
Automating Model Transformations in Agent-Oriented
modelling

Anna Perini and Angelo Susi

ITC-irst, Via Sommarive, 18, I-38050 Trento-Povo, Italy
{perini,susi}@itc.it

Abstract. Current Agent-Oriented Software Engineering (AOSE) methodolo-
gies adopt a model-based approach for analysis and design, but, in order to be-
come of practical use, they should include it in a clear and customizable software
development process and provide CASE tools that support it.
In this regards, the Model-Driven Architecture (MDA) initiative of OMG is pro-
viding useful concepts and techniques. The MDA ultimate objective is that of
improving quality and software maintainability by allowing for the reuse of mod-
els and mappings between models. It offers standards and techniques for model
interoperability and for automating model transformations.
Our goal in this paper is to address the role of model transformations in AOSE
by discussing a practical example, with reference to theTroposmethodology.
In particular, we will focus on the automatic transformation of a Troposplan
decomposition into a UML 2.0 activity diagram.
We will show how to use the transformation technique to automate model map-
pings and describe how a CASE tool, based on a modular architecture, has been
extended to automate models transformations.

1 Introduction

Modeling techniques are largely used in Agent-Oriented Software Engineering (AOSE).
Current methodologies, like Gaia [24], PASSI [8], Prometheus [21], Adelfe [3],Tro-
pos [4], propose their own conceptual modeling language and a set of diagrams (or
views on the model) to support specific steps in the analysis and design of software. In
order to become of practical use the following issues need tobe addressed.

First, a model-driven software development process shouldbe clearly defined by
specifying the analysis and design steps, with their objectives, set of artifacts to be
produced, guidelines and techniques to be exploited to build them.

Second, CASE tools should be provided, at support of the different tasks in model
based design such as analysis and verification of models or automatic transformation
from one specification language to another, in a transparentand simple manner. These
latter aspects are at the core of the Model-Driven Architecture (MDA) initiative of OMG
[19].

The ultimate goal of MDA is that of improving the quality of software products
and of the development process, by allowing for the reuse of models and the mappings
between models. Basically, MDA proposes an approach to software development based
on modeling and on the automated mapping of source models to target models. Code

can be seen as a target model as well. So, there is a lot of effort in MDA to develop
model interoperability standards, as well as model-to-model transformation concepts
and techniques for their automation.

The MDA initiative refers mainly to Object Oriented software development and
proved to be effective in relevant application domain, suchas web services (business
process integration) [18]. Recently, a few proposals to exploit MDA ideas and tech-
niques in Agent Oriented software engineering have been proposed [11, 15, 22].

We think that MDA standards and technological infrastructure are relevant to make
AO methodologies usable by practitioners. In particular, adopting MDA standards for
model interoperability and for model-to-model automatic transformation could, on one
side, support a flexible and customizable software development process, on the other
side, offer a complementary approach to the definition of a common metamodel1.

In this paper we focus on model transformation concepts and techniques in an AO
approach to software development, with reference to theTroposmethodology. In this
methodology the concept of transformation has been introduced also in previous work.
Here we will revise and discuss the role of automatic transformations inTroposand
describe a tool that supports them.

The paper is structured as follows. Section 2 recalls transformation concepts and
techniques in MDA, previous work inTroposand discuss the role of model transfor-
mations inTropos. Section 3 and 4 present our approach, focusing on a particular type
of transformation inTropos(i.e. synthesis), and present a CASE tool, that supports it.
Related works are discussed in Section 5. Finally, conclusion and future work are pre-
sented in Section 6.

2 MDA and model transformations in Tropos

Fig. 1. An excerpt of theTroposmetamodel.

1 A currently ongoing effort pursued by the AOSE Technical Forum Group of AgentLink [2].

TheTroposmethodology [4] supports an agent-oriented approach to software de-
velopment organized in five major phases or disciplines2. They are:Early Requirement,
where a description of the application domain is produced;Late Requirements, in which
the system-to-be is introduced in the domain and its impact within the environment is
analyzed;Architectural Designwhere a representation of the internal architecture of the
system is given in terms of subcomponents of the system and relationships among them;
Detailed Designwhich focuses on the specification of agents capabilities and interac-
tion; Implementation, i.e. the production of code from the detailed design specification,
according to the established mapping between the implementation platform constructs
and the detailed design notions.

For the first three disciplinesTroposadopts a modeling language that allows to rep-
resent intentional and social concepts, such as actor and goal, plan, resource, and a set
of relationships between them, such as actor dependency, goal or plan decomposition,
means-end and contribution relationships. While for the detailed design discipline the
use of UML activity diagrams for the agent capabilities specification and of sequence
diagrams for agent interactions specification have been proposed. In [4] a preliminary
mapping to the JACK multi-agent platform was defined and applied to a case-study.

Modeling inTroposhas been conceived as an incremental process where an initial
model is refined by adding new elements and properties by means of the analysis of
each actor goals and plans. A description of this process in terms of a non deterministic
concurrent algorithm has been given in [4]. Moreover, a firstproposal to characterize it
in terms of an iterative application of simple transformations has been described in [5].

In the following we will revise the role of transformations in theTroposmethodol-
ogy in the light of the MDA framework. We will first recall the basic goals and concepts
of MDA, then discuss how they can be adopted in CASE tools for supportingTropos.

MDA considers models as corporate assets which can evolve independently of the
relative code. Models can be partially reused or mixed with other models to generate a
new system [19]. Models can be specified from different viewsand can be represented
at different levels of abstractions.

Concerning model transformation, the basic idea proposed in MDA is that of defin-
ing the meta-models of source and target modeling languagesaccording to a standard
and to define mapping and transformation mechanisms betweenmeta-model elements.
The transformation of a source model into a target model willderive in a straightfor-
ward way from the transformation mechanisms defined at the meta-model level, since
the models are instances of the correspondent language metamodel.

The MDA’s meta-modeling standard is the Meta Object Facility (MOF) [16] which
defines a set of modeling construct that allow to manage meta-models interoperability.
For instance, it offers a standard mechanisms for automatically deriving a concrete syn-
tax based on XML DTDs and/or schemas known as XML Model Interchange (XMI).
An example of MOF compliant meta-model is illustrated in Figure 1 which depicts an
excerpt of theTroposmodeling language metamodel.

A language for describing the generic transformation of anywell formed model is
not yet available in a standard form. A first step in the standardization process has been

2 The term discipline is used according to the definition givenin the Unified Process [14],
namely a set of activities to be performed in order to producea particular set of artifacts.

Fig. 2. Model Translation in MDA: an adaptation of the schema proposed in [18] to theTropos
methodology. The model abstraction level increases from Platform Specific Model (PSM), rep-
resented by JACK code, to Platform Independent Model (PIM),represented by UML andTropos
models.

performed by OMG by issuing a request for proposal on Query/View/Transformation
(MOF QVT [12]) which should take into account requirements such as that of defining
a language for querying MOF models; giving a language for transformation definitions;
allowing for the creation of views of a model. Several techniques for model transforma-
tion have already been proposed.

The role of transformations inTroposcan be discussed referring to a classification
of QVT model transformations that have been proposed in [18], which uses the termi-
nology introduced by Visser for program transformation [23]. Languagetranslation,
and languagerephrasingare top level processes. Basically, in the former, a model is
transformed into a model of a different language, and in the latter, a model is changed,
in some way, into a same language model.

Figure 2 depicts the different translation processes in MDA, according to this clas-
sification.Migration is a type of translation in which a model is transformed to another
one, or to a language dialect, at the same level of abstraction. For instance, if we intend
to integrateTroposarchitectural design with UML design we may need to migrate from
actor diagrams to package / class diagrams. Another exampleof this type of transfor-
mation occurs when we need to specify behavioral propertiesof a model by temporal
logic annotation (FT). An automatic transformation mechanism, from informalTropos
to FT, has been built adopting a visitor-based approach, as described in [22].Synthesis
is a type of translation in which a model is transformed to another one at a lower level
of abstraction. This type of transformation inTroposoccurs when building the detail
design model from the architectural design model, that is when we need to add spec-
ification of agent capabilities and of agent interactions. In this paper we will focus on
this example considering, in particular how an actor (agent) plan decomposition can be

automatically translated into a capability diagram (UML 2.0 activity diagram).Reverse
engineeringis the inverse transformation.

Rephrasingrefers to different transformations that may occur when building and
refining a model;normalizationconsists in a transformation of a model by reducing
it to a sub-language;refactoring, concerns restructuring a model with the objective to
improve it; correction, i.e. fixing possible model errors; andadaptationof a model in
order to bring it up to date with new or modified requirements.The previously cited
work on defining the modeling process in terms of an incremental application of basic
transformations was intended to support this type of transformation processes. More-
over, a first proposal of applying graph transformation techniques to its automation is
described in [20].

We are currently interested in exploring the problem of transformation between two
modeling languages defined by different metamodels, and in particular in maintain-
ing the synchronization between the models. This is required in theTroposmethodol-
ogy when we deal with the transition from aTroposArchitectural Design model, to a
Detailed Design specification. Notice that the Architectural Design model is specified
according to theTroposmetamodel as defined in [4], while for the second (which in-
cludes UML activity diagram, sequence diagram) we aim at exploiting the UML 2.0
metamodel and at maintaining the traceability between the models.

3 Automating Tropos-to-UML model transformation. An example

Among the different approaches for model-to-model transformations that have been
recently proposed, we focused on two of them namely: the Graph Transformation
(GT) [13] and a Frame Logics [17]. In [20] we describe how to apply GT to Tropos
model rephrasing transformation. Briefly GT approach is based on set of rules that rep-
resents the status of a certain sub-graph of the models before and after the application
of the rule. In particular these rule’s sub-graphs can be related respectively to the source
and target metamodel. Some problem arises when we deal with GT specifications. In
fact this framework introduces non determinism in at least two phases: in order to ap-
ply a rule we have first to choose it, and then we have to choose the sub-graph of
the source model in which the rule has to be applied. The result of the transformation
strictly depends on these choices. Some restrictions can beadopted in order to reduce
this phenomenon: the next rule to be applied can be chosen on the basis of the rules
applied before, or the application of the rules can be executed on the basis of a priority
list. Another possible problem is the possibility to assurethe termination of a sequence
of rule application. Also in this case some hypothesis can bemade in order to limit the
problem.

We are exploiting a Frame Logics based approach described in[6] to deal with
Metamodel transformation between theTroposand the UML 2.0.

In particular this approach is based on the definition of someproperties of the target
model in terms of the source model, avoiding the specification of the process used to
obtain the target, and it takes into account the mandatory requirements of the MOF
QVT consortium related to the Query/View/Transformation framework. In particular
the proposal defines a language for querying MOF-compliant models (or set of models)

and a subset of this language can be used to specify transformation of MOF-compliant
models. The transformations can be automated and views of models can be obtained via
transformations. This approach leads to a simpler semanticmodel, respect, for example,
to the GT techniques; this made easier the understanding of the transformation rule.
Moreover it does not need any hypothesis related to the ordering in which the rules
have to be applied or to the termination of the transformation.

The transformation language proposed in the approach consists of three major con-
cepts:pattern definitions, transformation rules, tracking relationships. Pattern defini-
tionsare generated in order to identify structures that are used several times in a given
transformation.Transformation rulesallow to specify the target configuration in terms
of the entities in the source configuration.Tracking relationshipsare used to associate
the target elements with the source elements that lead to their creation allowing to main-
tain the traceability between source and target model instances entities. Moreover the
work proposes a syntax for the rules composed by some clauses; some of them (e.g.
theForall andWhere) are used by the rule to recognize some pattern in the instance of
the source model, while other (e.g.MakeandSet) are used to build the instance of the
target model.

We will show how we applied it inTroposshowing an example of transformation
from Troposplan decomposition structure to a UML 2.0 Activity Diagrams.

A Troposplan decomposition represents a graph describing a hierarchical relation-
ship between the root plan and the sub-plans. Let us considerthe case of an AND plan
decomposition as the one represented in Figure 3 a).

B C

A

b)

Fig. 3. A Troposplan decomposition diagram for a given Actor and the corresponding UML 2.0
activity diagram.

The meaning of the decomposition is: the rootPlan A can be decomposed in the
sub-plansPlan B andPlan C; both of them have to be executed in order to have the
root plan executed. This hierarchy identifies a set of possible plans composed by the
set of sub-plans. In particular nothing is specified about the order in which the set of
sub-plans have to be executed.

The plans in theTroposplan diagram are translated into action nodes in the UML
activity diagram; moreover from the structure of the plan decomposition it is possible
to derive a basic structure for the resulting activity diagram.

In particular the assumption is that thePlan A can be mapped into an activity node,
containing a structure composed by the activities corresponding to the plansB andC;

TRANSFORMATION Tropos2UML: Tropos -> uml2

RULE PlanNoDec2Activity()
FORALL Plan c
WHERE NOT (c.booleanDecomposition=BooleanDecomposition)

AND NOT (c.boolDecLink=BooleanDecLink)
MAKE Action f, InitialNode Initial, Final Node Final, ControlFlow ToA, ControlFlow ToFin
SET f.name=”noDec”, ToA.source=Initial, ToA.target=f, ToFin.target=Final, ToFin.source=f;

CLASS ActionForPlanDec{
Plan pln;
Action act;};

RULE PlanDec2Action(c,a,join,fork)
FORALL Plan c
WHERE Root(c)
MAKE Action a, JoinNode join, ForkNode fork, InitialNode Initial,

FinalNode Final, ControlFlow initToA, ControlFlow AToFin,
ControlFlow AToFork, ControlFlow JoinToA

SET a.name=c.name, a.redefinedElement=join, a.redefinedElement=fork,
.

LINKING ActionForPlanDecWITH act=a, pln=c;

RULE SubPlan(c,a,join,fork,d,b)
EXTENDS PlanDec2Action(c,a,join,fork)
FORALL Plan d
WHERE ActionForPlanDecLINKS pln=c

c=d.boolDecLink.BooleanDecomposition.rootPlan
MAKE Action b, ControlFlow ForkToB, ControlFlow bToJoin
SET b.name=d.name, a redefinedElement=b, ForkToB.name=”ForkToB”,

. . .

PATTERN Root(c)
WHERE c.booleanDecomposition.type=”and”;

Fig. 4. The transformation specification defined in the grammar described in [6].

moreover in the example the assumption is that the two plans has to be executed in
parallel since no information is given about the sequence ofthe plans in theTroposplan
diagram. Figure 3 b) shows the resulting activity diagram.

As specified above, in order to implement the mapping betweentheTroposmeta-
model entities and the UML 2.0 activity diagrams we applied the declarative approach
proposed in [6] that proposes a transformation language based on three basic concepts,
pattern definition, transformations rules and tracking relationships.

The transformation shown in Figure 4 is specified via a subsetof the grammar de-
scribed in [6]. In the transformation definition it is possible to distinguish Rules and
Pattern used to specify in a declarative way the transformation. The RULEPlanN-
oDec2Activityis for the transformation of the plan decomposition leaves,not decom-
posed, to an activity in the UML activity diagram. The role iscomposed by clauses.
In the PlanNoDec2Activityrule, the clauses FORALL and WHERE retrieve the set
of plans that are not decomposed; the clauses MAKE and SET arein charge to build
the structure of the corresponding activity diagram, creating a new activity for every
retrieved plan, and the links to other activities and control flow components in the di-
agram. The RULEPlanDec2Activityrefers to decomposed plans and transforms them

into UML actions that can then be further decomposed in otheractions and control
structures. In particular in our case fork and join control structures are added together
with the action derived from the hierarchy root planA. The RULESubPlanredefine the
rule for the decomposable actions in order to incrementallyadd new sub-actions in the
activity diagram.

In the example the directive PATTERN recognizes the kind of decomposition the
transformation has to face with; in this case the pattern recognizes the root of an “and”
decomposition, a typical structure in theTroposplan decomposition diagram.

For the sake of clearness, we described the simplest case of aplan and-
decomposition structure. Typical cases require to deal with plan or-decomposition or
temporal relationships [22] between sub-plans as the one shown in Figure 5. In this
case a few additional rules can be defined within a limited effort.

B

C

A

b)

Fig. 5. A Troposplan AND-decomposition diagram with temporal annotation for a given Actor
and the corresponding UML 2.0 activity diagram.

As described above a relevant issue for us is the possibilityof having the synchro-
nization between models and the reversibility of a transformation. The declarative trans-
formations approach and shown in [6] is only in part able to support synchronization
and reversibility in an automatic way. In general the reverse transformations has to be
explicitly defined.

4 A CASE tool

In this section we focus on the description of a set of tools for supporting the use of
theTroposmethodology according to the MDA perspective. This requires, first to adopt
MOF compliant modeling tools (i.e. whose respective modeling languages’ metamodels
are specified according to the MOF standard), second, to define model transformations
in terms of mapping between the metamodels of the source and the target specification
languages.

For instance, a CASE tool at support of theTroposprocess discussed in the previous
section should allow the analyst to build aTroposmodel (in our case a plan decomposi-
tion diagram) using a modeler which includes theTroposmetamodel. Part of the model
should be automatically translated into a UML model which should be editable by a
UML modeler (which includes the UML metamodel). Modifications performed on the
UML model should be automatically reflected into theTroposmodel.

Platform run-time

Workbench Workspace

EMF GEF

TAOM4E model TAOM4E platform

TAOM4E

Tefkat

Eclipse Core

Fig. 6. The architecture of TAOM4e.

A Troposmodeler called TAOM compliant with MDA metamodel interoperability
standards has been described in [22]. The need of a higher flexible architecture which
allow to easily extend it induced us to consider the opportunity to re-engineering this
tool in the Eclipse Platform [1] that offers a flexible and (economically) convenient
solution to the problem of component integration. The Eclipse Platform is an open
source initiative that offers a “reusable and extensible framework for creating IDE-
oriented tools” [10]. New tools are integrated into the platform through plug-ins that
provide new functionalities to the environment. A plug-in is the smallest unit of function
in Eclipse. The Eclipse Platform itself is organized as a setof subsystems (implemented
in one or more plug-ins) built on the top of a small runtime engine, as depicted in
Figure 6. Plug-ins define extension points for adding behaviors to the platform, that is a
public declaration of the plug-in extensibility. More precisely, a “plug-in manifest” file
specifies the extensions it uses and the extension points it defines.

Figure 6 depicts the architecture of the new modeler (calledTAOM4e) and of how it
has been extended with a model transformation plug-in. In particular, TAOM4e has been
built on top of two existing plug-ins. First, the Graphical Editing Framework (GEF)
plug-in3 that allows developers to create a rich graphical editor from an existing ap-
plication model. The functionality of the GEF plug-in helpscovering one of the most
essential requirements of the modeler, that is supporting visual development of Tropos
model by providing some standard features like drag & drop, undo-redo, copy & paste
and other.

Second, the EMF plug-in4 which offers a modeling framework and code generation
facility for building tools and other applications based ona structured data model. From
a model specification described in XMI, EMF provides tools and runtime support to
produce a set of Java classes for the model. Most important ofall, EMF provides the
foundation for interoperability with other EMF-based tools and applications.

The TAOM4e component consists of two plug-ins, as depicted in Figure 6, namely,
theTAOM4e modelwhich implements the Tropos meta-model extending the EMF plug-
in and theTAOM4e platformwhich implement the modeler functions needed for build-
ing and managing a Tropos Model. It extends the GEF plug-in and theTAOM4e model
plug-in.

3 http://www.eclipse.org/gef/
4 http://www.eclipse.org/emf/

Fig. 7. A snapshot of the TAOM4e Graphic User Interface.

The transformation plug-in we used is a model transformation engine called Tefkat5

that implements a subset of the requirements and of the transformation language de-
scribed in the DSTC proposal for MOF QVT as in [6]. The tool consists of a set of
Eclipse plug-ins based on EMF. Tefkat allow to specify transformations between meta-
models that are specified via an XMI compliant notation used by the EMF for the defi-
nition of metamodels. Moreover, due to the plug-in structure, Tefkat can easily interact
with other Eclipse plug-ins devoted to model definition and management.

5 Related work

Several works related to Agent-Oriented Software Engineering dealt with the concept
of transformation as already pointed out in the first two sections [3, 8, 21]. In particular
in [5] a transformational approach to support the analyst during theTropossoftware de-
velopment process has been proposed and in [20] Graph Transformation were applied
to support the analyst in choosing and/or validating possible model refinement actions.
A first proposal to use Graph Transformation in AOSE is given in [11] where this tech-
nique is adopted both to capture agent-specific aspects and to define a formal semantics
in the definition of an agent-oriented modeling technique. In [15] a work which applies
the MDA idea of transform a Platform Independent Model to a Platform Specific Model
is proposed; in that case the Platform Specific Model refers to the JACK platform.

More generally QVT proposals are of particular interest forour work. An interest-
ing classification of them can be found in [9]. Moreover interesting ideas on how to
apply the MDA framework to a specific domain is given in [18]. In this work automatic
transformations between source and target models are proposed in the case of busi-
ness process integration, when dealing with the complexityof large business processes
mapping from visual languages to code.

5 Tefkat is part of Pegamento project of the DSTC in the University of Queensland
http://www.dstc.edu.au/Research/Projects/Pegamento/tefkat/index.html

6 Conclusion and Future Work

In this paper we focused on the role of model transformationsin an agent-oriented
software development by adopting concepts and techniques that are proposed in the
MDA initiative by OMG [19].

MDA offers a meta-modeling standard, the Meta Object Facility (MOF) [16],
which allows model and meta-model interoperability and is managing the standard-
ization process of model transformations which should be compliant with the so called
Query/View/Transformation (MOF QVT [12]) requirements. Several techniques have
been already proposed. Although MDA refers mainly to ObjectOriented software de-
velopment its concepts and techniques may be adopted Agent Oriented software engi-
neering as well [7, 11, 15, 22].

In particular, in Section 2 we considered different types ofmodel transformations
that can support software development in theTroposmethodology and revised how the
concept of transformations have been addressed in previousworks. We think that most
of the considerations can be applied also to other AOSE methodologies.

We presented a (simple) practical example concerning the automatic transformation
of aTroposplan decomposition into a UML 2.0 activity diagram (a transformation type
calledsynthesisin Section 2), by adopting a declarative transformation language pro-
posed in [6] and we pointed out critical issues such as model synchronization. This type
of transformation supports the transition between architectural design and detailed de-
sign inTropos, but we may consider to adopt it also for supporting translation between
Troposmodels and UML models referring to a same level abstraction (for instance dur-
ing architectural design).

We showed also how we are extending a CASE tool implemented inthe ECLIPSE
platform which offers a highly modular and flexible architecture, to include automatic
model transformations.

References

1. ECLIPSE Platform Technical Overview, object technology international edition, July 2001.
http://www.eclipse.org.

2. C. Bernon, M. Cossentino, M. P. Gleizes, P. Turci, and F. Zambonelli. A Study of Some
Multi-agent Meta-models. InAgent-Oriented Software Engineering V: 5th International
Workshop, AOSE 2004, volume 3382 ofLecture Notes in Computer Science, pages 62 – 77,
New York, USA, NY, July 2004.

3. C. Bernon, M.P. Gleizes, S. Peyruqueou, and G. Picard. ADELFE, a Methodology for Adap-
tive Multi-Agent Systems Engineering. InThird International Workshop Engineering Soci-
eties in the Agents World (ESAW-2002), Madrid, Spain, 2002.

4. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos: An Agent-
Oriented Software Development Methodology.Autonomous Agents and Multi-Agent Sys-
tems, 8(3):203–236, July 2004.

5. P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, andJ. Mylopoulos. Modeling early re-
quirements in Tropos: a transformation based approach. In M. Wooldridge, P. Ciancarini,
and G. Weiss, editors,Agent-Oriented Software Engineering II, volume 2222 ofLNCS, pages
151–168. Springer-Verlag, 2001.

6. CBOP, DSTC, and IBM. MOF Query/Views/Transformations, 2nd Revised Submission.
Technical report, 2004.

7. M. Cossentino, P. Burrafato, S. Lombardo, and L. Sabatucci. Introducing Pattern Reuse
in the Design of Multi-agent Systems. InAgent Technologies, Infrastructures, Tools, and
Applications for E-Services 2002, pages 107 – 120, 2002.

8. Massimo Cossentino. Different perspectives in designing multi-agent systems. InProc. of
AGES ’02, Erfurt, Germany, 2002.

9. K. Czarnecki and S. Halsen. Classification of Model Transformation Approaches. InOOP-
SLA’03 Worshop on Generative in Context of Model-Driven Architecture, 2003.

10. Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman, and Pat McCarty.The Java
developers guide to Eclipse. Addison-Wesley, 2004.

11. Ralph Depke, Reiko Heckel, and Jochen Malte Küster. Agent-Oriented Modeling with Graph
Transformation. In Paolo Ciancarini and Michael Wooldridge, editors,AOSE, volume 1957
of Lecture Notes in Computer Science, pages 150 – 120. Springer, 2001.

12. T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A reviewof omg mof 2.0 query / views /
transformations submissions and recommendations towardsthe final standard. InMetaMod-
elling for MDA Workshop, York, England, 2003.

13. S. Gyapay and D. Varró. Automatic Algorithm Generationfor Visual Control Structure.
Technical report, Dept. of Measurement and Information System, Budapest University of
Technology and Economics, Hungary, 2000.

14. I. Jacobson, G. Booch, and J. Rumbaugh.The Unified Software Development Process.
Addison-Wesley, 1999.

15. Gaya Buddhinath Jayatilleke, Lin Padgham, and Michael Winikoff. Towards a Component-
Based Development Framework for Agents. In G. Lindemann, J.Denzinger, I.J. Timm,
and R. Unland, editors,Multiagent System Technologies, Proceedings of the SecondGerman
Conference, MATES 2004, number 3187 in LNAI, pages 183 – 197. Springer-Verlag, 2004.

16. Sheena R. Judson, Robert B. France, and Doris L. Carver. Specifying Model Transformations
at the Metamodel Level, 2004. http://www.omg.org.

17. M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and Frame-Based
Languages.Journal of ACM, 42(4):741 – 843, 1995.

18. J. Koehler, R. Hauser, S. Sendall, and M. Wahler. Declarative techniques for model-driven
business process integration.IBM Systems Journal, 44(1), 2005.

19. Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. MDA Distilled. Addison-
Wesley, 2004.

20. Aliaksei Novikau, Anna Perini, and Marco Pistore. GraphRewriting for Agent Oriented
Visual Modeling. InIn Proc. of the International Workshop on Graph Transformation and
Visual Modeling Techniques, in ETAPS 2004 Conference, Barcelona, Spain, 2004.

21. Lin Padgham and Michael Winikoff. Prometheus: a methodology for developing intelligent
agents. InAAMAS, pages 37–38, 2002.

22. Anna Perini and Angelo Susi. Developing Tools for Agent-Oriented Visual Modeling. In
G. Lindemann, J. Denzinger, I.J. Timm, and R. Unland, editors,Multiagent System Technolo-
gies, Proceedings of the Second German Conference, MATES 2004, number 3187 in LNAI,
pages 169–182. Springer-Verlag, 2004.

23. Eelco Visser. A survey of strategies in program transformation systems.Electr. Notes Theor.
Comput. Sci., 57, 2001.

24. F. Zambonelli, N. R. Jennings, and M. Wooldridge. Developing Multiagent Systems:
The Gaia Methodology.ACM Transactions on Software Engineering and Methodology,
12(3):317 – 370, July 2003.

