A Design Framework for Generating
BDI-Agents from Goal Models

Loris Penserini, Anna Perini, Angelo Susi, Mirko Morandini, John Mylopoulos
ITC-IRST
Via Sommarive 18,

I1-38050, Trento

- Povo, Italy

{penserini,perini,susi,morandini} @itc.it, jm@cs.toronto.edu

ABSTRACT

We define a tool-supported design framework that allows ¢giép

an agent goal model and to automatically generate fragnoérats
BDI agent from it. We devise the design process as a transform
tion process from platform-independent design modelsatigrim-
specific models and then to code. The design framework is demo
strated by referring to thEroposmethodology and to the JADE/Jadex
platform. In this short paper, key steps in the process kstiated
through an example.

General Terms
Design

Keywords

Agent-Oriented Software Engineering

1. INTRODUCTION

Goal models have been used in distributed Artificial Ingelfice
as a means for capturing agent intentions and guiding agemt c
dination [4, 6, 7]. These goal models consist of goal graphsse
nodes represent goals. Goals can be related through ANDZOR r
lationships that represent the hierarchical decompasiifca goal
into simpler goals. In addition, goals can be related thhadigfer-
ent kinds of inter-dependency links that represent cosflietween
goals, or resources needed for the fulfillment of inter-deleat
goals. In this context, goal models guide software ageniceso
(behavior) at run time. Similar goal model&N from now on)
have been adopted, by so caligoal-orientedapproaches to soft-
ware (requirements) engineering [1, 3, 10]. In this contextM
allows a designer to represent and reason about stakelymetr
in a given application domain in order to derive requireradat a
system-to-be. According to these approackads provide analy-
sis and design artifacts during system developm@&is can also
give support in exploring and evaluating alternative sohg which
can meet stakeholders expectations (goals) and in degextin-
flicts that may arise from multiple viewpoints. Some appheesc

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AAMAS’'07May 14-18 2007, Honolulu, Hawai'i, USA.

Copyright 2007 IFAAMAS .

adopt a formal notation which enables model-checking watifon
of the resulting models [3, 1].

Taking advantage of the above results, we propose t@:hde
at different abstraction levels in engineering Multi-Ag&ystems
(MAS), namely at design- and at run-time. @M at design time
represents the purposes behind a MAS, making the depeerdenci
between system agent goals and stakeholder goals exglnmtyvl-
edge level concepts such as thosagegnt who can be social, orga-
nizational, human or softwargpals andsocial dependencig®r
defining the obligations of agents to other agents are usédsat
level. Moreover, a view on the system behavior can be olddaiye
querying a design-tim&M. Let’s consider a MAS supporting dif-
ferent word searching technigues over the Internet. We mawq
our design-timeGM to determine the alternative ways the system
can manage a request (event) by a user. For instance, finding g
matical/semantic information about a word might be accashptd
by either using a search engine such as google, or by lookiragnu
on-line dictionary.

The main objective of this paper is to propose a tool-supgort
design process that takes as input s@Ms and generates frag-
ments of a BDI agent. These fragments include goals and capa-
bilities, along with a reasoning strategy for selecting amthing
appropriate capabilities, given a goal and a set of domantieo
tions. Our approach offers a systematic process for ojpeiliz-
ing aGM into a set of capabilities and for automating BDI-agent
code generation from th8M design artifacts.

This approach aims at addressing crucial issues in devgjopi
and maintaining complex distributed software. Moreoveg, ve-
lieve it offers an interesting direction towards enginegradaptive
systems, given th&Ms can be extended (modified) at run-time [7]
and that we can provide traceability links betwe@kls at differ-
ent levels of abstractions. An issue that seems still uhaidiesd by
the main Agent-Oriented Software Engineering (AOSE) metho
ologies [5, 2]. In this short paper, we sketch our tool-surtgb
design framework, by first giving an example of design actifee-
veloped using th8roposAOSE methodology [1], along with key
modelling concepts, such as the concepBM and agent capabil-
ity (Section 2). We then focus on code generation (Sectioill3g
JADE/Jadex MAS platform is considered for implementation.

2. GOAL MODEL DESIGN

The Troposagent-oriented methodology [1] borrows modelling
and analysis techniques from goal-oriented requirementg- e
neering frameworks and integrates them into an agentieden
paradigm. A core activity along this process is conceptuadm
elling. The modelling language offers conceptacior, goal, plan,
resource capability, and ofsocial dependenclgetween actors for
goal achievement, a graphical notation to depict views obdeh



analysis techniques and supporting tdokdopting Troposin our

Teacher
/SGEIC';\\ I| rl
\Syslem } 1 y s :-
dascription,/ M CD’51
Web # - text
M -~ m. o
Actor \ Parser/
1 — ﬁ:m-eupiod" .4
| o

e S o ~ _‘\ i
@ . ra.au-e) 2“'”"“"9, g ) Y :
rqu?tS)._ b ,._< < 2 - ; l \

< mlﬂ'ﬁﬂ g
\—/_\“m“e’ -M @ \

capability-level
® Actor [ Resource =5 Contribution
Hard Goal =D Or decomposition == DCependency link
£23 softCoal ~+> And decomposition =% Why link
< Plan ~> Means-end

Figure 1. Tropos architectural design: Agent knowledge and
capability levels.

framework allows us to represent and reason dBM resulting
from the analysis of each actor’s point of view. SpecificalM
in Troposis represented in terms of a forest of AND/OR goal trees,

along with lateral contributions labellet,++ (i.e. if g1 — g-
andg, is fulfilled, so isg2) and —,—— (if g1 is fulfilled, g is de-
nied) and means-ends relationships among goals and plaas-E
ples are depicted in Fig. 1, which illustrates a fragment gbal-
orientedTroposspecification of the search system’s requirements.
The system is intended to support students and teacheraim ex
related activities. Let us consider the goal dependerfaiesthe
word description andfind copied text, between the actorStu-
dent andTeacher and the agent rol8earch Actor, which model
the possibility for such goals to be triggered by a requesisage
from the users (or a personal agent 8fudent and Teacher. In

Although this paper focuses on the knowledge level, for the ¢
cept ofcapability we adopt the revised definition proposed in [9],
which distinguishes the concept ability from the concept obp-
portunity and introduces a specific notation to model them. The
ability component refers to plans for achieving a given goal and is
specified inTroposby a means-end relationship between the goal
and the plan, while thepportunitycomponent represents user pref-
erences and environmental conditions, which may, at me;ten-
able or disable the execution of the ability component.

Capability modelling starts during requirements analylsys
identifying agent capabilities and their correlations hvitake-
holder needs. Tab 1, depicts some of the capabilities thert- op
ationalize the behaviour of theM of the Search Actor in the
example given in Fig. 1.

Capab. Means_End(goal,plan) List of Contributions

cp1 filter pages, {}
contentFilter

cpa parse result, {}

par ser
find in encycl opedi a,
EBri t anni ca

{reliable result ++}
{m ninize cost -}

cp3

Table 1: Search Actor capabilities.

3. TOWARDSAUTOMATED CODING

In this section we sketch the transformations which aremiel
nary to the automated coding GfMs into BDI agents. We direct
the interested reader to [8] for a complete description ®fttocess
and some experimental evaluation.

Agent code generation requires a transformation ofTitepos
GM specification into a specific one for the implementation-plat
form, i.e. Jadéagents in our case.

The ability parts ofTropos capabilities, are mapped to UML
activity-diagrams, through model-driven automatic tfanwsation
techniques, and are enriched with sequence diagrams tifiyspec
ecution workflow and interaction protocols respectivelgt&led
can be found in [9]). The rest of th®@M, including the capabil-
ity’s opportunity part, relies on an automatic transforiomatfrom
Troposmodels to Jadex BDI agents, as detailed in the following.

We first describe the semantics of the adopted sub-sBiopbs
concepts, and then give an overview of some of the proposgd ma
pings between such concepts and related data-structuseaofex
BDI agent. The proposed approach consideoposagentGMs at

other words, to pass an exam a student has to deliver some writ architectural design. The specification for the mappingess has

ten homework, while the teacher wants to evaluate originali
the student homework, for instance, checking if the studepted
from existing material (e.g. encyclopedia, or Internet).

In particular, we will point out the two different abstramilevels
that characterize the agent designpwledge levehnd capability
level The knowledge level gives to the agent a picture of the real
world in terms of goal concepts that describe alternativgsiaa
cope with complex and simple problems. For example, goajs ma
be naturally triggered by agent internal or external eveaty. a
FIPA-request message (i.e. an external event) can carryfout
mation about what goals are required to be achieved by tleévesc
agent. The capability level is composed of leaf node goasdte
satisfied by root-level plans through thimposmeans-end relation-
ship [9].

'For more details on modelling activities and supportingl¢oo
see [1, 9].

been conducted along two phases: basic concept mappings,(go
softgoals, plans, resources) and structure mappings (Ryoal
dependencies, means-end links, contribution links, deleg and
dependency links) as detailed below.

Goal. As a Jadex-goal can only be triggered by a Jadex-plan, hence
a Troposgoal is directly mapped to a pair &f goal, plan > in
Jadex.

Softgoal. In our prototype, they are mainly used to define opportu-
nities for the selection of the next goals or plans to purdoaga

the GM. A softgoal is therefore mapped to a belief base entry,
which contains its name and a value that may be changed by the
user at run-time. Such a value expresses the actual softgpai-

2Jade, as well as Jadex, are based on a pure Java API. More de-
tails at http://jade.tilab.com/ and http://vsis-wwwonfatik.uni-
hamburg.de/projects/jadex/



tance and may change from time to time reflecting environatent
changes.

Plan. This mapping considers only tho¥eposplans that have a
direct means-end relationship to leaf goals, namely reattiplans
according to our definition of capability concept.

Resource. Resources naturally map to an entry or a set of entries
in the Jadex belief base. Since in Jadex the belief base is an
object-oriented database, the entry can be related to dmaayb
Java object. At runtime, resources should be changeable by
means of an external request message, to reflect changes in th
environment.

In order to endow the generated BDI agents with all G
features, We provide the mappings for a wide subsd@raposre-
lationships into Jadex structures. Below, for space regsoa give
just few details.

AND decomposition. If an AND-decomposed goal is activated, all
subgoals have to be dispatched. Specifically, an AND-deoset
goal is set as trigger for exactly one plan, called AND-disha
plan. In the plan body, all subgoals have to be dispatchesbimé,
perhaps random) sequence, if one subgoal fails, the prbess®

be stopped and a failure has to be returned. For this firsogedp

on failure no attempts for compensation techniques of dyreae-
cuted actions have been considered.

OR decomposition. Jadex goals cannot activate other goals, but
only be the triggering event for a plan. So, to map this kind
of decomposition, Jadex-plans have to be linked betweets goa
and the OR-decomposed sub-goals, as illustrated in Figure 2
Each dispatch-goal plan (hexagon) is triggered on the at@tiv

of the parent goal and it dispatches one subgoal. Since an OR-
decomposition deals with at least two goals (and relatedsplas
alternative ways to achieve the triggered goal, the agesds&o

be able to reason about what is the more convenient at that tim
To deliver on such a task, as shown in in Figure 2, we adopted th
Jadex meta-level reasoning. That is, if more than one plap-is
plicable for an active goal, such a meta-reasoning prodass:sa
so-callednetagoals dispatched, which triggers an associated plan,
themetaplan that implements a strategy (e.g. some Al techniques)
to select between applicable plans.

TROPOS Jadex
=
selects the plan to
execute, reading the
hierarchy from the
belief base
key: /\OR—decomposition

4—dispatch goal
< means-end/triggering
<+—meta-reasoning-"cycle”

Figure 2. Mapping of the Tropos goal OR-decomposition into
an equivalent Jadex BDI structure.

Means-end. The Troposmeans-end relationship can be mapped
one-to-one to the Jadex plan triggering mechanism. Hawfiged
no conditions, every time the associated goal is activapéah
execution is triggered. Notice that, in this case, the Jgiers
are realTroposroot-level plans, namely those required to build
up agent capabilities. Jadex supposes that every apmiqddh

for a goal (without achievement conditions) is able to $atikat
goal completely. Therefore, if more than one plan is applieaa
meta-level reasoning is utilized in the same way seen fogta
OR-decomposition in Figure 2.

The generated agent can evaluate costs for the execution of e
ery plan in order to effectively deal with goals and plangsgbn.
Costs include softgoal contribution and importance; attimne,
negative contributions could cause higher cost and guiel@gient
to the selection of alternatives for goal satisfaction.

4. CONCLUSION AND FUTURE WORK

This paper presented a tool-supported, systematic prdoess
generating BDI agents from goal models. We described antagen
design framework that is flexible enough to support proactile-
liberative and reactive agents without focusing on dompétgic
Al techniques. The generated agents are able to reason thiegut
intentionality, being aware of their potential behaviolsng with
associated events and environmental constraints.

Our future work will extend the proposed framework provglin
automatic execution of experimental tests. We also intendftne
the framework to support the design of composite/orgaiciaat
agents which consist of an aggregation hierarchy.

REFERENCES

P. Bresciani, P. Giorgini, F. Giunchiglia, J. Myloposland
A. Perini. Tropos: An Agent-Oriented Software
Development Methodologyutonomous Agents and
Multi-Agent Systems(3):203—-236, July 2004.

L. Cernuzzi and F. Zambonelli. Dealing with Adaptive
Multi-Agent Organizations in the Gaia Methodology.@th
International Workshop on Agent-Oriented Software
Engineering (AOSE-20052005.

[3] A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition BiWSSD: Selected
Papers of the Sixth International Workshop on Software
Specification and Desigpages 3-50. Elsevier Science
Publishers B. V., 1993.

E. Durfee and T. Montgomery. Coordination as distriloute
search in a hierarchical behavior spaceSirstems, Man and
Cybernetics, IEEE Transactions orolume 21. 1991.

B. Henderson-Sellers and P. Giorgini, editors.
Agent-Oriented Methodologieklea Group Inc., 2005.

N. JenningsFoundations of Distributed Artificial
Intelligence chapter Coordination Techniques for
Distributed Artificial Intelligence. Wiley-IEEE, 1996.

[7] V. Lesser. A retrospective view of fa/c distributed plern
solving. InSystems, Man and Cybernetics, IEEE
Transactions onvolume 21. 1991.

L. Penserini, A. Perini, A. Susi, M. Morandini, and

J. Mylopoulos. A Design Framework for Generating
BDI-Agents from Goal Models. (Extended version).
Technical report, ITC-irst, 2007.

L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. From
Stakeholder Intentions to Software Agent Implementations
In Proceedings of the 18th Conference On Advanced
Information Systems Engineeringplume 4001 oL NCS
pages 465-479. Springer-Verlag, 2006.

E. Yu.Modelling Strategic Relationships for Process
ReengineeringPhD thesis, University of Toronto,
Department of Computer Science, University of Toronto,
1995.

S.
(1]

(4]

(5]
(6]

(8]

(9]

[10]



