
A Design Framework for Generating
BDI-Agents from Goal Models

Loris Penserini, Anna Perini, Angelo Susi, Mirko Morandini, John Mylopoulos
ITC-IRST

Via Sommarive 18,
I-38050, Trento - Povo, Italy

{penserini,perini,susi,morandini}@itc.it, jm@cs.toronto.edu

ABSTRACT
We define a tool-supported design framework that allows to specify
an agent goal model and to automatically generate fragmentsof a
BDI agent from it. We devise the design process as a transforma-
tion process from platform-independent design models to platform-
specific models and then to code. The design framework is demon-
strated by referring to theTroposmethodology and to the JADE/Jadex
platform. In this short paper, key steps in the process are illustrated
through an example.

General Terms
Design

Keywords
Agent-Oriented Software Engineering

1. INTRODUCTION
Goal models have been used in distributed Artificial Intelligence

as a means for capturing agent intentions and guiding agent coor-
dination [4, 6, 7]. These goal models consist of goal graphs whose
nodes represent goals. Goals can be related through AND/OR re-
lationships that represent the hierarchical decomposition of a goal
into simpler goals. In addition, goals can be related through differ-
ent kinds of inter-dependency links that represent conflicts between
goals, or resources needed for the fulfillment of inter-dependent
goals. In this context, goal models guide software agent choices
(behavior) at run time. Similar goal models, (GM from now on)
have been adopted, by so calledgoal-orientedapproaches to soft-
ware (requirements) engineering [1, 3, 10]. In this context, a GM
allows a designer to represent and reason about stakeholdergoals
in a given application domain in order to derive requirements for a
system-to-be. According to these approaches,GMs provide analy-
sis and design artifacts during system development.GMs can also
give support in exploring and evaluating alternative solutions which
can meet stakeholders expectations (goals) and in detecting con-
flicts that may arise from multiple viewpoints. Some approaches

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

adopt a formal notation which enables model-checking verification
of the resulting models [3, 1].

Taking advantage of the above results, we propose to useGMs
at different abstraction levels in engineering Multi-Agent Systems
(MAS), namely at design- and at run-time. AGM at design time
represents the purposes behind a MAS, making the dependencies
between system agent goals and stakeholder goals explicit.Knowl-
edge level concepts such as those ofagent, who can be social, orga-
nizational, human or software,goals, andsocial dependenciesfor
defining the obligations of agents to other agents are used atthis
level. Moreover, a view on the system behavior can be obtained by
querying a design-timeGM. Let’s consider a MAS supporting dif-
ferent word searching techniques over the Internet. We may query
our design-timeGM to determine the alternative ways the system
can manage a request (event) by a user. For instance, finding gram-
matical/semantic information about a word might be accomplished
by either using a search engine such as google, or by looking up an
on-line dictionary.

The main objective of this paper is to propose a tool-supported
design process that takes as input suchGMs and generates frag-
ments of a BDI agent. These fragments include goals and capa-
bilities, along with a reasoning strategy for selecting andrunning
appropriate capabilities, given a goal and a set of domain condi-
tions. Our approach offers a systematic process for operationaliz-
ing a GM into a set of capabilities and for automating BDI-agent
code generation from theGM design artifacts.

This approach aims at addressing crucial issues in developing
and maintaining complex distributed software. Moreover, we be-
lieve it offers an interesting direction towards engineering adaptive
systems, given thatGMs can be extended (modified) at run-time [7]
and that we can provide traceability links betweenGMs at differ-
ent levels of abstractions. An issue that seems still understudied by
the main Agent-Oriented Software Engineering (AOSE) method-
ologies [5, 2]. In this short paper, we sketch our tool-supported
design framework, by first giving an example of design artifact, de-
veloped using theTroposAOSE methodology [1], along with key
modelling concepts, such as the concept ofGM and agent capabil-
ity (Section 2). We then focus on code generation (Section 3). The
JADE/Jadex MAS platform is considered for implementation.

2. GOAL MODEL DESIGN
TheTroposagent-oriented methodology [1] borrows modelling

and analysis techniques from goal-oriented requirements engi-
neering frameworks and integrates them into an agent-oriented
paradigm. A core activity along this process is conceptual mod-
elling. The modelling language offers concepts ofactor, goal, plan,
resource, capability, and ofsocial dependencybetween actors for
goal achievement, a graphical notation to depict views of a model,



analysis techniques and supporting tools1. AdoptingTroposin our

Figure 1: Tropos architectural design: Agent knowledge and
capability levels.

framework allows us to represent and reason on aGM resulting
from the analysis of each actor’s point of view. Specifically, aGM
in Troposis represented in terms of a forest of AND/OR goal trees,

along with lateral contributions labelled+,++ (i.e. if g1

++
−−→ g2

andg1 is fulfilled, so isg2) and−,−− (if g1 is fulfilled, g2 is de-
nied) and means-ends relationships among goals and plans. Exam-
ples are depicted in Fig. 1, which illustrates a fragment of agoal-
orientedTroposspecification of the search system’s requirements.
The system is intended to support students and teachers in exam
related activities. Let us consider the goal dependenciesfind the
word description andfind copied text, between the actorsStu-
dent andTeacher and the agent roleSearch Actor, which model
the possibility for such goals to be triggered by a request message
from the users (or a personal agent of)Student andTeacher. In
other words, to pass an exam a student has to deliver some writ-
ten homework, while the teacher wants to evaluate originality of
the student homework, for instance, checking if the studentcopied
from existing material (e.g. encyclopedia, or Internet).

In particular, we will point out the two different abstraction levels
that characterize the agent design,knowledge levelandcapability
level. The knowledge level gives to the agent a picture of the real
world in terms of goal concepts that describe alternative ways to
cope with complex and simple problems. For example, goals may
be naturally triggered by agent internal or external events, e.g. a
FIPA-request message (i.e. an external event) can carry outinfor-
mation about what goals are required to be achieved by the receiver
agent. The capability level is composed of leaf node goals that are
satisfied by root-level plans through theTroposmeans-end relation-
ship [9].

1For more details on modelling activities and supporting tools
see [1, 9].

Although this paper focuses on the knowledge level, for the con-
cept ofcapabilitywe adopt the revised definition proposed in [9],
which distinguishes the concept ofability from the concept ofop-
portunity and introduces a specific notation to model them. The
ability component refers to plans for achieving a given goal and is
specified inTroposby a means-end relationship between the goal
and the plan, while theopportunitycomponent represents user pref-
erences and environmental conditions, which may, at run-time, en-
able or disable the execution of the ability component.

Capability modelling starts during requirements analysisby
identifying agent capabilities and their correlations with stake-
holder needs. Tab 1, depicts some of the capabilities that oper-
ationalize the behaviour of theGM of the Search Actor in the
example given in Fig. 1.

Capab. Means End(goal,plan) List of Contributions
cp1 filter pages, {}

contentFilter
cp2 parse result, {}

parser
cp3 find in encyclopedia, {reliable result ++}

EBritannica {minimize cost -}
... ... ...

Table 1: Search Actor capabilities.

3. TOWARDS AUTOMATED CODING
In this section we sketch the transformations which are prelimi-

nary to the automated coding ofGMs into BDI agents. We direct
the interested reader to [8] for a complete description of the process
and some experimental evaluation.

Agent code generation requires a transformation of theTropos
GM specification into a specific one for the implementation plat-
form, i.e. Jade2 agents in our case.

The ability parts ofTropos capabilities, are mapped to UML
activity-diagrams, through model-driven automatic transformation
techniques, and are enriched with sequence diagrams to specify ex-
ecution workflow and interaction protocols respectively (detailed
can be found in [9]). The rest of theGM, including the capabil-
ity’s opportunity part, relies on an automatic transformation from
Troposmodels to Jadex BDI agents, as detailed in the following.

We first describe the semantics of the adopted sub-set ofTropos
concepts, and then give an overview of some of the proposed map-
pings between such concepts and related data-structures ofa Jadex
BDI agent. The proposed approach considersTroposagentGMs at
architectural design. The specification for the mapping process has
been conducted along two phases: basic concept mappings (goals,
softgoals, plans, resources) and structure mappings (AND/OR goal
dependencies, means-end links, contribution links, delegation and
dependency links) as detailed below.

Goal. As a Jadex-goal can only be triggered by a Jadex-plan, hence
a Troposgoal is directly mapped to a pair of< goal, plan > in
Jadex.
Softgoal. In our prototype, they are mainly used to define opportu-
nities for the selection of the next goals or plans to pursue along
the GM. A softgoal is therefore mapped to a belief base entry,
which contains its name and a value that may be changed by the
user at run-time. Such a value expresses the actual softgoalimpor-

2Jade, as well as Jadex, are based on a pure Java API. More de-
tails at http://jade.tilab.com/ and http://vsis-www.informatik.uni-
hamburg.de/projects/jadex/



tance and may change from time to time reflecting environmental
changes.
Plan. This mapping considers only thoseTroposplans that have a
direct means-end relationship to leaf goals, namely root-level plans
according to our definition of capability concept.
Resource. Resources naturally map to an entry or a set of entries
in the Jadex belief base. Since in Jadex the belief base is an
object-oriented database, the entry can be related to an arbitrary
Java object. At runtime, resources should be changeable by
means of an external request message, to reflect changes in the
environment.

In order to endow the generated BDI agents with all theGM
features, We provide the mappings for a wide subset ofTroposre-
lationships into Jadex structures. Below, for space reasons, we give
just few details.
AND decomposition. If an AND-decomposed goal is activated, all
subgoals have to be dispatched. Specifically, an AND-decomposed
goal is set as trigger for exactly one plan, called AND-dispatch-
plan. In the plan body, all subgoals have to be dispatched in (some,
perhaps random) sequence, if one subgoal fails, the processhas to
be stopped and a failure has to be returned. For this first proposal,
on failure no attempts for compensation techniques of already exe-
cuted actions have been considered.
OR decomposition. Jadex goals cannot activate other goals, but
only be the triggering event for a plan. So, to map this kind
of decomposition, Jadex-plans have to be linked between goals
and the OR-decomposed sub-goals, as illustrated in Figure 2.
Each dispatch-goal plan (hexagon) is triggered on the activation
of the parent goal and it dispatches one subgoal. Since an OR-
decomposition deals with at least two goals (and related plans) as
alternative ways to achieve the triggered goal, the agent needs to
be able to reason about what is the more convenient at that time.
To deliver on such a task, as shown in in Figure 2, we adopted the
Jadex meta-level reasoning. That is, if more than one plan isap-
plicable for an active goal, such a meta-reasoning process starts: a
so-calledmetagoalis dispatched, which triggers an associated plan,
themetaplan, that implements a strategy (e.g. some AI techniques)
to select between applicable plans.

Figure 2: Mapping of the Tropos goal OR-decomposition into
an equivalent Jadex BDI structure.

Means-end. The Troposmeans-end relationship can be mapped
one-to-one to the Jadex plan triggering mechanism. Having defined
no conditions, every time the associated goal is activated,plan
execution is triggered. Notice that, in this case, the Jadexplans
are realTropos root-level plans, namely those required to build
up agent capabilities. Jadex supposes that every applicable plan

for a goal (without achievement conditions) is able to satisfy that
goal completely. Therefore, if more than one plan is applicable, a
meta-level reasoning is utilized in the same way seen for thegoal
OR-decomposition in Figure 2.

The generated agent can evaluate costs for the execution of ev-
ery plan in order to effectively deal with goals and plans selection.
Costs include softgoal contribution and importance; at run-time,
negative contributions could cause higher cost and guide the agent
to the selection of alternatives for goal satisfaction.

4. CONCLUSION AND FUTURE WORK
This paper presented a tool-supported, systematic processfor

generating BDI agents from goal models. We described an agent
design framework that is flexible enough to support proactive, de-
liberative and reactive agents without focusing on domain specific
AI techniques. The generated agents are able to reason abouttheir
intentionality, being aware of their potential behaviors along with
associated events and environmental constraints.

Our future work will extend the proposed framework providing
automatic execution of experimental tests. We also intend to refine
the framework to support the design of composite/organizational
agents which consist of an aggregation hierarchy.

5. REFERENCES
[1] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and

A. Perini. Tropos: An Agent-Oriented Software
Development Methodology.Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, July 2004.

[2] L. Cernuzzi and F. Zambonelli. Dealing with Adaptive
Multi-Agent Organizations in the Gaia Methodology. In6th
International Workshop on Agent-Oriented Software
Engineering (AOSE-2005), 2005.

[3] A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition. In6IWSSD: Selected
Papers of the Sixth International Workshop on Software
Specification and Design, pages 3–50. Elsevier Science
Publishers B. V., 1993.

[4] E. Durfee and T. Montgomery. Coordination as distributed
search in a hierarchical behavior space. InSystems, Man and
Cybernetics, IEEE Transactions on, volume 21. 1991.

[5] B. Henderson-Sellers and P. Giorgini, editors.
Agent-Oriented Methodologies. Idea Group Inc., 2005.

[6] N. Jennings.Foundations of Distributed Artificial
Intelligence, chapter Coordination Techniques for
Distributed Artificial Intelligence. Wiley-IEEE, 1996.

[7] V. Lesser. A retrospective view of fa/c distributed problem
solving. InSystems, Man and Cybernetics, IEEE
Transactions on, volume 21. 1991.

[8] L. Penserini, A. Perini, A. Susi, M. Morandini, and
J. Mylopoulos. A Design Framework for Generating
BDI-Agents from Goal Models. (Extended version).
Technical report, ITC-irst, 2007.

[9] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. From
Stakeholder Intentions to Software Agent Implementations.
In Proceedings of the 18th Conference On Advanced
Information Systems Engineering, volume 4001 ofLNCS,
pages 465–479. Springer-Verlag, 2006.

[10] E. Yu.Modelling Strategic Relationships for Process
Reengineering. PhD thesis, University of Toronto,
Department of Computer Science, University of Toronto,
1995.


