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ABSTRACT 
We propose a collection of architectural styles for multi-agent 
systems motivated by organizational theory and enterprise 
organization structures. One of the styles is discussed in detail and 
formalized using the Formal Tropos specification language. In 
addition, we conduct a comparative study of organizational and 
conventional software architectures using a mobile robot control 
example from the Software Engineering literature. 
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1. INTRODUCTION 
Software architectures describe a software system at a 
macroscopic level in terms of a manageable number of 
subsystems/components/modules inter-related through data and 
control dependencies. Software architectures have been the focus 
of considerable research for the past decade which has resulted in 
a collection of well-understood architectural styles and a 
methodology for evaluating their effectiveness with respect to 
particular software qualities. Examples of styles are pipes-and-
filters, event-based, layered and the like [7]. Examples of 
software qualities include maintainability, modifiability, 
portability etc. [1]. 

We are interested in developing a suitable set of architectural 
styles for multi-agent software systems. Since the fundamental 
concepts of multi-agent systems are intentional and social, rather 
than implementation-oriented, we turn to theories which study 
social structures for motivation and insights. But, what kind of 
social theory should we turn to? There are theories that study 

group psychology, communities and social networks. Such 
theories study social structure as an emergent property of a social 
context. Instead, we are interested in social structures that emerge 
from a design process. For this, we turn to organizational theory 
for guidance. 

The purpose of this paper is to present further work on the 
development of a set of architectural styles for multi-agent 
systems motivated by theories of organizational structures and 
strategic alliances. This paper builds on earlier work reported in 
[7] by offering a formalization of one of the proposed styles, also 
a detailed case study comparing organizational with conventional 
software architectural styles for mobile robot control software. 

This research is conducted within the context of Tropos [2], an 
agent-oriented software development methodology which is 
founded on the concepts of actor and goal, adopted from the i* 
[18] modeling framework. Tropos describes in terms of these 
concepts the organizational environment within which a system 
will eventually operate, as well as the system itself. The proposed 
methodology supersedes traditional development techniques, such 
as structured and object-oriented ones in the sense that it is 
tailored to systems that will operate within an organizational 
context.  
The rest of the paper is organized as follows. Section 2 presents 
samples of organizational styles that have been identified from 
organizational theory literature, while section 3 focuses on one of 
these, the structure-in-5, and offers a formalization using the 
Formal Tropos language. Section 4 presents the mobile robot 
control case study, identifies relevant software qualities for 
mobile robots and reports on earlier work that use conventional 
architectures. It then applies the organizational styles proposed 
here and compares these with some conventional architectures 
with respect to identified qualities. Finally, section 5 discusses 
related work, and section 6 summarizes the results of the paper. 
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2. ORGANIZATIONAL STYLES  
Organizational theory (e.g., [12, 13]) and strategic alliances (e.g., 
[17]) study alternative styles for (business) organizations. These 
styles are used to model the coordination of business stakeholders 
-- individuals, physical or social systems -- to achieve common 
goals. Each organizational style represents a possible way to 
structure an organization in order to meet its strategic objectives.  



The structure of an organization defines the roles of various 
intentional components (actors), their responsibilities, defined in 
terms of tasks and goals they have been assigned, and resources 
they have been allocated. Moreover, an organizational structure 
defines how to coordinate the activities of various actors and how 
they depend on each other. Such dependencies may involve both 
actors of the organization and its environment (e.g., partners, 
competitors, clients, etc.).   

An organizational style defines a class of organizational 
structures, and offers a set of design parameters that can influence 
the division of labor and the coordination mechanisms, thereby 
affecting how the organization functions. Design parameters 
include, among others, task assignments, standardization, 
supervision and control. The organization designer can use these 
parameters in order to deal with both situational and contingency 
factors,  namely organizational states or conditions that are 
associated with  the use of certain design parameters. 
Contingency factors may involve age and size of the organization, 
its technical infrastructure, as well as characteristics of the 
environment, such as stability, complexity, diversity, and 
hostility.   

We propose a macro level catalogue of styles adopting (some of) 
the abstractions offered by organizational theory for designing 
multi-agent architectures. In the following we present briefly two 
of them using i* to describe the general pattern of actor inter-
dependencies governing the styles. For other styles, see [7].  

An i* strategic dependency model [18] is a graph, where each 
node represents an actor (an agent, position, or role) and each link 
between two actors represents a social dependency. Such a 
dependency can represent the fact that one actor depends on 
another for a goal to be fulfilled, a task to be performed, or a 
resource to be made available. The depending actor is called the 
depender and the actor who is depended upon the dependee. The 
object around which the dependency centers (goal, task or 
resource) is called the dependum. The model distinguishes 
between goals, which are well defined, and softgoals, which do 
not have a formal definition and are amenable to a different (more 
qualitative) kind of analysis [3]. 
For instance, in Figure 1, the Technostructure, Middle Agency and 
Support actors depend on the Apex for strategic management. 
Since the goal Strategic Management does not have a precise 
description, it is represented as a softgoal (cloudy shape). The 
Middle Agency depends on the Technostructure and Support 
respectively through goal dependencies Control and Logistics 
represented as oval-shaped icons. The Operational Core is related 
to the Technostructure and Support actors through the 
Standardize task dependency and the Non-operational Service 
resource dependency, respectively. 
The structure-in-5  (Figure 1) is  a typical organizational style. 
At the base level, the  Operational Core takes care of basic tasks 
— the input, processing, output and direct support procedures — 
associated with running the organization. At the top lies the Apex, 
composed of executive actors. Below it, sit the Technostructure, 
Middle Agency and  Support actors, who are in charge of 
control/standardization, management and logistics, respectively. 
The Technostructure component carries out the tasks of 
standardizing the behavior of other components, in addition to 
applying analytical procedures to help the organization adapt to 

its environment. Actors joining the apex to the operational core 
make up the Middle Agency. The Support component assists the 
operational core for non-operational services that are outside the 
basic flow of operational tasks and procedures.  
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Figure 1. Structure-in-5 
The joint venture style (Figure 2) is a more decentralized style 
that involves an agreement between two or more principal 
partners to obtain the benefits derived from operating at a larger 
scale and reusing the experience of the collaboration. Each 
principal partner can manage and control itself on a local 
dimension and interact directly with other principal partners to 
exchange, provide and receive services, data and knowledge. 
However, strategic operation and coordination is delegated to a 
Joint Management actor, who coordinates tasks and manages the 
sharing of knowledge and resources. 
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Figure 2. Joint Venture 

 

3. STRUCTURE-IN-5  
In this section we describe in more detail the structure-in-5 style. 
To specify the structure and formal properties of the style, we use 
Formal Tropos [6] which offers the primitive concepts of i* 
augmented with a rich specification language inspired by KAOS 
[4]. Formal Tropos offers a textual notation for i* models and 



allows one to describe dynamic constraints among the different 
elements of the specification in a first order linear-time temporal 
logic. Moreover, Formal Tropos has a precise semantics which 
makes Tropos specifications amenable to formal analysis.  
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Figure 3. Structure-in-5 in detail 

As Minztberg points out [12], the structure of an organization can 
be defined as the sum total of the way in which its labor is divided 
into distinct tasks, along with the coordination mechanisms used 
to achieve these tasks.  The elements of the structure should be 
selected to achieve an internal consistency as well as a basic 
consistency with the organization’s situation, namely its size, its 
age, the kind of the environment in which it functions, the 
technical systems it uses, and the like.  Minztberg proposes a 
basic structure for organizations (for us, organizational style) 
based on fives subunits, hence its name structure-in-5 (Figure 1). 
This decomposition allows one to apply alternative coordination 
mechanisms (such as mutual adjustment, direct supervision, 
standardization of skills, outputs and work processes) and design 
parameters (such as job specialization, behavior formalization, 
decentralization, unit size, and unit grouping) in order to analyze 
the different behaviors of the organization.  
Basically, this structure defines a hierarchy of roles inside the 
organization, the responsibilities associated with each subunits, 
and inter-dependencies among them. Figure 3 shows a more 
detailed i* strategic dependency model for this style.  
At the base level one finds the Operational Core where the basic 
tasks and operations are carried out. . Basic tasks include securing 
inputs for production, also transforming these into outputs. For 
example, in a manufacturing firm, the purchasing department 
buys raw materials, while the production department transform 
these to products. In addition, outputs need to be distributed and 
support functions need to be performed (e.g., production machine 
maintenance, inventory control and the like.) In the following, we 
focus on the Operational Core specification with respect to the 
performance of basic tasks. The following specification says that 
each basic task must be performed within a precise time period 
that depends on the type of the task.  For instance, providing raw 
materials is a task that must be performed before the production 
process begins. 
 
 

 
Entity BasicTask  
 Attribute constant taskType: TaskType, resourceNeed:  
  Resource, performed: Boolean, timePeriod: Time,  
  output: OutputType 
 
Entity Resource  
 Attribute constant resourceType:ResourceType 
 
Actor OperationalCore 
 Attribute optional resource: Resource 
 Goal PerformBasicTasks 
  Mode achieve  
  Fulfillment definition 
   ∀ task:BasicTask (Perform(self,task)^  
                                                TimePerforming(task)≤ task.time) 
[each basic task in the organization will be performed by the 
Operational Core within the allotted time period for that type of 
task] 
 
The Operational Core is the heart of the organization and depends 
directly on a middle level, which depends in turn on a top level 
(Strategic Apex). At the middle level we have three main actors: 
Middle Agency, Technostructure, and Support. 
Middle Agency is composed of a chain of middle-line managers 
with formal authority that join the Strategic Apex to the 
Operational Core. The managers in the chain are responsible for 
supervision and coordination of the Operational Core activities, 
the allocation of the resources to lower levels, and the formulation 
of tactics consistent with the strategies of the overall organization. 
For instance, when the strategic apex of the Postal Service decides 
to realize a project for e-Postal Services, each regional manager, 
and in turn, each district manager must elaborate the plan as it 
applies to its geographical area.   
In general, Middle Agency performs all the managerial tasks of 
the chief executive, but in the context of managing a particular 
unit. A Middle Agency actor must lead the members of its unit, 
develop a network of liaison contacts, monitor the environment 
and its unit’s activities, allocate tasks and resources within, 
negotiate with outsiders, initiate strategic change, and handle   
exceptions and conflicts. In the following we present a part of the 
specification for the dependencies between Middle Agency and 
Operational Core. In particular, the dependency concerns the 
assignment of a task to the Operational Core and the allocation of 
resources needed to perform tasks.   
Dependency PerformTask 
 Type task 
 Mode achieve 
 Depender MiddleAgency 
 Depndee OperationalCore 
 Attribute constant task: BasicTask 
 Creation  
   condition  ¬ task.performed  
  trigger      JustCreated(task)  
 Fulfillment 
  condition for  depender task.performed 
[a PerformTask dependency is created when there is a task that 
has not been performed, and the dependency is fulfilled when the 
task is performed] 



 
Dependency ResourceAllocation 
 Type task 
 Mode achieve 
 Depender OperationalCore 
 Depndee MiddleAgency  
 Attribute constant  task :BasicTask 
 Creation  
    condition ¬ (task.resourceNeed =depender.resource)   
  trigger      JustCreated(task)  
 Fulfillment 

condition for  depender  
             Assign(task.resourceNeed,depender) 

[a ResourceAllocation dependency is created when there is a 
basic task to be performed and a needed resource has not been 
allocated; the dependency is fulfilled when the resource is 
allocated] 
The Technostructure comprises analysts outside the operating 
work flow, who serve the organization by affecting the work of 
others. The analysts effect certain forms of standardizations that 
reduce the need for direct supervision: work process 
standardization, output standardization, and skills standardization. 
They are also responsible for training managers of the Middle 
Agency and operators of the Operational Core. At middle levels, 
analysts carry out operations research studies of informational 
tasks, and they design on behalf of the Strategic Apex strategic 
planning systems and financial systems to control and monitor 
strategic goals. In the following, we present the specification of 
the Technostructure with respect to an output standardization 
goal. In particular, we specify that for each basic task that the 
Operational Core has to perform, the Technostructure provides a 
specific output standard to which the task output must conformed 
to. The output standard depends on the task type and required 
output properties, such as length, weight, and strength for a 
machined part, or text length, fonts and document structure for a 
document.  
 
Actor Technostructure 
 Goal StandardizeBasicTasks 
  Mode achieve  
  Fulfillment definition 
  ∀ task:BasicTask  (Standardize(task.output)) 
[for each basic task in the organization, the Technostructure will    
standardize the task output]  
 
Entity Standard  
 Attribute constant output:OutputType, 

         parameterers : Parameters  
 
Dependency Standardize 
 Type task 
 Mode achieve 
 Depender OperationalCore 
 Depndee Technostructure  
 Attribute constant  task :BasicTask 
 Creation  
    condition ¬∃ standard: Standard  
     (standard.output=task.output) 
  trigger      JustCreated(task)  

 
Fulfillment 

condition for  depender  
                   ∃  standard: Standard (standard.output=task.output) 
[the Standardize dependency is created when there is no standard 
for a newly created task, and it is fulfilled when the standard has 
been created] 
Support is composed of units which specialize in supporting the 
organization with different services outside its operating work 
flow. This improves control within the organization and reduces 
the uncertainty of having to buy services in the open market. The 
units are self-contained mini-organizations and can support 
various levels of the structure-in-5 hierarchy: public relations 
management and legal counsel for the Apex, industrial relations 
management, logistics, and R&D for the Middle Agency; no-
operational services (e.g., cafeteria and mail-room) for the 
Operational Core.        
At the top lies the Apex composed of strategic executive actors 
responsible for ensuring that the organization serves its mission in 
a effective way. Their major goals include direct supervision 
(e.g., allocate resources to the middle level, resolve conflicts 
within the Middle Agency, and monitor performances), and 
management of the relations with the environment (e.g., inform 
influential external actors of organizational activities, develop 
high-level contact, and negotiating major agreements). They also 
develop organizational strategies consistent with the interpretation 
of the environment. In the following we focus on the Strategic 
Management goal and the respective dependency with Middle 
Agency. In particular, we specify  that for each objective of the 
organization the Apex defines a specific strategy consistent with 
the environment and that the strategies of the Middle Agency 
must be in turn consistent with those of the Apex.     
Actor Apex 
 Goal StrategicManagement 
  Mode achieve  
  Fulfillment definition 
  ∀  obj:OrgObjective  (∃ strategy: Strategy  
        (strategy.objective=obj ^ env-consistent(strategy) ^  
             Apply(self,strategy)) 
[for each objective of  the organization, the Apex applies a 
strategy consistent with the environment]  
Dependency StrategicManagement 
 Type SoftGoal 
 Mode achieve 
 Depender MiddleAegncy 
 Depndee Apex  
 Attribute constant  objective : MiddleAgencyObejective 
 Creation  
    condition ¬∃ objective.strategy 
  trigger      Pursue(objective)  
 Fulfillment 

condition for  depender  
               ∃  ma-strategy: MiddleAgencyStrategy  
   (∀   org -strategy: OrgStrategy   
    (objective.strategy=strategy ^  
               consistent(ma-strategy,org-strategy)) 
[the StrategicManagement dependency is created when there is 
no strategy for a given middle agency objective, and it is fulfilled 



when there exists a middle agency strategy consistent with all the 
strategies of the organization] 
Figure 4 details the Technostructure actor in terms of sub-actors. 
These include Financial Analysts who develop financial systems 
for the Apex, also Management and Technology Instructors who 
train Middle Agency and Operational Core actors respectively. In 
addition, there are Technology Analysts that standardize the 
technology used by the operators and support them in their 
activities. Work-Study analysts control work process 
standardization for the Operational Core, while Planning/Control 
analysts design strategic planning systems for the Apex, control 
the outputs standardization, and perform quality control for the 
Middle Agency. Finally, Personnel analysts control skills 
standardization, and Operations Research analysts carry out 
operations research studies of informational tasks for the Middle 
Agency.      
  

Agency
Middle

Informat.l 
Tasks

Studies

Training
Managers

Control 
Skills

standard.n
Analysts

Personnel

Operations 

Analysts
Research

Control 

standard.n
Output

Quality
Control

Planning/ 

Controlol

Analysts

Control 

Standard.n
Work ProcessAnalysts

Work-Study

Analysts

Technology

Istructors

Technology

Work Process

Standardize

Schedule
Production

Technology

Support

Standardize

Technology

Training

Technology

Financial
Analysts

Operational
Core

Management

Istructors

Financial
Systems

Developm.t

structure

Techno-

Strategic
Planning
Systems
Design

Apex

 
Figure 4. The Technostructure actor 

4. ARCHITECTURES FOR MOBILE 
ROBOT CONTROL 
The problem focuses on embedded real-time systems. Mobile 
robot control systems must deal with external sensors and 
actuators. They must respond in time commensurate with the 
activities of the system in its environment. 
Consider the following activities [14] an office delivery mobile 
robot typically has to accomplish: acquiring the input provided by 
sensors, controlling the motion of its wheels and other moveable 
part, planning its future path. In addition, a number of factors 
complicate the tasks: obstacles may block the robot’s path, sensor 
inputs may be imperfect, the robot may run out of power, 
mechanical limitations may restrict the accuracy with which the 
robot moves, the robot may manipulate hazardous materials, 
unpredictable events may leave little time for responding. 
 

4.1 AGENT SOFTWARE QUALITIES 
With respect to the activities and factors enumerated above, the 
following agent software qualities can be stated for an office 
delivery mobile robot’s architecture [14]. 
SQ1 - Coordinativity. Agents must be able to coordinate with 
other agents to achieve a common purpose or simply their local 
goals. 
A mobile robot has to coordinate the actions it deliberately 
undertakes to achieve its designated objective (e.g., collect a 
sample of objects) with the reactions forced on it by the 
environment (e.g., avoid an obstacle). 
SQ2 - Predictability. Agents can have a high degree of autonomy 
in the way they undertake action and communication in their 
domains. It can be then difficult to predict individual 
characteristics as part of determining the behavior of the system at 
large.  
For a mobile robot, never will all the circumstances of the robot's 
operation be fully predictable. The architecture must provide the 
framework in which the robot can act even when faced with 
incomplete or unreliable information (e.g., contradictory sensor 
readings). 
SQ3 – Failability-Tolerance. A failure of one agent does not 
necessarily imply a failure of the whole system. The system then 
needs to check the completeness and the accuracy of data, 
information and transactions. To prevent system failure, different 
agents can, for instance, implement replicated capabilities.  
The architecture must prevent the failure of the robot’s operation 
and its environment. Local problems like reduced power supply, 
dangerous vapors, or unexpectedly opening doors should not 
necessarily imply the failure of the mission. 
SQ4 - Adaptability. Agents must to adapt to modifications in 
their environment. They may allow changes to the component’s 
communication protocol, dynamic introduction of a new kind of 
component previously unknown or manipulations of existing 
agents.  
Application development for mobile robots frequently requires 
experimentation and reconfiguration. Moreover, changes in robot 
assignments may require regular modification. 

4.2 CLASSICAL STYLES 
For sample classical solutions, due to lack of space, we only 
examine three major conventional architectures - the layered 
architecture [16], control loops [11] and task trees [15] - that have 
been implemented on mobile robots. 
Layered Architecture. A classical layered architecture is 
depicted in Figure 5. At the lowest level, reside the robot control 
routines (motors, joints, ...). Levels 2 and 3 deal with the input 
from the real world. They perform sensor interpretation (the 
analysis of the data from one sensor) and sensor integration (the 
combined analysis of different sensor inputs). Level 4 is 
concerned with maintaining the robot's model of the world.   
Level 5 manages the navigation of the robot. The next two levels, 
6 and 7, schedule and plan the robot's actions. Dealing with 
problems and replanning is also part of level 7 responsibilities. 
The top level provides the user interface and overall supervisory 
functions. 



 
Figure 5. Mobile robot layered architecture [16] 

Control loop. A controller component initiates the robot actions. 
Since mobile robots have responsibilities with respect to their 
operational environment, the controller also monitors the 
consequences of the robot actions adjusting the future plans based 
on the return information (Figure 6). 
 
 

 
 
 
 
 
 

 
Figure 6. Mobile robot control loop architecture [11] 

 
Task Trees. The architecture is based on hierarchies of tasks. 
Parent tasks initiate child tasks. For instance the task Gather 
Object initiates the tasks Go to Position, Grab Object, Lift Object, 
the task Go to Position initiates Move Left and Move Forward and 
so on. The software designer can define temporal dependencies 
between pairs of tasks. An example is: "Grab Object must 
complete before Lift Object starts." These features permit the 
specification of selective concurrency.  
 

4.3 ORGANIZATIONAL STYLES 
We are developing organizational architectures for a miniature 
office delivery robot using the Lego Mindstorms Robotics 
Invention Systems [9] and the Legolog programming platform 
based on the Golog Planner  [10]. Currently, we are testing two 
architectures working with abstractions reminiscent of those 

encountered in the layered architecture: the structure-in-5 and the 
joint-venture. 
Structure-in-5. Figure 7 depicts a structure-in-5 robot 
architecture in i*. The control routines component is the 
operational core managing the robot motors, joints, etc. 
Planning/Scheduling is the technostructure component scheduling 
and planning the robot’s actions. The real world interpreter is the 
support component composed of two sub-components: Real world 
sensor accepts the raw input from multiple sensors and integrates 
it into a coherent interpretation while World Model is concerned 
with maintaining the robot’s model of the world and monitoring 
the environment for landmarks. Navigation is the middle agency 
component, the central intermediate module managing the 
navigation of the robot. Finally, the user-level control is the 
human-oriented strategic apex providing the user interface and 
overall supervisory functions. 
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Figure 7. A  structure-in-5 mobile robot architecture. 
 
Joint Venture. Following the style depicted in Figure 2, the robot 
architecture is organized around a central joint manager assuming 
the overall supervisor/coordinator role for the other agent 
components: a high level path planner, a module that monitors the 
environment for landmarks, a low level path planner, a motor 
controller and a perception subsystem that receives sensors data 
and interprets it. As said in Section 2, each of these agent 
components can also interact directly with each other. 

4.4 EVALUATION 
In this section, we evaluate each of the five styles – control loop, 
layered architecture, task trees, structure-in-5 and joint-venture 
described in Sections 4.2 and 4.3 with respect to the four agent 
software quality attributes identified in Section 4.1. 
Coordinativity. The simplicity of the control loop is a drawback 
when dealing with complex tasks since it gives no leverage for 
decomposing the software into more precise cooperative agent 
components.  
The layered architecture style suggests that services and requests 
are passed between adjacent agent layers. However, information 
exchange is actually not always straight-forward. Commands and 
transactions may often need to skip intermediate layers to 
establish direct communication and coordinate behavior.  

Environment 

Actuators Sensors 



A task tree permits a clear-cut separation of action and reaction. It 
also allows incorporation of concurrent agents in its model that 
can proceed at the same time to. Unfortunately, components have 
little interaction with each other. 
Unlike the previous architectures, the structure-in-5 separates the 
data (sensor control, interpreted results, world model) from 
control (motor control, navigation, scheduling, planning and user-
level control). The architecture improves coordinativity among 
components by differentiating both hierarchies – data is 
implemented by the support component, while control is 
implemented by the operational core, technostructure, middle 
agency and strategic apex – as shown in Figure 7. 
In the joint venture, each partner component interacts via the joint 
manager for strategic decisions. Components indicate their 
interest, and the joint manager returns them such strategic 
information immediately or mediates the request to some other 
partner component.  
Predictability. The control loop only reduces the unpredictable 
through iteration. Actions and reactions eliminate possibilities at 
each turn. Unfortunately, more subtle steps are needed, the 
architecture offers no framework for delegating them to separate 
agent components. 
In the layered architecture, the existence of abstraction layers 
addresses the need for managing unpredictability. What is 
uncertain at the lowest level become clear with the added 
knowledge in the higher layers. 
How task trees address predictability is less clear. If 
imponderables exist, a tentative task tree can be built, to be 
adapted by exception handlers when the assumptions it is based 
on turn out to be erroneous.  
Like in the layered architecture, the existence of different 
abstraction levels in the structure-in-5 addresses the need for 
managing unpredictability. Besides, contrary to the layered 
architecture, higher levels are more abstract than lower levels: 
lower levels only involve resources and task dependencies while 
higher ones propose intentional (goals and softgoals) 
relationships. 
In the joint-venture, the central position and role of the joint 
manager is a means for resolving conflicts and prevent 
unpredictability in the robot’s world view and sensor data 
interpretation. 
Failability-Tolerance. In the control loop, it is supported in the 
sense that its simplicity makes duplication of components and 
behavior easy and reduces the chance of errors creeping into the 
system. 
In the layered architecture, failability-tolerance could be served, 
when the robot architect strives not do something, by 
incorporating many checks and balances at different levels into 
the system. Again the drawback is that control commands and 
transactions may often need to skip intermediate layers to check 
the system behavior. 
In the task trees, exception, wiretapping and monitoring features 
can be integrated to take into account the needs for integrity, 
reliability and completeness of data. 
In the structure-in-5, checks and control mechanisms can be 
integrated at different abstractions levels assuming redundancy 
from different perspectives. Contrary to the layered architecture, 

checks and controls are not restricted to adjacent layers. Besides, 
since the structure-in-5 permits to separate the data and control 
hierarchies, integrity of these two hierarchies can also be verified 
independently.  
The jointure venture, through its joint manager, proposes a central 
message server/controller. Like in the task trees, exception 
mechanism, wiretapping supervising or monitoring can be 
supported by the joint manager to guarantee non-failability, 
reliability and completeness. 
Adaptability. In the control loop, the robot components are 
separated from each other and can be replaced or added 
independently. Unfortunately, precise manipulation has to take 
place inside the components, at a level detail the architecture does 
not show. 
In the layered architecture, the interdependencies between layers 
prevent the addition of new components or deletion of existing 
ones. The fragile relationships between the layers can become 
more difficult to decipher with change. 
Task trees, through the use of implicit invocation, make 
incremental development and replacement of component 
straightforward: it is often sufficient to register new components, 
no existing one feels the impact. 
The structure-in-5 separates independently each typical 
component of the robot architecture isolating them from each 
other and allowing dynamic manipulation. The structure-in-5 is 
restricted to no more than 5 major components then, as in the 
control loop, more refined tuning has to take place inside the 
components. 
In the joint venture, manipulation of partner components can be 
done easily by registering new components to the joint manager. 
However, since partners can also communicate directly with each 
other, existing dependencies should be updated as well. The joint 
manager cannot be removed due to its central position. 
Table 1 summarizes the strengths and weaknesses of the five 
reviewed architectures. 

 Loop Layers Task Tree S-in-5 Joint-Vent. 

Coordinativity - - +- ++ ++ 

Predictability +- + +- + ++ 

Failability-Tol. + +- + + + 

Adaptability +- +- + + +- 

Table 1: Strengths and Weaknesses of Robot Architectures 
The layered architecture gives precise indications as to the 
components expected in a robot. The other two classical 
architectures (control loop and task trees) define no functional 
components and concentrate on the dynamics. The organizational 
styles (Structure-in-5 and Joint Venture) focus on how to organize 
components expected in a robot but also on the intentional and 
social dependencies governing these components. Exhaustive 
evaluations are difficult to be established at that point. But, 
considering preliminary results we can deduce in Table 1, from 
the discussion in the present section, we can argue that the 
Structure-in-5 and the Joint-Venture, since they are patterns 
governed by organizational characteristics, fit better systems and 



applications that need open and cooperative components like the 
mobile robot example. 

5. RELATED WORK 
Other research work on multi-agent systems offers contributions 
on using organization concepts such as agent (or agency), group, 
role, goals, tasks, relationships (or dependencies) to model and 
design system architectures.  
For instance, Aalaadin [5] presents a model based on two level of 
abstraction. The concrete level includes concepts such as agent, 
group and role which are used to describe the actual multi-agent 
system. The methodological level defines all possible roles, valid 
interactions, and structures of groups and organizations. The 
model describes an organization in terms of its structure, and 
independently of the way its agents actually behave. Different 
types of organizational behavioral requirement patterns have been 
defined and formalized using concepts such as groups and roles 
within groups and (inter-group and intra-group) role interactions. 
In our work the concepts Aalaadin uses in the concrete level are 
contained in the concept of actor. An actor can be a single or a 
composite agent, a position covered by an agent, and a role 
covered by one or more agents.  Unlike ours, Aalaadin’s proposal 
does not include goals in the description of an organization. 
Moreover, in Aalaadin’s work these descriptions include details 
(e.g., interaction languages and protocols) which we deal with at a 
later stage of design, typically called detailed design. 
On a different point of comparison, Aalaadin uses rules, 
structures and patterns to capture respectively how the 
organization is expected to work, which kind of structure fits 
given requirements, and whether reuse of patterns is possible. In 
our framework, some rules are captured by social dependencies in 
terms of which one defines the obligations of actors towards other 
actors. Moreover, other rules can be captured during detailed 
design instead of earlier phases, i.e., early and late requirements, 
or architectural design (see [1]).  

6. CONCLUSION 
We are working towards a collection of architectural styles for 
multi-agent systems. In this paper we presented in detail one of 
the organizational styles, the structure-in-5, and conducted a 
comparative study of some organizational styles and conventional 
software architectures on a standard case study (the mobile robot 
control ) selected from the Software Engineering literature.  
Considering preliminary results established in the paper we can 
argue that organizational patterns fit better software and 
applications that need dynamic manipulation and coordination of 
components since they are driven by organizational 
characteristics. 
We are currently working on formalizing other organizational 
styles, also applying them to more examples from the literature, 
for software as well as organizational structures. 
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