 3 a).

T — - —

/ \ -
[Acter1 |

N N
/ \N
/ A -

|j 7 X |

Fig. 3. A Troposplan decomposition diagram for a given Actor and the cooadmg UML 2.0
activity diagram.

The meaning of the decomposition is: the ré@n A can be decomposed in the
sub-plansPlan B andPlan C; both of them have to be executed in order to have the
root plan executed. This hierarchy identifies a set of ptesgilans composed by the
set of sub-plans. In particular nothing is specified aboetdtder in which the set of
sub-plans have to be executed.

The plans in th&roposplan diagram are translated into action nodes in the UML
activity diagram; moreover from the structure of the plaonataposition it is possible
to derive a basic structure for the resulting activity dagr

In particular the assumption is that tR&an A can be mapped into an activity node,
containing a structure composed by the activities cornedjpg to the plan® andC;

TRANSFORMATION Tropos2UML: Tropos > uml2

RULE PlanNoDec2Activity()
FORALL Plan c
WHERE NOT (c.booleanDecomposition=BooleanDecomposition)
AND NOT (c.boolDecLink=BooleanDecLink)
MAKE Action f, InitialNode Initial, Final Node Final, ControlBiv ToA, ControlFlow ToFin
SET f.name="noDec”, ToA.source=lInitial, ToA.target=f, ToFiarget=Final, ToFin.source=f;

CLASS ActionForPlanDec{
Plan pin;
Action act};

RULE PlanDec2Action(c,a,join,fork)

FORALL Planc

WHERE Root(c)

MAKE Action a, JoinNode join, ForkNode fork, InitialNode Initjia
FinalNode Final, ControlFlow initToA, ControlFlow AToFin
ControlFlow AToFork, ControlFlow JoinToA

SET a.name=c.name, a.redefinedElement=join, a.redefine@Bterork,

LINKING ActionForPlanDedNITH act=a, pln=c;

RULE SubPlan(c,a,join,fork,d,b)
EXTENDS PlanDec2Action(c,a,join,fork)
FORALL Pland
WHERE ActionForPlanDed INKS pln=c
c=d.boolDecLink.BooleanDecomposition.rootPlan
MAKE Action b, ControlFlow ForkToB, ControlFlow bToJoin
SET b.name=d.name, a redefinedElement=b, ForkToB.name=Tb&k

PATTERN Root(c)
WHERE c.booleanDecomposition.type="and";

Fig. 4. The transformation specification defined in the grammarrdest in [6].

moreover in the example the assumption is that the two plasstd be executed in
parallel since no information is given about the sequentleepplans in thdroposplan
diagram. Figure 3 b) shows the resulting activity diagram.

As specified above, in order to implement the mapping betvwleemroposmeta-
model entities and the UML 2.0 activity diagrams we applieel declarative approach
proposed in [6] that proposes a transformation languagedbas three basic concepts,
pattern definition, transformations rules and trackingtiehships.

The transformation shown in Figure 4 is specified via a subftite grammar de-
scribed in [6]. In the transformation definition it is podsilto distinguish Rules and
Pattern used to specify in a declarative way the transfoomaf he RULE PlanN-
oDec2Activityis for the transformation of the plan decomposition leaves,decom-
posed, to an activity in the UML activity diagram. The rolecismposed by clauses.
In the PlanNoDec2Activityrule, the clauses FORALL and WHERE retrieve the set
of plans that are not decomposed; the clauses MAKE and SEih atearge to build
the structure of the corresponding activity diagram, éngad new activity for every
retrieved plan, and the links to other activities and cdrftosv components in the di-
agram. The RULEPlanDec2Activityrefers to decomposed plans and transforms them

into UML actions that can then be further decomposed in o#tetions and control
structures. In particular in our case fork and join conttolctures are added together
with the action derived from the hierarchy root planThe RULESubPlarredefine the
rule for the decomposable actions in order to incremengalty new sub-actions in the
activity diagram.

In the example the directive PATTERN recognizes the kindexfainposition the
transformation has to face with; in this case the patterageizes the root of an “and”
decomposition, a typical structure in thieposplan decomposition diagram.

For the sake of clearness, we described the simplest case mém and-
decomposition structure. Typical cases require to dedl plian or-decomposition or
temporal relationships [22] between sub-plans as the oaerslin Figure 5. In this
case a few additional rules can be defined within a limitedreff

{ Y ™.
| Actor1 | ~
/ \
\ / ¢ \
A B >3 N
/ X \
i / \
/ N

‘ ‘
|
\ /
\ J

NS - - /
: - b

Fig.5. A Troposplan AND-decomposition diagram with temporal annotationd given Actor
and the corresponding UML 2.0 activity diagram.

As described above a relevant issue for us is the possibilihaving the synchro-
nization between models and the reversibility of a tramafttion. The declarative trans-
formations approach and shown in [6] is only in part able tppgut synchronization
and reversibility in an automatic way. In general the regdransformations has to be
explicitly defined.

4 A CASE tool

In this section we focus on the description of a set of tootsstgporting the use of
theTroposmethodology according to the MDA perspective. This recgyifiest to adopt
MOF compliant modeling tools (i.e. whose respective madginguages’ metamodels
are specified according to the MOF standard), second, toedefodel transformations
in terms of mapping between the metamodels of the sourcehartdnget specification
languages.

For instance, a CASE tool at support of ffreposprocess discussed in the previous
section should allow the analyst to build@posmodel (in our case a plan decomposi-
tion diagram) using a modeler which includes Tieposmetamodel. Part of the model
should be automatically translated into a UML model whichidt be editable by a
UML modeler (which includes the UML metamodel). Modificat®performed on the
UML model should be automatically reflected into fireposmodel.

Fig. 6. The architecture of TAOM4e.

A Troposmodeler called TAOM compliant with MDA metamodel interogbility
standards has been described in [22]. The need of a highél#etchitecture which
allow to easily extend it induced us to consider the oppadtgun re-engineering this
tool in the Eclipse Platform [1] that offers a flexible and gaomically) convenient
solution to the problem of component integration. The Ediflatform is an open
source initiative that offers a “reusable and extensibdemework for creating IDE-
oriented tools” [10]. New tools are integrated into the fdah through plug-ins that
provide new functionalities to the environment. A plugsithie smallest unit of function
in Eclipse. The Eclipse Platform itself is organized as @a$stibsystems (implemented
in one or more plug-ins) built on the top of a small runtime ieegas depicted in
Figure 6. Plug-ins define extension points for adding bedrauo the platform, thatis a
public declaration of the plug-in extensibility. More pigaly, a “plug-in manifest” file
specifies the extensions it uses and the extension poiresirited.

Figure 6 depicts the architecture of the new modeler (cdWgdM4e) and of how it
has been extended with a model transformation plug-in. ftiquéar, TAOM4e has been
built on top of two existing plug-ins. First, the Graphicaditthg Framework (GEF)
plug-ir® that allows developers to create a rich graphical editanfem existing ap-
plication model. The functionality of the GEF plug-in helpsvering one of the most
essential requirements of the modeler, that is supporisupl/development of Tropos
model by providing some standard features like drag & drogodredo, copy & paste
and other.

Second, the EMF plug-frwhich offers a modeling framework and code generation
facility for building tools and other applications basedaostructured data model. From
a model specification described in XMI, EMF provides toolsl aantime support to
produce a set of Java classes for the model. Most importaait, dEMF provides the
foundation for interoperability with other EMF-based t®ahd applications.

The TAOM4e component consists of two plug-ins, as depiatdelgure 6, namely,
theTAOM4e modekhich implements the Tropos meta-model extending the EMBpI
in and theTAOM4e platfornwhich implement the modeler functions needed for build-
ing and managing a Tropos Model. It extends the GEF plug-ihtheTAOM4e model

plug-in.

3 http://www.eclipse.org/gef/
4 http:/lwww.eclipse.org/emf/

Fig. 7. A snapshot of the TAOM4e Graphic User Interface.

The transformation plug-in we used is a model transformagitgine called Tefkat
that implements a subset of the requirements and of theféranation language de-
scribed in the DSTC proposal for MOF QVT as in [6]. The tool sists of a set of
Eclipse plug-ins based on EMF. Tefkat allow to specify tfammations between meta-
models that are specified via an XMI compliant notation ugethe EMF for the defi-
nition of metamodels. Moreover, due to the plug-in struetdiefkat can easily interact
with other Eclipse plug-ins devoted to model definition arehagement.

5 Redated work

Several works related to Agent-Oriented Software Engingetealt with the concept
of transformation as already pointed out in the first twoisest[3, 8, 21]. In particular
in [5] a transformational approach to support the analyshduheTropossoftware de-
velopment process has been proposed and in [20] Graph orarmetion were applied
to support the analyst in choosing and/or validating pdassiindel refinement actions.
A first proposal to use Graph Transformation in AOSE is giveflil] where this tech-
nique is adopted both to capture agent-specific aspectoatadihe a formal semantics
in the definition of an agent-oriented modeling techniqundg1b] a work which applies
the MDA idea of transform a Platform Independent Model toatfetm Specific Model
is proposed; in that case the Platform Specific Model retetseé JACK platform.

More generally QVT proposals are of particular interestdior work. An interest-
ing classification of them can be found in [9]. Moreover ieting ideas on how to
apply the MDA framework to a specific domain is given in [18] this work automatic
transformations between source and target models are sgdpo the case of busi-
ness process integration, when dealing with the complefitgrge business processes
mapping from visual languages to code.

5 Tefkat is part of Pegamento project of the DSTC in the Uniteref Queensland
http://www.dstc.edu.au/Research/Projects/Pegantefkat/index.html

6 Conclusion and Future Work

In this paper we focused on the role of model transformatiornsn agent-oriented
software development by adopting concepts and techniduatsate proposed in the
MDA initiative by OMG [19].

MDA offers a meta-modeling standard, the Meta Object RgciMOF) [16],
which allows model and meta-model interoperability and snaging the standard-
ization process of model transformations which should beg@mnt with the so called
Query/View/Transformation (MOF QVT [12]) requirement&V8ral techniques have
been already proposed. Although MDA refers mainly to Ob§@dented software de-
velopment its concepts and techniques may be adopted Ag@nrit€d software engi-
neering as well [7,11, 15, 22].

In particular, in Section 2 we considered different typesnafdel transformations
that can support software development in Tngposmethodology and revised how the
concept of transformations have been addressed in prewioks. We think that most
of the considerations can be applied also to other AOSE rdethgies.

We presented a (simple) practical example concerning ttegraatic transformation
of aTroposplan decomposition into a UML 2.0 activity diagram (a traefiation type
calledsynthesisn Section 2), by adopting a declarative transformatiomglege pro-
posed in [6] and we pointed out critical issues such as mgaelsonization. This type
of transformation supports the transition between archital design and detailed de-
sign inTropos but we may consider to adopt it also for supporting trafmtabetween
Troposmodels and UML models referring to a same level abstracfmrir{stance dur-
ing architectural design).

We showed also how we are extending a CASE tool implementdweikCLIPSE
platform which offers a highly modular and flexible architee, to include automatic
model transformations.

References

1. ECLIPSE Platform Technical Overviewbject technology international edition, July 2001.
http://www.eclipse.org.

2. C. Bernon, M. Cossentino, M. P. Gleizes, P. Turci, and Fniz@nelli. A Study of Some
Multi-agent Meta-models. Imgent-Oriented Software Engineering V: 5th International
Workshop, AOSE 200%olume 3382 oL ecture Notes in Computer Sciengages 62 — 77,
New York, USA, NY, July 2004.

3. C.Bernon, M.P. Gleizes, S. Peyruqueou, and G. Picard. .ABEa Methodology for Adap-
tive Multi-Agent Systems Engineering. Trhird International Workshop Engineering Soci-
eties in the Agents World (ESAW-200®0adrid, Spain, 2002.

4. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulasd A. Perini. Tropos: An Agent-
Oriented Software Development Methodologfutonomous Agents and Multi-Agent Sys-
tems 8(3):203—-236, July 2004.

5. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, ahdMylopoulos. Modeling early re-
quirements in Tropos: a transformation based approach. .IWdbldridge, P. Ciancarini,
and G. Weiss, editoréygent-Oriented Software Engineeringyblume 2222 of NCS pages
151-168. Springer-Verlag, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

CBOP, DSTC, and IBM. MOF Query/Views/Transformationed Revised Submission.
Technical report, 2004.

. M. Cossentino, P. Burrafato, S. Lombardo, and L. Sabatukdroducing Pattern Reuse

in the Design of Multi-agent Systems. Agent Technologies, Infrastructures, Tools, and
Applications for E-Services 20ppages 107 — 120, 2002.

. Massimo Cossentino. Different perspectives in desgnilti-agent systems. IRroc. of

AGES '02 Erfurt, Germany, 2002.

. K. Czarnecki and S. Halsen. Classification of Model Tramsftion Approaches. I®OP-

SLA’03 Worshop on Generative in Context of Model-Driverhiecture 2003.

Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellempand Pat McCarty.The Java
developers guide to Eclips@&ddison-Wesley, 2004.

Ralph Depke, Reiko Heckel, and Jochen Malte KiisternA@giented Modeling with Graph
Transformation. In Paolo Ciancarini and Michael Wooldagdgditors AOSE volume 1957
of Lecture Notes in Computer Scienpages 150 — 120. Springer, 2001.

T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A revigvmg mof 2.0 query / views /
transformations submissions and recommendations towleed®al standard. IMetaMod-
elling for MDA WorkshopYork, England, 2003.

S. Gyapay and D. Varr6. Automatic Algorithm Generation Visual Control Structure.
Technical report, Dept. of Measurement and Informationt&ys Budapest University of
Technology and Economics, Hungary, 2000.

I. Jacobson, G. Booch, and J. Rumbaughhe Unified Software Development Process
Addison-Wesley, 1999.

Gaya Buddhinath Jayatilleke, Lin Padgham, and Mich&aaiktff. Towards a Component-
Based Development Framework for Agents. In G. Lindemanmehzinger, 1.J. Timm,
and R. Unland, editordfultiagent System Technologies, Proceedings of the Se&gendan
Conference, MATES 20pdumber 3187 in LNAI, pages 183 — 197. Springer-Verlag, 2004
Sheena R. Judson, Robert B. France, and Doris L. Capecifging Model Transformations
at the Metamodel Level, 2004. http://www.omg.org.

M. Kifer, G. Lausen, and J. Wu. Logical Foundations ofé&bjOriented and Frame-Based
LanguagesJournal of ACM 42(4):741 — 843, 1995.

J. Koehler, R. Hauser, S. Sendall, and M. Wahler. Detargechniques for model-driven
business process integratidBM Systems Journafi4(1), 2005.

Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk \WeisMDA Distilled. Addison-
Wesley, 2004.

Aliaksei Novikau, Anna Perini, and Marco Pistore. Gradwriting for Agent Oriented
Visual Modeling. Inin Proc. of the International Workshop on Graph Transforioatand
Visual Modeling Techniques, in ETAPS 2004 ConfergBegcelona, Spain, 2004.

Lin Padgham and Michael Winikoff. Prometheus: a methagiofor developing intelligent
agents. IMMAMAS pages 37-38, 2002.

Anna Perini and Angelo Susi. Developing Tools for Agémtented Visual Modeling. In
G. Lindemann, J. Denzinger, I.J. Timm, and R. Unland, egjtdultiagent System Technolo-
gies, Proceedings of the Second German Conference, MATESimber 3187 in LNAI,
pages 169-182. Springer-Verlag, 2004.

Eelco Visser. A survey of strategies in program tramsédion systemsElectr. Notes Theor.
Comput. Scj.57, 2001.

F. Zambonelli, N. R. Jennings, and M. Wooldridge. Depilg Multiagent Systems:
The Gaia Methodology. ACM Transactions on Software Engineering and Methodglogy
12(3):317 — 370, July 2003.

