
Multi-Agent and Software Architectures:
A Comparative Case Study

Paolo Giorgini

Department of Mathematics
University of Trento
Via Sommarive, 4

I-38050, Trento – Italy
Tel.: +39 0461 882052

pgiorgini@science.unitn.it

Manuel Kolp
IAG School of Management

University of Louvain
1, Place des Doyens

B-1348, Louvain-La-Neuve - Belgium
Tel.: +32 10 47 83 95

kolp@isys.ucl.ac.be

John Mylopoulos
Department of Computer Science

University of Toronto
6 King’s College Road

M5S 3H5, Toronto - Canada
Tel.: +1 416 978 5180

jm@cs.toronto.edu

ABSTRACT
We propose a collection of architectural styles for multi-agent
systems motivated by organizational theory and enterprise
organization structures. One of the styles is discussed in detail and
formalized using the Formal Tropos specification language. In
addition, we conduct a comparative study of organizational and
conventional software architectures using a mobile robot control
example from the Software Engineering literature.

Keywords
Multi-Agent Architectures, Architectural Patterns, Software
Design, Organizational Styles.

1. INTRODUCTION
Software architectures describe a software system at a
macroscopic level in terms of a manageable number of
subsystems/components/modules inter-related through data and
control dependencies. Software architectures have been the focus
of considerable research for the past decade which has resulted in
a collection of well-understood architectural styles and a
methodology for evaluating their effectiveness with respect to
particular software qualities. Examples of styles are pipes-and-
filters, event-based, layered and the like [7]. Examples of
software qualities include maintainability, modifiability,
portability etc. [1].

We are interested in developing a suitable set of architectural
styles for multi-agent software systems. Since the fundamental
concepts of multi-agent systems are intentional and social, rather
than implementation-oriented, we turn to theories which study
social structures for motivation and insights. But, what kind of
social theory should we turn to? There are theories that study

group psychology, communities and social networks. Such
theories study social structure as an emergent property of a social
context. Instead, we are interested in social structures that emerge
from a design process. For this, we turn to organizational theory
for guidance.

The purpose of this paper is to present further work on the
development of a set of architectural styles for multi-agent
systems motivated by theories of organizational structures and
strategic alliances. This paper builds on earlier work reported in
[7] by offering a formalization of one of the proposed styles, also
a detailed case study comparing organizational with conventional
software architectural styles for mobile robot control software.

This research is conducted within the context of Tropos [2], an
agent-oriented software development methodology which is
founded on the concepts of actor and goal, adopted from the i*
[18] modeling framework. Tropos describes in terms of these
concepts the organizational environment within which a system
will eventually operate, as well as the system itself. The proposed
methodology supersedes traditional development techniques, such
as structured and object-oriented ones in the sense that it is
tailored to systems that will operate within an organizational
context.
The rest of the paper is organized as follows. Section 2 presents
samples of organizational styles that have been identified from
organizational theory literature, while section 3 focuses on one of
these, the structure-in-5, and offers a formalization using the
Formal Tropos language. Section 4 presents the mobile robot
control case study, identifies relevant software qualities for
mobile robots and reports on earlier work that use conventional
architectures. It then applies the organizational styles proposed
here and compares these with some conventional architectures
with respect to identified qualities. Finally, section 5 discusses
related work, and section 6 summarizes the results of the paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS ’02, May 1-2, 2002, Bologna, Italy.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

2. ORGANIZATIONAL STYLES
Organizational theory (e.g., [12, 13]) and strategic alliances (e.g.,
[17]) study alternative styles for (business) organizations. These
styles are used to model the coordination of business stakeholders
-- individuals, physical or social systems -- to achieve common
goals. Each organizational style represents a possible way to
structure an organization in order to meet its strategic objectives.

The structure of an organization defines the roles of various
intentional components (actors), their responsibilities, defined in
terms of tasks and goals they have been assigned, and resources
they have been allocated. Moreover, an organizational structure
defines how to coordinate the activities of various actors and how
they depend on each other. Such dependencies may involve both
actors of the organization and its environment (e.g., partners,
competitors, clients, etc.).

An organizational style defines a class of organizational
structures, and offers a set of design parameters that can influence
the division of labor and the coordination mechanisms, thereby
affecting how the organization functions. Design parameters
include, among others, task assignments, standardization,
supervision and control. The organization designer can use these
parameters in order to deal with both situational and contingency
factors, namely organizational states or conditions that are
associated with the use of certain design parameters.
Contingency factors may involve age and size of the organization,
its technical infrastructure, as well as characteristics of the
environment, such as stability, complexity, diversity, and
hostility.

We propose a macro level catalogue of styles adopting (some of)
the abstractions offered by organizational theory for designing
multi-agent architectures. In the following we present briefly two
of them using i* to describe the general pattern of actor inter-
dependencies governing the styles. For other styles, see [7].

An i* strategic dependency model [18] is a graph, where each
node represents an actor (an agent, position, or role) and each link
between two actors represents a social dependency. Such a
dependency can represent the fact that one actor depends on
another for a goal to be fulfilled, a task to be performed, or a
resource to be made available. The depending actor is called the
depender and the actor who is depended upon the dependee. The
object around which the dependency centers (goal, task or
resource) is called the dependum. The model distinguishes
between goals, which are well defined, and softgoals, which do
not have a formal definition and are amenable to a different (more
qualitative) kind of analysis [3].
For instance, in Figure 1, the Technostructure, Middle Agency and
Support actors depend on the Apex for strategic management.
Since the goal Strategic Management does not have a precise
description, it is represented as a softgoal (cloudy shape). The
Middle Agency depends on the Technostructure and Support
respectively through goal dependencies Control and Logistics
represented as oval-shaped icons. The Operational Core is related
to the Technostructure and Support actors through the
Standardize task dependency and the Non-operational Service
resource dependency, respectively.
The structure-in-5 (Figure 1) is a typical organizational style.
At the base level, the Operational Core takes care of basic tasks
— the input, processing, output and direct support procedures —
associated with running the organization. At the top lies the Apex,
composed of executive actors. Below it, sit the Technostructure,
Middle Agency and Support actors, who are in charge of
control/standardization, management and logistics, respectively.
The Technostructure component carries out the tasks of
standardizing the behavior of other components, in addition to
applying analytical procedures to help the organization adapt to

its environment. Actors joining the apex to the operational core
make up the Middle Agency. The Support component assists the
operational core for non-operational services that are outside the
basic flow of operational tasks and procedures.

Apex

Standardize

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non−operational

Logistics SupportControl
Structure
Techno−

Figure 1. Structure-in-5
The joint venture style (Figure 2) is a more decentralized style
that involves an agreement between two or more principal
partners to obtain the benefits derived from operating at a larger
scale and reusing the experience of the collaboration. Each
principal partner can manage and control itself on a local
dimension and interact directly with other principal partners to
exchange, provide and receive services, data and knowledge.
However, strategic operation and coordination is delegated to a
Joint Management actor, who coordinates tasks and manages the
sharing of knowledge and resources.

Resource
Exchange

Contractual
Agreement

Support

Business
Processes

Strategic
Decision
Making

Corporate

Operational

Coordination

Management
Joint

Activities

Knowledge
Sharing

Partner_1 Partner_2

Partner_3 Partner_n

Figure 2. Joint Venture

3. STRUCTURE-IN-5
In this section we describe in more detail the structure-in-5 style.
To specify the structure and formal properties of the style, we use
Formal Tropos [6] which offers the primitive concepts of i*
augmented with a rich specification language inspired by KAOS
[4]. Formal Tropos offers a textual notation for i* models and

allows one to describe dynamic constraints among the different
elements of the specification in a first order linear-time temporal
logic. Moreover, Formal Tropos has a precise semantics which
makes Tropos specifications amenable to formal analysis.

Operational
Core

Allocation
Resources

structure

Techno−

Allocation
Resources

Strategic
Planning
Systems
Design

Agency
Middle

Control

Training
Managers

Informat.l
Tasks

Studies

Logistic
Services

Support

Industrial
Relations

Management

Standardize

Training

Technology Non−operational
Services

Counsel
Legal

Management
Relations

Public

Allocation
Resources

Financial

Develop.t
Systems

Allocation
Resources

Resolution
Conflics

R&D

Strategic
Management

Apex

Operational
Supervise

Core

Perform

Task

Strategy
Operational

Elaborate

Coordination

Figure 3. Structure-in-5 in detail

As Minztberg points out [12], the structure of an organization can
be defined as the sum total of the way in which its labor is divided
into distinct tasks, along with the coordination mechanisms used
to achieve these tasks. The elements of the structure should be
selected to achieve an internal consistency as well as a basic
consistency with the organization’s situation, namely its size, its
age, the kind of the environment in which it functions, the
technical systems it uses, and the like. Minztberg proposes a
basic structure for organizations (for us, organizational style)
based on fives subunits, hence its name structure-in-5 (Figure 1).
This decomposition allows one to apply alternative coordination
mechanisms (such as mutual adjustment, direct supervision,
standardization of skills, outputs and work processes) and design
parameters (such as job specialization, behavior formalization,
decentralization, unit size, and unit grouping) in order to analyze
the different behaviors of the organization.
Basically, this structure defines a hierarchy of roles inside the
organization, the responsibilities associated with each subunits,
and inter-dependencies among them. Figure 3 shows a more
detailed i* strategic dependency model for this style.
At the base level one finds the Operational Core where the basic
tasks and operations are carried out. . Basic tasks include securing
inputs for production, also transforming these into outputs. For
example, in a manufacturing firm, the purchasing department
buys raw materials, while the production department transform
these to products. In addition, outputs need to be distributed and
support functions need to be performed (e.g., production machine
maintenance, inventory control and the like.) In the following, we
focus on the Operational Core specification with respect to the
performance of basic tasks. The following specification says that
each basic task must be performed within a precise time period
that depends on the type of the task. For instance, providing raw
materials is a task that must be performed before the production
process begins.

Entity BasicTask
 Attribute constant taskType: TaskType, resourceNeed:
 Resource, performed: Boolean, timePeriod: Time,
 output: OutputType

Entity Resource
 Attribute constant resourceType:ResourceType

Actor OperationalCore
 Attribute optional resource: Resource
 Goal PerformBasicTasks
 Mode achieve
 Fulfillment definition
 ∀ task:BasicTask (Perform(self,task)^
 TimePerforming(task)≤ task.time)
[each basic task in the organization will be performed by the
Operational Core within the allotted time period for that type of
task]

The Operational Core is the heart of the organization and depends
directly on a middle level, which depends in turn on a top level
(Strategic Apex). At the middle level we have three main actors:
Middle Agency, Technostructure, and Support.
Middle Agency is composed of a chain of middle-line managers
with formal authority that join the Strategic Apex to the
Operational Core. The managers in the chain are responsible for
supervision and coordination of the Operational Core activities,
the allocation of the resources to lower levels, and the formulation
of tactics consistent with the strategies of the overall organization.
For instance, when the strategic apex of the Postal Service decides
to realize a project for e-Postal Services, each regional manager,
and in turn, each district manager must elaborate the plan as it
applies to its geographical area.
In general, Middle Agency performs all the managerial tasks of
the chief executive, but in the context of managing a particular
unit. A Middle Agency actor must lead the members of its unit,
develop a network of liaison contacts, monitor the environment
and its unit’s activities, allocate tasks and resources within,
negotiate with outsiders, initiate strategic change, and handle
exceptions and conflicts. In the following we present a part of the
specification for the dependencies between Middle Agency and
Operational Core. In particular, the dependency concerns the
assignment of a task to the Operational Core and the allocation of
resources needed to perform tasks.
Dependency PerformTask
 Type task
 Mode achieve
 Depender MiddleAgency
 Depndee OperationalCore
 Attribute constant task: BasicTask
 Creation
 condition ¬ task.performed
 trigger JustCreated(task)
 Fulfillment
 condition for depender task.performed
[a PerformTask dependency is created when there is a task that
has not been performed, and the dependency is fulfilled when the
task is performed]

Dependency ResourceAllocation
 Type task
 Mode achieve
 Depender OperationalCore
 Depndee MiddleAgency
 Attribute constant task :BasicTask
 Creation
 condition ¬ (task.resourceNeed =depender.resource)
 trigger JustCreated(task)
 Fulfillment

condition for depender
 Assign(task.resourceNeed,depender)

[a ResourceAllocation dependency is created when there is a
basic task to be performed and a needed resource has not been
allocated; the dependency is fulfilled when the resource is
allocated]
The Technostructure comprises analysts outside the operating
work flow, who serve the organization by affecting the work of
others. The analysts effect certain forms of standardizations that
reduce the need for direct supervision: work process
standardization, output standardization, and skills standardization.
They are also responsible for training managers of the Middle
Agency and operators of the Operational Core. At middle levels,
analysts carry out operations research studies of informational
tasks, and they design on behalf of the Strategic Apex strategic
planning systems and financial systems to control and monitor
strategic goals. In the following, we present the specification of
the Technostructure with respect to an output standardization
goal. In particular, we specify that for each basic task that the
Operational Core has to perform, the Technostructure provides a
specific output standard to which the task output must conformed
to. The output standard depends on the task type and required
output properties, such as length, weight, and strength for a
machined part, or text length, fonts and document structure for a
document.

Actor Technostructure
 Goal StandardizeBasicTasks
 Mode achieve
 Fulfillment definition
 ∀ task:BasicTask (Standardize(task.output))
[for each basic task in the organization, the Technostructure will
standardize the task output]

Entity Standard
 Attribute constant output:OutputType,

 parameterers : Parameters

Dependency Standardize
 Type task
 Mode achieve
 Depender OperationalCore
 Depndee Technostructure
 Attribute constant task :BasicTask
 Creation
 condition ¬∃ standard: Standard
 (standard.output=task.output)
 trigger JustCreated(task)

Fulfillment

condition for depender
 ∃ standard: Standard (standard.output=task.output)
[the Standardize dependency is created when there is no standard
for a newly created task, and it is fulfilled when the standard has
been created]
Support is composed of units which specialize in supporting the
organization with different services outside its operating work
flow. This improves control within the organization and reduces
the uncertainty of having to buy services in the open market. The
units are self-contained mini-organizations and can support
various levels of the structure-in-5 hierarchy: public relations
management and legal counsel for the Apex, industrial relations
management, logistics, and R&D for the Middle Agency; no-
operational services (e.g., cafeteria and mail-room) for the
Operational Core.
At the top lies the Apex composed of strategic executive actors
responsible for ensuring that the organization serves its mission in
a effective way. Their major goals include direct supervision
(e.g., allocate resources to the middle level, resolve conflicts
within the Middle Agency, and monitor performances), and
management of the relations with the environment (e.g., inform
influential external actors of organizational activities, develop
high-level contact, and negotiating major agreements). They also
develop organizational strategies consistent with the interpretation
of the environment. In the following we focus on the Strategic
Management goal and the respective dependency with Middle
Agency. In particular, we specify that for each objective of the
organization the Apex defines a specific strategy consistent with
the environment and that the strategies of the Middle Agency
must be in turn consistent with those of the Apex.
Actor Apex
 Goal StrategicManagement
 Mode achieve
 Fulfillment definition
 ∀ obj:OrgObjective (∃ strategy: Strategy
 (strategy.objective=obj ^ env-consistent(strategy) ^
 Apply(self,strategy))
[for each objective of the organization, the Apex applies a
strategy consistent with the environment]
Dependency StrategicManagement
 Type SoftGoal
 Mode achieve
 Depender MiddleAegncy
 Depndee Apex
 Attribute constant objective : MiddleAgencyObejective
 Creation
 condition ¬∃ objective.strategy
 trigger Pursue(objective)
 Fulfillment

condition for depender
 ∃ ma-strategy: MiddleAgencyStrategy
 (∀ org -strategy: OrgStrategy
 (objective.strategy=strategy ^
 consistent(ma-strategy,org-strategy))
[the StrategicManagement dependency is created when there is
no strategy for a given middle agency objective, and it is fulfilled

when there exists a middle agency strategy consistent with all the
strategies of the organization]
Figure 4 details the Technostructure actor in terms of sub-actors.
These include Financial Analysts who develop financial systems
for the Apex, also Management and Technology Instructors who
train Middle Agency and Operational Core actors respectively. In
addition, there are Technology Analysts that standardize the
technology used by the operators and support them in their
activities. Work-Study analysts control work process
standardization for the Operational Core, while Planning/Control
analysts design strategic planning systems for the Apex, control
the outputs standardization, and perform quality control for the
Middle Agency. Finally, Personnel analysts control skills
standardization, and Operations Research analysts carry out
operations research studies of informational tasks for the Middle
Agency.

Agency
Middle

Informat.l
Tasks

Studies

Training
Managers

Control
Skills

standard.n
Analysts

Personnel

Operations

Analysts
Research

Control

standard.n
Output

Quality
Control

Planning/

Controlol

Analysts

Control

Standard.n
Work ProcessAnalysts

Work-Study

Analysts

Technology

Istructors

Technology

Work Process

Standardize

Schedule
Production

Technology

Support

Standardize

Technology

Training

Technology

Financial
Analysts

Operational
Core

Management

Istructors

Financial
Systems

Developm.t

structure

Techno-

Strategic
Planning
Systems
Design

Apex

Figure 4. The Technostructure actor

4. ARCHITECTURES FOR MOBILE
ROBOT CONTROL
The problem focuses on embedded real-time systems. Mobile
robot control systems must deal with external sensors and
actuators. They must respond in time commensurate with the
activities of the system in its environment.
Consider the following activities [14] an office delivery mobile
robot typically has to accomplish: acquiring the input provided by
sensors, controlling the motion of its wheels and other moveable
part, planning its future path. In addition, a number of factors
complicate the tasks: obstacles may block the robot’s path, sensor
inputs may be imperfect, the robot may run out of power,
mechanical limitations may restrict the accuracy with which the
robot moves, the robot may manipulate hazardous materials,
unpredictable events may leave little time for responding.

4.1 AGENT SOFTWARE QUALITIES
With respect to the activities and factors enumerated above, the
following agent software qualities can be stated for an office
delivery mobile robot’s architecture [14].
SQ1 - Coordinativity. Agents must be able to coordinate with
other agents to achieve a common purpose or simply their local
goals.
A mobile robot has to coordinate the actions it deliberately
undertakes to achieve its designated objective (e.g., collect a
sample of objects) with the reactions forced on it by the
environment (e.g., avoid an obstacle).
SQ2 - Predictability. Agents can have a high degree of autonomy
in the way they undertake action and communication in their
domains. It can be then difficult to predict individual
characteristics as part of determining the behavior of the system at
large.
For a mobile robot, never will all the circumstances of the robot's
operation be fully predictable. The architecture must provide the
framework in which the robot can act even when faced with
incomplete or unreliable information (e.g., contradictory sensor
readings).
SQ3 – Failability-Tolerance. A failure of one agent does not
necessarily imply a failure of the whole system. The system then
needs to check the completeness and the accuracy of data,
information and transactions. To prevent system failure, different
agents can, for instance, implement replicated capabilities.
The architecture must prevent the failure of the robot’s operation
and its environment. Local problems like reduced power supply,
dangerous vapors, or unexpectedly opening doors should not
necessarily imply the failure of the mission.
SQ4 - Adaptability. Agents must to adapt to modifications in
their environment. They may allow changes to the component’s
communication protocol, dynamic introduction of a new kind of
component previously unknown or manipulations of existing
agents.
Application development for mobile robots frequently requires
experimentation and reconfiguration. Moreover, changes in robot
assignments may require regular modification.

4.2 CLASSICAL STYLES
For sample classical solutions, due to lack of space, we only
examine three major conventional architectures - the layered
architecture [16], control loops [11] and task trees [15] - that have
been implemented on mobile robots.
Layered Architecture. A classical layered architecture is
depicted in Figure 5. At the lowest level, reside the robot control
routines (motors, joints, ...). Levels 2 and 3 deal with the input
from the real world. They perform sensor interpretation (the
analysis of the data from one sensor) and sensor integration (the
combined analysis of different sensor inputs). Level 4 is
concerned with maintaining the robot's model of the world.
Level 5 manages the navigation of the robot. The next two levels,
6 and 7, schedule and plan the robot's actions. Dealing with
problems and replanning is also part of level 7 responsibilities.
The top level provides the user interface and overall supervisory
functions.

Figure 5. Mobile robot layered architecture [16]

Control loop. A controller component initiates the robot actions.
Since mobile robots have responsibilities with respect to their
operational environment, the controller also monitors the
consequences of the robot actions adjusting the future plans based
on the return information (Figure 6).

Figure 6. Mobile robot control loop architecture [11]

Task Trees. The architecture is based on hierarchies of tasks.
Parent tasks initiate child tasks. For instance the task Gather
Object initiates the tasks Go to Position, Grab Object, Lift Object,
the task Go to Position initiates Move Left and Move Forward and
so on. The software designer can define temporal dependencies
between pairs of tasks. An example is: "Grab Object must
complete before Lift Object starts." These features permit the
specification of selective concurrency.

4.3 ORGANIZATIONAL STYLES
We are developing organizational architectures for a miniature
office delivery robot using the Lego Mindstorms Robotics
Invention Systems [9] and the Legolog programming platform
based on the Golog Planner [10]. Currently, we are testing two
architectures working with abstractions reminiscent of those

encountered in the layered architecture: the structure-in-5 and the
joint-venture.
Structure-in-5. Figure 7 depicts a structure-in-5 robot
architecture in i*. The control routines component is the
operational core managing the robot motors, joints, etc.
Planning/Scheduling is the technostructure component scheduling
and planning the robot’s actions. The real world interpreter is the
support component composed of two sub-components: Real world
sensor accepts the raw input from multiple sensors and integrates
it into a coherent interpretation while World Model is concerned
with maintaining the robot’s model of the world and monitoring
the environment for landmarks. Navigation is the middle agency
component, the central intermediate module managing the
navigation of the robot. Finally, the user-level control is the
human-oriented strategic apex providing the user interface and
overall supervisory functions.

Planning/
Scheduling

Coordination

Control
Routines

User-level
Control

Navigation

Feedback

Real world
Sensor

World

World Inputs
Handle Real

Real World
Interpretor

DirectPilot

Real-time
Navigation

Adjustments

Human
Control

Model

Synchronize

Assignation
Mission

Mission
Configuration

Parameters

Controller

Active Robot Components

Figure 7. A structure-in-5 mobile robot architecture.

Joint Venture. Following the style depicted in Figure 2, the robot
architecture is organized around a central joint manager assuming
the overall supervisor/coordinator role for the other agent
components: a high level path planner, a module that monitors the
environment for landmarks, a low level path planner, a motor
controller and a perception subsystem that receives sensors data
and interprets it. As said in Section 2, each of these agent
components can also interact directly with each other.

4.4 EVALUATION
In this section, we evaluate each of the five styles – control loop,
layered architecture, task trees, structure-in-5 and joint-venture
described in Sections 4.2 and 4.3 with respect to the four agent
software quality attributes identified in Section 4.1.
Coordinativity. The simplicity of the control loop is a drawback
when dealing with complex tasks since it gives no leverage for
decomposing the software into more precise cooperative agent
components.
The layered architecture style suggests that services and requests
are passed between adjacent agent layers. However, information
exchange is actually not always straight-forward. Commands and
transactions may often need to skip intermediate layers to
establish direct communication and coordinate behavior.

Environment

Actuators Sensors

A task tree permits a clear-cut separation of action and reaction. It
also allows incorporation of concurrent agents in its model that
can proceed at the same time to. Unfortunately, components have
little interaction with each other.
Unlike the previous architectures, the structure-in-5 separates the
data (sensor control, interpreted results, world model) from
control (motor control, navigation, scheduling, planning and user-
level control). The architecture improves coordinativity among
components by differentiating both hierarchies – data is
implemented by the support component, while control is
implemented by the operational core, technostructure, middle
agency and strategic apex – as shown in Figure 7.
In the joint venture, each partner component interacts via the joint
manager for strategic decisions. Components indicate their
interest, and the joint manager returns them such strategic
information immediately or mediates the request to some other
partner component.
Predictability. The control loop only reduces the unpredictable
through iteration. Actions and reactions eliminate possibilities at
each turn. Unfortunately, more subtle steps are needed, the
architecture offers no framework for delegating them to separate
agent components.
In the layered architecture, the existence of abstraction layers
addresses the need for managing unpredictability. What is
uncertain at the lowest level become clear with the added
knowledge in the higher layers.
How task trees address predictability is less clear. If
imponderables exist, a tentative task tree can be built, to be
adapted by exception handlers when the assumptions it is based
on turn out to be erroneous.
Like in the layered architecture, the existence of different
abstraction levels in the structure-in-5 addresses the need for
managing unpredictability. Besides, contrary to the layered
architecture, higher levels are more abstract than lower levels:
lower levels only involve resources and task dependencies while
higher ones propose intentional (goals and softgoals)
relationships.
In the joint-venture, the central position and role of the joint
manager is a means for resolving conflicts and prevent
unpredictability in the robot’s world view and sensor data
interpretation.
Failability-Tolerance. In the control loop, it is supported in the
sense that its simplicity makes duplication of components and
behavior easy and reduces the chance of errors creeping into the
system.
In the layered architecture, failability-tolerance could be served,
when the robot architect strives not do something, by
incorporating many checks and balances at different levels into
the system. Again the drawback is that control commands and
transactions may often need to skip intermediate layers to check
the system behavior.
In the task trees, exception, wiretapping and monitoring features
can be integrated to take into account the needs for integrity,
reliability and completeness of data.
In the structure-in-5, checks and control mechanisms can be
integrated at different abstractions levels assuming redundancy
from different perspectives. Contrary to the layered architecture,

checks and controls are not restricted to adjacent layers. Besides,
since the structure-in-5 permits to separate the data and control
hierarchies, integrity of these two hierarchies can also be verified
independently.
The jointure venture, through its joint manager, proposes a central
message server/controller. Like in the task trees, exception
mechanism, wiretapping supervising or monitoring can be
supported by the joint manager to guarantee non-failability,
reliability and completeness.
Adaptability. In the control loop, the robot components are
separated from each other and can be replaced or added
independently. Unfortunately, precise manipulation has to take
place inside the components, at a level detail the architecture does
not show.
In the layered architecture, the interdependencies between layers
prevent the addition of new components or deletion of existing
ones. The fragile relationships between the layers can become
more difficult to decipher with change.
Task trees, through the use of implicit invocation, make
incremental development and replacement of component
straightforward: it is often sufficient to register new components,
no existing one feels the impact.
The structure-in-5 separates independently each typical
component of the robot architecture isolating them from each
other and allowing dynamic manipulation. The structure-in-5 is
restricted to no more than 5 major components then, as in the
control loop, more refined tuning has to take place inside the
components.
In the joint venture, manipulation of partner components can be
done easily by registering new components to the joint manager.
However, since partners can also communicate directly with each
other, existing dependencies should be updated as well. The joint
manager cannot be removed due to its central position.
Table 1 summarizes the strengths and weaknesses of the five
reviewed architectures.

 Loop Layers Task Tree S-in-5 Joint-Vent.

Coordinativity - - +- ++ ++

Predictability +- + +- + ++

Failability-Tol. + +- + + +

Adaptability +- +- + + +-

Table 1: Strengths and Weaknesses of Robot Architectures
The layered architecture gives precise indications as to the
components expected in a robot. The other two classical
architectures (control loop and task trees) define no functional
components and concentrate on the dynamics. The organizational
styles (Structure-in-5 and Joint Venture) focus on how to organize
components expected in a robot but also on the intentional and
social dependencies governing these components. Exhaustive
evaluations are difficult to be established at that point. But,
considering preliminary results we can deduce in Table 1, from
the discussion in the present section, we can argue that the
Structure-in-5 and the Joint-Venture, since they are patterns
governed by organizational characteristics, fit better systems and

applications that need open and cooperative components like the
mobile robot example.

5. RELATED WORK
Other research work on multi-agent systems offers contributions
on using organization concepts such as agent (or agency), group,
role, goals, tasks, relationships (or dependencies) to model and
design system architectures.
For instance, Aalaadin [5] presents a model based on two level of
abstraction. The concrete level includes concepts such as agent,
group and role which are used to describe the actual multi-agent
system. The methodological level defines all possible roles, valid
interactions, and structures of groups and organizations. The
model describes an organization in terms of its structure, and
independently of the way its agents actually behave. Different
types of organizational behavioral requirement patterns have been
defined and formalized using concepts such as groups and roles
within groups and (inter-group and intra-group) role interactions.
In our work the concepts Aalaadin uses in the concrete level are
contained in the concept of actor. An actor can be a single or a
composite agent, a position covered by an agent, and a role
covered by one or more agents. Unlike ours, Aalaadin’s proposal
does not include goals in the description of an organization.
Moreover, in Aalaadin’s work these descriptions include details
(e.g., interaction languages and protocols) which we deal with at a
later stage of design, typically called detailed design.
On a different point of comparison, Aalaadin uses rules,
structures and patterns to capture respectively how the
organization is expected to work, which kind of structure fits
given requirements, and whether reuse of patterns is possible. In
our framework, some rules are captured by social dependencies in
terms of which one defines the obligations of actors towards other
actors. Moreover, other rules can be captured during detailed
design instead of earlier phases, i.e., early and late requirements,
or architectural design (see [1]).

6. CONCLUSION
We are working towards a collection of architectural styles for
multi-agent systems. In this paper we presented in detail one of
the organizational styles, the structure-in-5, and conducted a
comparative study of some organizational styles and conventional
software architectures on a standard case study (the mobile robot
control) selected from the Software Engineering literature.
Considering preliminary results established in the paper we can
argue that organizational patterns fit better software and
applications that need dynamic manipulation and coordination of
components since they are driven by organizational
characteristics.
We are currently working on formalizing other organizational
styles, also applying them to more examples from the literature,
for software as well as organizational structures.

7. REFERENCES
[1] Bass, L.; Clements, P.; & Kazman, R. Software Architecture

in Practice, Reading, Addison-Wesley, 1998.

[2] Castro, J., Kolp, M., and Mylopoulos, J. “A Requirements-
Driven Development Methodology”. In Proc. of the 13th Int.

Conf. on Advanced Information Systems Engineering,
CAiSE’01, Interlaken, Switzerland, June 2001.

[3] Chung, L. K., Nixon, B. A., Yu, E. and Mylopoulos, J.
Non-Functional Requirements in Software Engineering,
Kluwer Publishing, 2000.

[4] Dardenne, A., van Lamsweerde, A. and Fickas, S. “Goal–
directed Requirements Acquisition”, Science of Computer
Programming, 20, 1993, pp. 3-50.

[5] Ferber, J. and Gutknecht, O. “A meta-model for the anlysis
and design of organizations in multi-agent systems”. In Proc.
of the 3rd Int. Conf. on MultiAgent Systems, ICMAS’98.
Paris, France, 1998, pp. 128–135.

[6] Fuxman, A., Pistore M., Mylopoulos, J., and Traverso, P.
“Model Checking Early Requirements Specification in
Tropos”. In Proc. of the 5th Int. Symposium on Requirements
Engineering, RE’01, Toronto, Canada, Aug. 2001.

[7] Garlan D. and Shaw, M. “An Introduction to Software
Architectures”, in Advances in Software Engineering and
Knowledge Engineering, volume I, World Scientific, 1993.

[8] Kolp, M., Giorgini P., and Mylopoulos J. “An Organizational
Perspective on Multi-agent Architectures”. In Proc. of the
Eighth International Workshop on Agent Theories,
architectures, and languages, ATAL’01, Seattle, USA,
August 1-3, 2001.

[9] Lego Mindstorms Robotics Invention System. At
http://mindstorms.lego.com, 2001.

[10] Legolog. At http:// www.cs.toronto.edu/cogrobo/Legolog,
2001.

[11] Lozano-Perez, T., Preface to Autonomous Robot Vehicles.
Cox, L.J. and Wilfong G.T., eds, Springer Verlag, 1990.

[12] Mintzberg, H. Structure in Fives: Designing Effective
Organizations, Prentice-Hall, 1992.

[13] Scott, W. R. Organizations: Rational, Natural, and Open
Systems, Prentice Hall, 1998.

[14] Shaw, M., and Garlan, D. Software Architecture:
Perspectives on an Emerging Discipline, Upper Saddle
River, N.J., Prentice Hall, 1996.

[15] Simmons, R. “Concurrent Planning and Execution for
Autonomous Robots”. In IEEE Control Systems, n˚ 1, 1992.
pp. 49-56.

[16] Simmons, R., Goodwin, R., Haigh, K., Koenig, S., and
O'Sullivan, J. “A modular architecture for office delivery
robots”. In Proc. of the 1st Int. Conf. on Autonomous Agents,
Agents ’97, Marina del Rey. CA, Feb 1997, pp.245 - 252.

[17] Yoshino, M.Y., and Rangan, U. S. Strategic Alliances: An
Entrepreneurial Approach to Globalization, Harvard
Business School Press, 1995.

[18] Yu, E. Modelling Strategic Relationships for Process
Reengineering, Ph.D. thesis, Department of Computer
Science, University of Toronto, Canada, 1995.

	INTRODUCTION
	ORGANIZATIONAL STYLES
	STRUCTURE-IN-5
	ARCHITECTURES FOR MOBILE ROBOT CONTROL
	AGENT SOFTWARE QUALITIES
	CLASSICAL STYLES
	ORGANIZATIONAL STYLES
	EVALUATION

	RELATED WORK
	CONCLUSION
	REFERENCES

