

An Architecture for Requirements-Driven
Self-Reconfiguration

Fabiano Dalpiaz
Tropos Seminar - 20th March 2009

Outline

1) Motivation and Research Question

2) Background
• Preliminaries
• Requirements Models

3) Self-reconfiguration architecture

4) Creating the architecture for an existing system

5) Case study: smart homes

1) Motivation and Research Question

● Need for software systems that fulfill their
requirements in different operational environments
– Smart-homes, crisis management, socio-technical

systems

● Self-reconfiguration mechanisms are embedded
into applications
– Model-based adaptation [Garlan04]

● Model-based adaptation alone does not guarantee
requirements fulfillment

Motivation

Research Question

● ”Define an architecture that supports self-
reconfiguration at the level of requirements by
means of model-based adaptation”
– Logical structure

– Select/Define Requirements Models

– Diagnosis and Reconfiguration algorithms

– Application to a case study

2) Background

Preliminaries

Reconfiguration follows a Monitor-Diagnose-
Compensate (MDC) cycle

Monitor Diagnose

Compensate

What
happened?

Failures?
Why?

How do we
react to
failures?

Preliminaries

● We assume the system should behave accordingly
to the Belief-Desire-Intention (BDI) paradigm
[Rao92]

– The system is characterized in terms of agents

– Each agent has goals (desires)

– Whenever an agent adopts a goal, she will commit to its
achievement by starting an intention

● An intention is an instantiated plan

– Plans are chosen in accordance to current beliefs

Self-Reconfiguring System

Preliminaries

Externalized adaptation

Legacy
System(s)

MDC
Architecture+

=

Legacy
System(s)

MDC
Architecture

Requirements Models

Extended Tropos [Bresciani04] goal models
Contexts constrain variation
points [Ali08]: goal ”Prepare
lunch” can be achieved only
in context c1

Goal instances: activation events,
commitment condition, achievement
condition, parameters

Requirements Models

Fine-grained characterization for tasks: Timed
Activity Diagrams

Activity a1 (enter kitchen) should
occur within 45' after goal ”Prepare
food” is activated

Activity a6 (turn on stove) should
within one minute after the last
activity between a4 and a5 ended

Requirements Models

● Monitoring tasks
– Timed activity diagrams are quite procedural and

inflexible

– On the contrary, simple precondition-postcondition is
not sufficient in many cases

– A new formalism is under development
● Based on a simplified version of event calculus
● Timeouts for events
● The approach is not procedural and more flexible

3) Self-Reconfiguration Architecture

Overall view

External components:
context sensors,
monitored system,
support systems,
context actuators

Monitoring component

● The architecture monitors task execution,
dependency status, and changes in the context

Diagnosis component

● How to diagnose failures?
– Check monitored events against requirements models

● A failure occurs if
– Something that should happen does not occur

– Something that should not happen does occur

Diagnosis component

● Diagnosis checks monitored data against
contextual goal models and domain assumptions
– Failures are identified after checking policies

Reconfigurator component

● Reconfiguration types: task assignment to
supporting systems, pushing the monitored system,
control actuators in the context
– Diagnosis are prioritized

– Compensation actions to enact semantic undo

4) Creating the architecture for an
existing system

A process to create the architecture

1) Define the context model
– Which are the basic entities we talk about?

2) Define requirements models
– Tropos goal model, task specification, domain

assumptions

3) Establish traceability links for monitoring
– Relate information from sensors to requirements

models

A process to create the architecture

4) Select tolerance policies for diagnosis
● Define when failures do not require reaction

5) Choose reconfiguration and compensation
mechanisms
● Depends both on analyst decisions and on domain

feasibility issues

5) Case Study: Smart Homes

Case study description

● A patient is living in a smart-home
● A smart-home is a socio-technical system

supporting the patient in everyday activities
– eating, sleeping, taking medicine, being entertained,

visiting doctor

● Both smart home and patient are equipped with
AmI devices that
– gather data (e.g., patient's health status, temperature in

the house)

– change the context (e.g., open the door).

Case study: goal model
Four contexts (c1-c4)

Case study: timed activity diagram

● Task ”Prepare (food) autonomously” is described
as follows

If the event corresponding to activity a5
does not occur within 1 minute after a3,
a task failure is identified.

Case study: reconfiguration scenario

● Patient Mike wakes up at 8.00 am. Mike is autonomous (context c1)
and at home (context c3).

● Mike is supposed to have breakfast (goal g1 is activated as soon as
Mike wakes up)

● The subtree of g3 (Eat at Home) is the only allowed one, because of
the current context. Thus, we do not monitor for the other sub-trees

● At 8.20 am Mike enters the kitchen: checking the activity diagram
for task p1 against this event changes the status of the goal g4 to
in_progressin_progress.

● At 8.25 Mike hasn’t neither opened the fridge nor opened the bread
cupboard. This violates the specification of p1 (see previous slide),
whose state is now failfail

● The policy manager component says not to ignore this failure

Case study: reconfiguration scenario

● The reconfiguration strategy selector component selects to push the
system, and the system pushing component sends a notification to
the patient through an SMS message

● This changes the mind of Mike, which opens the fridge (a2), opens
the bread cupboard (a3), and puts bread on table (a5). These events
are compliant with the task specification, thus the task is
in_progressin_progress.

● Anyhow, Mike does not put milk on stove (a4) within one minute
since a2, therefore a new failure is diagnosed by the task execution
diagnoser component.

● The compensation to address this failure is to automate p2, and the
task assigner component assigns it to a catering service.

● An alternative scenario evolution is that Mike exits house (the
context c4 is true, c3 is not valid anymore).

Summary and Future Work

● We propose an architecture for self-reconfiguration
– Takes a distributed legacy system as input

– Adds self-reconfiguration by means of a Monitor-
Diagnose-Execute cycle

– Aims at maintaining requirements fulfillment

● Future work
– Implement the architecture (ongoing)

– Apply to a wide case study (a real smart-home)

– Examine monitoring, diagnosis, and reconfiguration in
case of dependencies on external agents

References

● [Garlan04] Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste,
P.: Rainbow: architecture-based self-adaptation with reusable
infrastructure. Computer 37(10) (Oct. 2004) 46–54

● [Ali08] Ali, R., Dalpiaz, F., Giorgini, P.: Location-based software
modeling and analysis: Tropos-based approach. ER 2008 (2008) 169–182

● [Bresciani04] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F.,
Mylopoulos, J.: Tropos: An agentoriented software development
methodology. JAAMAS 8(3) (2004) 203–236

● [Rao92] Rao, A., Georgeff, M.: An abstract architecture for rational
agents. Proceedings of Knowledge Representation and Reasoning
(KR&R-92) (1992) 439–449

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

