An Architecture for Requirements-Driven
Self-Reconfiguration

Fabiano Dalpiaz
Tropos Seminar - 20" March 2009

=) UNIVERSITY
¥ OF TRENTO - Italy

Information Engineering
and Computer Science Department

Outline

1) Motivation and Research Question
2) Background

- Preliminaries

- Requirements Models

3) Self-reconfiguration architecture
4) Creating the architecture for an existing system

5) Case study: smart homes

1) Motivation and Research Question

Q

Motivation

e Need for software systems that fulfill their
requirements 1n different operational environments

— Smart-homes, crisis management, socio-technical
systems

e Self-reconfiguration mechanisms are embedded
into applications

— Model-based adaptation [Garlan(04]

 Model-based adaptation alone does not guarantee
requirements fulfillment

Research Question

e ”Define an architecture that supports self-
reconfiguration at the level of requirements by
means of model-based adaptation”

— Logical structure
— Select/Define Requirements Models
— Diagnosis and Reconfiguration algorithms

— Application to a case study

2) Background

T

Preliminaries

Reconfiguration follows a Monitor-Diagnose-

Compensate (MDC) cycle
What
- -
%{ Monitor] Il >£ Diagnose }9

s W

y[Compensate}

‘.. How do we
react to
failures?

Preliminaries

 We assume the system should behave accordingly

to the Belief-Desire-Intention (BDI) paradigm
[Ra092]

— The system 1s characterized in terms of agents
— Each agent has goals (desires)

— Whenever an agent adopts a goal, she will commiut to 1ts
achievement by starting an intention

e An intention is an instantiated plan

— Plans are chosen 1n accordance to current beliefs

——

Preliminaries

Externalized adaptation

MDC
Architecture

Requirements Models

Extended Tropos (Brescianios) goal models

Contexts constrain variation Goal instances: activation events,
points [Ali08]: 80?11 Prepare commitment condition, achievement
lunch” can be achieved only condition, parameters

1n context ¢l

ACTIVATION EVENT:

“Have lunch”: it's 12AM
COMMITMENT CONDITION:

“Have lunch”: 1 hour since activation

CONTEXTS:
c1: patient is autonomous
c2: patient is not autonomous

Supermar
ket

[TASK PRECONDITIONS:
lngr:u ‘lea?):r drom “Order food by phone”: Patient.house.hasPhone = true

Provide
grocery

Requirements Models

Fine-grained characterization for tasks: Timed
Activity Diagrams

Goal “Prepare
| food” activation

|
/
|

az.
Open fridge

ar: Turn off
stove

ab: Turnon \~
stove

ab: Put bread \ 7
on table \

Activity a6 (turn on stove) should
within one minute after the last
activity between a4 and a5 ended

al:

Enter kitchen ‘.
/ a3: Open bread \ y
\ cupboard

Activity al (enter kitchen) should
occur within 45' after goal ”Prepare
food” 1s activated

Requirements Models

e Monitoring tasks

— Timed activity diagrams are quite procedural and
inflexible

— On the contrary, simple precondition-postcondition is
not sufficient 1n many cases

— A new formalism 1s under development

» Based on a simplified version of event calculus
e Timeouts for events

e The approach is not procedural and more flexible

3) Self-Reconfiguration Architecture

“

External components:
context sensors,
monitored system,
support systems,
context actuators

Overall view

<<component>>
Context sensor

<<component>:
Monitored system

g—0

1| S)

<<component>>
Self-reconfiguration

<<component>>
Support system

assignments

dependencies

Events <<component>> gl
<<component>> @ Monitor
|} - [Her Normalized
j< normalizer events
,I,/
Lo 4 K4
9 :f; <<component>> g[<<component>> <<component>>
,/ Dependency Context monitor Task execution
monitor monitor
4
ﬁ// Rependencies é Current (5 Task execution (5
/ status }_/ context Q)\ status (_<
El / N\
—® <<component>> gl
Interaction iagnoser
log <<component>> <<component>>
Contextual goal Domain assumption
model manager verifier
Goals/tasks d
applicability Violated domain
assumptions
<<component>: <<component>: <<component>:
Dependency Task execution Goal commitment
diagnoser diagnoser diagnoser
CB Failed CB Uncommitted
Failed tasks/goals goals

Task @_{} T

O—11-
System
pushes

<<component>>
Context actuator

g —O—1--

Actuations

ssignments

__>O_

Task

<<component>> <<component>:
Failure diagnoser @— Policy manager

Failure d Tolerance é
diagnosis)\ policies 7./ Priority
policies

<<component>> E

Reconfigurator
<<component>> Task <<component>

Task assigner

<<component>>
System pushing

ctuations

<<component>> E
Actuator manager

reassignment
(reconfigurations

Prioritize diagnosis

o

Push system
reconfigurations

<<component>>
Reaction strategy

selector

—©O
Selected
Diagnosis

C Actuate
reconfigurations

Monitoring component

 The architecture monitors task execution,
dependency status, and changes 1n the context

g

3] \)\[

nt>>
tem

_Q\
5']@/

log

\ Interaction

<<component>>
Self-reconfiguration

t\
a
~
~

<<component>>

Event

<<component>> El

Monitor

Normalized

normalizer events
4
4
’ /
z [/
/
/

<<component>>
Dependency
monitor

<<component>>
Context monitor

<<component>>
Task execution
monltor

Dependencies é
status

Current Task execution
context/()\ status /(,{

<<component>>

Piagnoser
| <<component>> @ | |

<<component>> El\ ‘

Diagnosis component

 How to diagnose failures?
Check monitored events against requirements models
e A failure occurs 1f

Something that should happen does not occur

Something that should not happen does occur

Info”, “systemaudit”, "7020", "Netruntimeversion”, "k2server: :onstart”, "7020
ng Micrnsnft .NET Framework v2.0.50727", '7368238945?0‘1SiEle?iAEleadS}ldl' e
1-

rver::onstart”, "7021

0", "Systemaudit "K2ser versd
3C!lle?ﬁﬂeecd7\:!2&2168&870:&3':81’3

Info"
jng K2. ;let Server 2003 SP4 (VE 5262 1.0)

“3‘.
oL

“Systemaudit”, ningas U ver ; ;OnSt.

RUN Iser Ser art”, 4403 k2.net
- Stnrted under KZDEV\DEVSV(sterver"."KhSnQ?ida(BFlhlZBEGEEZdMEA:ZE?IG -
2001

Get lunch
preparsd

01:42:31 nFo systemaudi '7022", Ferﬁqunstartmg server::onstart”, 7022

ﬂar(;ggeqlng Server perfomance Monitoring”, "a55sle. A%fi342?59@ach577193459de",""
Debug*”, “Systemaudit”, “7100", "SQLInitSucceed", “K2Server: :onStart”, “7100 sSql

‘!n‘!tia'llzed (Svr:K2DEVOl, DB: KZ)”.'a??]fimiS?lMchSlZa?if;lHa?E?F‘)'

6", "2006-11-10

01:42:31", "Debug”, “Systemaudit”, “7101", “socketInitsucceed

, "K2Server : :onstart”, “7101

Sgskﬁt Mi;ia'\ i zed "F3c803c0a38147520F cefad6aze3c2af",

Systemkud‘!("7102" w-kerlnitsucceed “K25erver::onstart”, 7102
"cdced1a3c2i246e108d06687d5af dda

01 Debug”, "Systemaudit”, "7103", "EvalLicense” erver : ionstart"”, 7103
E;ﬁ'\Ha(ing L'\fgr\se Key", 53&271114leav"bah?:lna?caiadéﬁfa ’

oL:d2: I “systemaudit”, "7104", "LicenseType", xzserver' :onstart”, 7104 K2.net
Licensed fDr 0 (PU(S)" ”57cd43E&aBiMa?QaEOaB!dS&chd173

1:42:32", "Debug”, "sy stemaudit”, "7106", "ThreadpoolInit”, "k2server: :onstart”, "7106
Threadpaol in‘!t?nized Fe7h412h:5264079‘!7c0b693F385cﬁ0'F
11", "2006-11-10
01:43:32", “Debug”, "systemaudit 7107", "uMInitsucceed”, "K2server::onstart”, "7107 user
Hanaoe Kbim: K2userManager initialized", “6aaldb3ad27b4d2baf 5e037cHBL47F00") "

006-11-10 v

Diagnosis component

* Diagnosis checks monitored data against
contextual goal models and domain assumptions

— Failures are identified after checking policies

Dependencies Cl> Current é Task execution (5
status }/ context/()\ status /(,{
/ ~ AN
<<component>> / EI
iagnoser e

<<component>> El <<<<< ponent>> El
Contextual goal Domain assumption
model manager verifier
Goals/tasks CB
applicability Violated domain
\as‘sumptions
<<component> <<component> <<component>
Dependency Task execution Goal commitment
diagnoser diagnoser diagnoser

Uncommitted

d Failed d
Failed tasks/goals goals
dependencies

<<component>> <<component>>g|
Failure diagnoser @— Policy manager

Failure d Tolerance
diagnosis .)\ policies) Prioritv

Reconfigurator component

e Reconfiguration types: task assignment to
supporting systems, pushing the monitored system,
control actuators 1n the context

— Diagnosis are prioritized

— Compensation actions to enact semantic undo

| viayiivan — \ | MPVIVIGD 79 Priority
o~ olicies
<<component>> El
Reconfigurator
K\O [F-4-->0 <<component>> & | Task <<component>
Task + Task Task assigner reassignment Prioritize diagnosis
assignments assignments —C reconfigurations
i
; El p <<component>> | CL
() o-- - >@— <<component>> Reaction strate
C t System pushing @ Salacior 9y Selected
System System Push system Diagnosis
pushes pushes reconfigurations
>3] CO [}-4-->0 <<component>> =] C
or - } . Actuator manager Actuate
Actuations Actuations s
reconfigurations

4) Creating the architecture for an
ex1isting system

i

A process to create the architecture

1) Define the context model
— Which are the basic entities we talk about?
2) Define requirements models

— Tropos goal model, task specification, domain
assumptions

3) Establish traceability links for monitoring

— Relate information from sensors to requirements
models

A process to create the architecture

4) Select tolerance policies for diagnosis
e Define when failures do not require reaction

5) Choose reconfiguration and compensation
mechanisms

* Depends both on analyst decisions and on domain
feasibility 1ssues

5) Case Study: Smart Homes

Case study description

* A patient 1s living 1n a smart-home

e A smart-home is a socio-technical system
supporting the patient in everyday activities

— eating, sleeping, taking medicine, being entertained,
visiting doctor

e Both smart home and patient are equipped with
Aml devices that

— gather data (e.g., patient's health status, temperature in
the house)

— change the context (e.g., open the door).

Case study: goal model

Four contexts (c1-c4)

922: Get eating
assistance

CONTEXTS:

c1: patient is autonomous

c2: patient is not autonomous
c3: patient is at home

c4: patient is not at home

eating
support

ACTIVATION EVENT:

g1: patient wakes up
COMMITMENT CONDITION:

g1: 2 hours since activation event

p24: Get fed
in bed

p15: Eat

breakfast at
p13: Ask bar table

support //p14: Sit

- at table

g18: Eat a
neighbour’'s
home

p3: Eat
breakfast

catering
food atiabe 921: Have
\V p1: Prepare breakfast at

autonomously eighbour’

L

o m
p7: Ask in-

p6: Requestnouse nurse

ocial worker,

<, 2

Provide
food

Catering

service

Daughter

Social
worker

Case study: timed activity diagram

e Task ”Prepare (food) autonomously” 1s described
as follows

Goal “Prgpa_re
food” activation
<4 .
/ 2 "\ <]

[(a4: Put milk on
stove

™/ a3: Open bread ./ @5: Put bread
< cupboard on table

If the event corresponding to activity a5
does not occur within 1 minute after a3,
a task failure is identified.

7\ Open fridge

al: [[a6: Turnon \<_/ a7: Turn off \ </ a8: Pour milk
Enter kitchen stove stove into cup O

Case study: reconfiguration scenario

Patient Mike wakes up at 8.00 am. Mike 1s autonomous (context c/)
and at home (context c¢3).

Mike 1s supposed to have breakfast (goal g/ 1s activated as soon as
Mike wakes up)

The subtree of g3 (Eat at Home) 1s the only allowed one, because of
the current context. Thus, we do not monitor for the other sub-trees

At 8.20 am Mike enters the kitchen: checking the activity diagram
for task p/ against this event changes the status of the goal g4 to
in_progress.

At 8.25 Mike hasn’t neither opened the fridge nor opened the bread
cupboard. This violates the specification of p/ (see previous slide),
whose state is now fail

The policy manager component says not to ignore this failure

Case study: reconfiguration scenario

The reconfiguration strategy selector component selects to push the
system, and the system pushing component sends a notification to
the patient through an SMS message

This changes the mind of Mike, which opens the fridge (a2), opens
the bread cupboard (a3), and puts bread on table (ab). These events
are compliant with the task specification, thus the task 1s
in_progress.

Anyhow, Mike does not put milk on stove (a4) within one minute
since a2, therefore a new failure 1s diagnosed by the task execution
diagnoser component.

The compensation to address this failure 1s to automate p2, and the
task assigner component assigns it to a catering service.

An alternative scenario evolution is that Mike exits house (the
context c4 1s true, ¢3 is not valid anymore).

Summary and Future Work

 We propose an architecture for self-reconfiguration

— Takes a distributed legacy system as input

— Adds self-reconfiguration by means of a Monitor-
Diagnose-Execute cycle

— Aims at maintaining requirements fulfillment
* Future work

— Implement the architecture (ongoing)
— Apply to a wide case study (a real smart-home)

— Examine monitoring, diagnosis, and reconfiguration in
case of dependencies on external agents

References

[Garlan04] Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste,
P.: Rainbow: architecture-based self-adaptation with reusable
infrastructure. Computer 37(10) (Oct. 2004) 4654

[Al108] Al1, R., Dalpiaz, F., Giorgini, P.: Location-based software
modeling and analysis: Tropos-based approach. ER 2008 (2008) 169—182

[Bresciani04] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F.,
Mylopoulos, J.: Tropos: An agentoriented software development
methodology. JAAMAS 8(3) (2004) 203236

[Ra092] Rao, A., Georgeff, M.: An abstract architecture for rational

agents. Proceedings of Knowledge Representation and Reasoning
(KR&R-92) (1992) 439-449

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

