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Modeling and Reasoning about Service-Oriented

Applications via Goals and Commitments

Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos

University of Trento

Abstract. Service-oriented applications facilitate the exchange of business ser-

vices among autonomous and heterogeneous participants. Traditional system mod-

eling approaches either apply at a lower of abstraction than required for such ap-

plications or do not accommodate the autonomous and heterogeneous nature of

the participants.

We present a business-level conceptual model that addresses the above shortcom-

ings. The model gives primacy to the participants in a service-oriented applica-

tion. A key feature of the model is that it cleanly decouples the specification of

an application’s architecture from the specification of individual participants. We

formalize the connection between the two—the reasoning that would help a par-

ticipant decide if a specific application is suitable for his needs. We implement

the reasoning in datalog and apply it to a case study involving car insurance. We

also demonstrate the scalability of our approach.

Keywords: Conceptual modeling, Commitments, Goal modeling, Service en-

gagements, Service-oriented architecture.

1 Introduction

Service-oriented applications exemplify programming-in-the-large [8]: the architecture

of the application takes precedence over the specification of services. An individual

service may be designed using any methodology in any programming language as long

as it structurally fits in with the rest of the system. Component-based systems embody

this philosophy, but service-oriented applications are fundamentally different in that

they represent open systems [21, 16]. A service-oriented application is characterized

by the autonomy and heterogeneity of the participants. Application participants engage

each other in a service enactment via interaction. Applications are dynamic implying

that participants may join or leave as they please. The identity of the participants need

not even be known when designing the application. In a sense, open systems take the

idea of programming-in-the-large to its logical extreme.

An example of a service-oriented application are auctions on eBay. Multiple au-

tonomous and heterogeneous participants are involved: eBay itself, buyers, sellers, pay-

ment processors, credit card companies, shippers, and so on. eBay (the organization)

specified the architecture of the application in terms of the roles (seller, bidder, shipper,

and so on) and the interaction among them without knowing the identity of the specific

participants that would adopt those roles.

For service-oriented applications, it is especially useful to treat the architecture as

being largely synonymous with the application itself. The auctions application on eBay



exists whether some auction is going on or not. The application is instantiated when

participants adopt (play) roles in the application. The application is enacted when par-

ticipants interact according to the roles (see Figure 1). Moreover, the application is, in

general, specified independently from the specification of the individual participants.

Clearly, the notion of roles, participants, and interaction are key elements in the model-

ing of service-oriented applications.

Fig. 1. A service-oriented application is specified in terms of roles. It is instantiated when partic-

ipants adopt those roles; it is enacted when participants interact according to the adopted roles.

The real value of service-oriented computing is realized for applications in which

participants engage each other in business transactions, for example, in an auction on

eBay. Each individual participant has his own business goals, and it would need to

interact flexibly with others so as to be able to fulfill his goals. Ideally, we would want

to model both applications and participants in terms of business-level abstractions. We

would also want to characterize and reason about properties critical to doing business,

such as goal fulfillment, compliance, interoperability, and so on, in similarly high-level

terms. This is key to alleviating the business-IT gap.

Existing conceptual modeling approaches either (i) lack the notion of roles, partic-

ipants, and interactions altogether, or (ii) are lacking in business-level abstractions—

they are typically rooted in control and data flow. Workflow-based modeling of appli-

cations, as is done using BPMN (the Business Process Modeling �otation), exemplifies

the former; choreography-based modeling, as is done using WS-CDL (the Web Ser-

vices Choreography Description Language), exemplifies the latter. Many approaches

fall somewhere in between (discussed extensively in Section 5).

We propose a conceptual model for service-oriented applications that addresses both

the above concerns. It gives primacy to the autonomy and heterogeneity of participants,

and works at the business-level. The key insight behind the model is this. A participant

will have business goals that it wants to achieve. However, given his autonomy, a partic-

ipant cannot force another to bring about any goal. In fact, a participant wouldn’t even

know the internal construction—in the forms of business rationale, rules, goals, strate-

gies, procedures, or however otherwise specified—of any other participant. In such sit-



uations, the best a participant can do is to deal in commitments (concerning the goals it

wants to achieve) with other participants. For example, a bidder on eBay cannot force a

seller to deliver even if he has won the auction; the interaction between them proceeds

on the understanding that there is a commitment from the seller to deliver if the bidder

has won.

This paper synthesizes results from two influential lines of research: goal-oriented

requirements engineering [24] and agent communication [19]. Specifically, we spec-

ify participants in terms of their goal models, and application architecture in terms of

commitments. The conceptual model enables reasoning about properties at a business-

level. In this paper, we focus on axiomatizing the supports relation, which essentially

formalizes the notion of whether adopting a role in a particular application is compat-

ible with a participant’s goals. We implement a prototype reasoning tool that encodes

the supports relation in datalog. We evaluate the usefulness of our conceptual model by

modeling a car insurance scenario, and show how we may encode and reason about the

model. We also report on experiments that show the scalability of the reasoning.

The rest of the paper is organized as follows. Section 2 describes our conceptual

model in detail and shows the relation between individual participants and the applica-

tion. Section 3 shows how we reason about compatibility between the commitments an

agent might be party to and his goals. Section 4 evaluates our approach. We model ele-

ments of a car insurance application, and show some queries one may run. The section

also reports on the scalability results. Section 5 summarizes our contribution, discusses

the relevant literature, and highlights future directions.

2 Conceptual Model

From here on, we refer to the participants in an application as agents. This term is

appropriate given their autonomous and heterogeneous nature. Figure 2 shows the pro-

posed conceptual model: the left box concerns a service-oriented application, the right

box is about an agent’s requirements.

2.1 Specifying Agents via Goal Models

An agent is specified in terms of a goal model, as formalized in the Tropos methodology

[2]. Goal modeling captures important aspects of requirements—not just what they are,

but why they are there. An agent’s goal model represents his motivations, and abstracts

away from low-level details of control and data flow. We now briefly revisit the aspects

of goal modeling relevant to this paper.

As shown in Figure 2, an Agent has some goals. A Goal may be a HardGoal or a

SoftGoal. A softgoal has no clear-cut criteria for satisfaction (its satisfaction is subjec-

tively evaluated). A goal reflects a state of the world desired by the agent. A goal may

contribute to other goals: means contributes positively to the achievement

of ; means contributes negatively to the achievement of . Both hard

and soft goals may be AND-decomposed or OR-decomposed into subgoals of the same

type. Additionally, an Agent may be capableOf of a number of hard-goals; the notion

of capability abstracts the means-end relation in Tropos.



Fig. 2. Conceptual model for service-oriented applications and participating agents

2.2 Specifying Applications via Service Engagements

Conceptually, commitment Debtor Creditor antecedent consequent means that the

debtor is committed to the creditor for the consequent if the antecedent holds. The

antecedent and consequent are propositions that refer to the states of the world of rel-

evance to the application under consideration. A commitment is discharged when its

consequent is achieved; it is detached when the antecedent holds. An unconditional

commitment is one where the antecedent is (true).

For example, in an auction application, one can imagine a commitment

. Informally, it means that the bidder commits to the

seller that if the world state is such that he has won the bid, then he will bring about the

world state where the payment has been made.

We use commitments as the basis of architectural connections. As Figure 2 shows,

a Service Engagement involves two or more roles and specifies one or more commit-

ments among the involved roles. A Role role can be debtor (creditor) in one or more

commitments; each commitment has exactly one debtor (creditor). A commitment has

an antecedent and a consequent, each representing some state of the world. Table 1

introduces the message types by which agents update commitments [5]. In the table,

are variables over agents, and are variables over propositions.

Message Sender Receiver Effect Business Significance

Create brings about a relation

Cancel dissolves relation

Release dissolves relation

Delegate delegates relation to another debtor

Assign assigns relation to another creditor

Declare informs about some aspect of state

Table 1. Messages and their effects; a commitment is understood as a contractual relation



Conceptually, a service engagement is a business-level specification of interaction.

It describes the possible commitments that may arise between agents adopting the roles,

and via the standard messages of Table 1, how the commitments are updated. An en-

gagement should not be interpreted to mean that by simply adopting roles in this en-

gagement the agents will become committed as stated. The commitments themselves

would come about at runtime via exchange of messages. Moreover, whether an agent

sends a particular message is solely his own decision.

Commitments are made in a certain sociolegal context and represents a contractual

relationship between the debtor and the creditor. They yield a notion of compliance ex-

pressly suited for service-oriented applications. Agent compliance amounts to the agent

not violating any of his commitments towards others. A service engagement specified

in terms of commitments does not dictate specific operationalizations (runtime enact-

ments) in terms of when an agent should send or expect to receive particular messages;

as long as the agent discharges his commitments, it can act as it pleases [9].

Table 3 shows the (partial) service engagement for an auction application. Figure 4

shows a possible enactment for the the service engagement of Table 3. The bidder first

creates . Then he places bids, possibly increasing his bids (indicated by the dotted

bidirectional Bidding arrow). The seller informs the bidder that he has won the bid,

which detaches and causes the unconditional commitment

to hold. Finally, bidder discharges his commitment by sending the

payment.

Fig. 3. A (partial) service engagement depicting an Auction ap-

plication. The labels are for reference purposes only. Figure 4

shows an enactment of this engagement between a bidder agent

and a seller agent

Fig. 4. An enactment

Where do service engagements come from? Domain experts specify these from

scratch or by reusing existing specifications that may be available in a repository. In

eBay’s case, presumably architects, experts on the various kinds of businesses (such

as payment processing, shipping, and so on) and processes (auctions) involved, and

some initial set of stakeholders got together to define the architecture. How application

requirements (as distinct from an individual participant’s requirements) relate to the

specification of service engagements is studied in [9].

2.3 Binding

As Figure 2 shows, an agent may choose to play, in other words, adopt one or more roles

in a service engagement. Such an agent is termed a engagement-bound agent. Adopting

a role is the key notion in instantiating an application, as shown in Figure 1.



However, before a bound agent may start interacting, it may want to verify that it is

compatible with the engagement. The semantic relationship between a service engage-

ment and an agent’s goals is the following. To fulfill his goals, an agent would select

a role in some service engagement and check whether adopting that role is compatible

with the fulfillment of his goals. If it is compatible, then the agent would presumably act

according to the role to fulfill his goals; else, it would look for another service engage-

ment. For example, the bidder may have the requirement of a complete refund from the

seller if a seller delivers damaged goods. The bidder must check whether the service

engagement with the seller includes a commitment from the seller to that effect; if not,

he may try a different service engagement. We formalize compatibility via the notion

of supports in Section 3.

Notice in Figure 2 that both commitments and goals are expressed in terms of world

states. This provides the common ontological basis for reasoning between goal and

commitments.

3 Goal and Commitment Support

The conceptual model supports two kinds of compatibility reasoning. Given some role

in a service engagement and some goal that the agent wants to achieve, goal support ver-

ifies whether an agent can potentially achieve his goal by playing that role. Commitment

support checks if an agent playing a role is potentially able to honor the commitments

he may make as part of playing the role.

Note the usage of the words support and potentially. Goal (commitment) support is

a weaker notion than fulfillment; support gives no guarantee about fulfillment at run-

time. And yet, it is a more pragmatic notion for open systems, where it is not possible to

make such guarantees anyway. For instance, a commitment that an agent depends upon

to fulfill his goal may be violated.

Goal support Agent (at runtime, or his designer) may execute a query to check

whether playing a role in the service engagement under consideration supports ’s

goal . Intuitively, a goal is supported if (i) no other goal that intends to achieve

negatively contributes to ; and (ii) either of the following holds:

1. is capable of , or

2. can get from some other agent playing role the commitment and

supports (akin to requesting an offer from ), or

3. can make to some agent playing ; in other words, commits to

if the other agent agent achieves (akin to making an offer to ), or

4. is and-decomposed (or-decomposed) and supports all (at least one) subgoals,

or

5. some other supported goal that intends to achieve positively contributes to .

Notice the difference between clauses 2 and 3. In clause 2, can get a commitment

to support a goal only if supports the antecedent; in other words, cannot realisti-

cally hope that some agent will play and will benevolently bring about . According

to clause 3, can support without supporting the consequent of the commitment.

Support of the consequent by the debtor (here ) is a matter of checking for commitment

support, as explained below.



An important aspect in our reasoning is that of visibility (or scope). Visibility roughly

amounts to the goals that an agent intends to achieve. The content of a goal query de-

fines the reasoning scope, namely which are the goals that the agent intends to achieve.

Given a query for a goal , the query scope consists of all the subgoals of the tree start-

ing from the top-level goal ancestor of . Visibility is important in order to rule out

contributions from goals which are not intended.

Goal support is presented with respect to a single goal for the sake of exposition,

but this notion is easily generalized to propositions. For instance, one might query for

the support of a goal proposition . In this case, the query scope is the union of

the scopes of and . Similarly, the antecedent and consequent of a commitment can

be expressed using propositions.

Table 2 axiomatizes the above rules in datalog1. A goal is expressed as an atomic

proposition. Antecedent and consequent of commitments are expressed as lists of atomic

propositions (the list is interpreted as a conjunction) . Given (i) an agent’s goal model;

(ii) a service engagement; and (iii) the role played by the agent in the engagement, the

predicate is true iff are supported.

-gs(X) :- goal(X), not v(X). R1. Goals out of the scope cannot be supported.

do(X) v -do(X) :- cap(X). R2. Capabilities can be exploited or not.

gs(X) :- do(X). R3. Using a capability implies goal support.

gs(X) :- v(X), gs(Y), pps(Y,X).

-gs(X) :- v(X), gs(Y), mms(Y,X).

R4. ++S and - -S apply from and to visible

goals.
v(X) :- v(Y), anddec(Y,L), goal(X), #member(X,L).

v(X) :- v(Y), ordec(Y,L), goal(X), #member(X,L).
R5. A sub-goal is visible if its parent is visible.

gs(X) :- anddec(X, ), not subgU(X).

subgU(X) :- anddec(X,L), #member(Y,L), goal(Y),

not gs(Y).

R6. An and-decomposed goal is supported if

none of its subgoals is not supported.

comm(X,Y,C) :- cc(A,B,X,Y,C), plays(B).

comm([],X,C) :- cc(A,B,X,Y,C), plays(A).

R7. The agent can exploit only those commit-

ments where it plays debtor or creditor.

e(X) v -e(X) :- comm( , ,X).

-e(C) :- comm(L,Y,C), not suppAll(C,L).

R8. Commitments can be exploited only if the

precondition is supported.

gs(Y) :- comm(X,L,C), #member(Y,L), goal(Y), sup-

pAll(C,X), e(C).

R9. A goal is supported by a commitment if it is

in the consequent, the antecedent is supported,

and the commitment is exploited.
suppAll(C,X) :- wcomm(X, ,C), #length(X,0).

suppAll(C,X) :- wcomm(X, ,C), #length(X,N),

N 0, #memberNth(X,1,E), gs(E), #tail(X,X1),

suppAll(C,X1).

wcomm(L1,L2,C) :- comm(L1,L2,C).

wcomm(L1,L2,C) :- wcomm([A L1],L2,C), goal(A).

R10. A commitment’s antecedent is supported

if all the goals in the antecedent are supported.

These rules split the antecedent into atomic

components.

Table 2. Datalog (DLV-complex) axiomatization of the supports relation

A goal model is defined by the following predicates: states that is a goal;

( ) denotes that is and-decomposed (or-

1 www.mat.unical.it/dlv-complex



decomposed) to ; ( ) represents a ++S (- -S) con-

tribution from to ; says that the agent is capable of goal .. The predi-

cate indicates the commitment

. The predicate states that the agent under consideration plays

role .

The query scope (the visibility predicate ) is manually defined for what concerns

the top-level goals; then it is propagated top-down by rule R5. This may be automated

by macros.

Commitment support. It makes sense to check whether an agent will be able to

support the commitments it undertakes as part of a service engagement. In other words,

let’s say to support , makes to an agent . Now if brings about ,

will be unconditionally committed to bringing about . If is not able to support

goal , then will potentially be in violation of the commitment. Commitment support

reduces to goal support for the commitment consequent.

A reckless or malicious agent may only care that his goals are supported regardless

of whether his commitments are supported; a prudent agent on the other hand would

ensure that the commitments are also supported.

Reasoning for support as described above offers interesting possibilities. Some ex-

amples: (i) can reason that is supported by if supports

; (ii) can support a conjunctive goal by getting commitments for and

from two different agents, (iii) to support in a redundant manner, may get commit-

ments from from two different agents; and so on.

4 Evaluation

First, we model a real-life scenario in our conceptual model, and show how we may

reason about it. Second, we demonstrate the scalability of the supports reasoning.

4.1 Case study: insurance claim processing

We show how the model and the reasoning techniques can be used to model a real

life setting concerning car insurance claim processing. We base our scenario on the

documentation that the Financial Services Commission of Ontario (FSCO) provides

online, specifically on the description of the claim process2. The process describes the

perspective of a driver involved in a car accident in Ontario; it also highlights what

happens behind the scenes. It describes a service engagement that is independent of

specific insurance companies, car repairers, and damage assessors. We assume the car

driver is not at fault and his policy has no deductible.

Figure 5 describes the service engagement in the car insurance claim processing

scenario. The engagement is defined as a set of roles (circles) connected via commit-

ments; the commitments are labeled ( ). Table 3 explains the commitments.

Figure 6 shows an agent model where agent Tony plays role repairer. The main goal

of Tony is to perform a repair service. This is and-decomposed to sub-goals car repaired,

2 http://www.fsco.gov.on.ca/english/insurance/auto/after auto accident ENG.pdf



Fig. 5. Role model for the insurance claim processing scenario. Commitments are rectangles that

connect (via directed arrow) a debtor to a creditor

insurer to repairer: if insurance has been validated and the repair has been reported, then the

insurer will have paid and approved the assessment

insurer to assessor: if damages have been reported, the assessment will have been paid

assessor to repairer: if damages have been reported and the insurance has been validated, a

damage assessment will have been performed

supplier to repairer: if parts have been paid for, new parts will have been provided

repairer to customer: if the insurance has been validated, then the car will have been repaired

Table 3. Commitments in the car insurance service engagement

Fig. 6. Visual representation of Tony’s insurance-engagement bound specification. Tony plays

repairer.



receipt sent, and service charged. The goal model contains two variation points: the

or-decompositions of goals parts evaluated and service charged. The former goal is or-

decomposed to subgoals new parts provided and old parts fixed. Note the softgoals low

cost service and high quality parts. Using new parts has a negative contribution to low

cost service and a positive one to high quality parts, whereas fixing old parts contributes

oppositely to those soft goals.

Table 4 show the insurance engagement-bound specification of Tony in datalog.

Even though both the service engagement and Tony’s requirements are in a single table,

we remark that they are independently defined artefacts. The binding of Tony to the

repairer role in the engagement in indicated by plays(repairer) at the beginning of the

specification. We now demonstrate the reasoning.

% AGENT-ROLE plays relation

plays(repairer).

% GOALS: each goal node is declared, only three shown below

goal(servicePerformed). goal(carRepaired). goal(receiptSent).

% CAPABILITIES

cap(receiptSent). cap(damagesReported). cap(partsPaid).

cap(oldPartsFixed). cap(repairPerformed). cap(repairReported).

% GOAL MODEL: DECOMPOSITIONS

anddec(servicePerformed,[carRepaired,receiptSent,serviceCharged]).

anddec(carRepaired,[assessmentPerformed,assessmentApproved,

partsEvaluated,repairPerformed]).

anddec(assessmentPerformed,[damagesReported,assessmentDone]).

ordec(partsEvaluated,[newPartsUsed,oldPartsFixed]).

anddec(newPartsUsed,[partsPaid,newPartsProvided]).

ordec(serviceCharged,[insuranceCovered,paymentDone]).

anddec(insuranceCovered,[insuranceValidated,repairReported,paymentDone]).

% GOAL MODEL: CONTRIBUTIONS

mms(newPartsProvided,lowCostService). pps(newPartsProvided,highQualityParts).

pps(oldPartsFixed,lowCostService). mms(oldPartsFixed,highQualityParts).

% COMMITMENTS IN THE SERVICE ENGAGEMENT

cc(insurer,repairer,[insuranceValidated,repairReported],

[assessmentApproved, paymentDone],c1).

cc(insurer,assesser,[damagesReported],[assessmentPaid],c2).

cc(assesser,repairer,[damagesReported,insuranceValidated],[assessmentDone],c3).

cc(supplier,repairer,[partsPaid],[newPartsProvided],c4).

cc(repairer,customer,[insuranceValidated],[carRepaired],c5).

Table 4. Datalog representation of Figure 6

Table 5 shows some queries for support of particular goals and their solutions. The

solutions represent the output that our implementation provides; each solution is a pos-

sible strategy to support a goal. A strategy consists of a set of exploited capabilities and

a set of commitments that the agent can get or make to other agents. Below, we describe

the posed queries and we provide some details to explain why the alternatives are valid

solutions to the query. The queries pertain to the insurance engagement-bound Tony.

Query 1 Can Tony support service performed?



Query 1: Can Tony support “service performed”?

v(servicePerformed).

gs(servicePerformed)?

Solutions:

1: do(receiptSent), do(repairPerformed), do(damagesReported), do(oldPartsFixed), do(partsPaid),

do(repairReported), e(c1), e(c3), e(c4), e(c5)

2: do(receiptSent), do(repairPerformed), do(damagesReported), do(partsPaid), do(repairReported), e(c1),

e(c3), e(c4), e(c5)

3: do(receiptSent), do(repairPerformed), do(damagesReported), do(oldPartsFixed), do(partsPaid),

do(repairReported), e(c1), e(c3), e(c5)

4: do(receiptSent), do(repairPerformed), do(damagesReported), do(oldPartsFixed), do(repairReported),

e(c1), e(c3), e(c5)

Query 2: Can Tony support “service performed” and “high quality”?

v(servicePerformed). v(highQualityParts).

gs(servicePerformed), gs(highQualityParts)?

Solutions:

1: do(receiptSent), do(repairPerformed), do(damagesReported), do(partsPaid), do(repairReported), e(c1),

e(c3), e(c4), e(c5)

Query 3: Can Tony support “service performed” with “high quality” and “low cost”?

v(servicePerformed). v(highQualityParts). v(lowCostService).

gs(servicePerformed), gs(lowCostService), gs(highQualityParts)?

Solutions: none

Table 5. Queries (and their solutions) against Tony’s insurance-engagement bound specification

This query has four solutions (see Table 5). Solution 1 includes both options to

fix cars (to support goal parts evaluated): either new parts are bought and old parts

are fixed. Tony can make commitment to a customer in order to support insurance

validated; he can get from supplier since Tony supports the antecedent by using his

capability for parts paid. In order to get commitments and , Tony has to chain com-

mitments: get or make other commitments in order to support the antecedent of another

commitment. Tony can get from an assessor by using his capability for damages

reported and chaining to support insurance validated. Tony can get from insurer

by using his capability for repair reported and chaining for insurance validated. Solu-

tion 1 contains redundant ways to achieve a goal, thus might be useful in order to ensure

reliability. Solution 2 involves buying new parts only, and it has the same commitments

of solution 1. Solution 4 involves fixing old parts only. Solution 3 includes fixing old

parts and also paying new parts, but not . This option is legitimate, even though not a

smart one. Notice how solution 1 and solution 3 are not minimal: indeed, solution 2 is

a subset of solution 1, while solution 4 is a subset of solution 3.

Query 2 Can Tony support service performed with high quality?

Verifying this query corresponds to checking goal support for the conjunction of

the two goals. This means that goal high quality is in the scope. The effect of this mod-

ification is that three solutions for Query 1 are not valid for Query 2. The only valid

solution is the former Solution 2. The reason why the other three solutions are not valid



is simple: they include goal old parts fixed, which contributes negatively (- -S) to high

quality.

Query 3 Can Tony support service performed with high quality and low cost?

The third query adds yet another goal in the scope, namely low cost. The effect is

that Tony cannot support the conjunction of the three queried goals. The reason for this

is that goal new parts provided has a negative contribution to low cost, therefore the

only valid solution for Query 2 is not valid for Query 3.

4.2 Scalability experiments

We have evaluated the applicability of our reasoning to medium- and large-sized sce-

narios by performing some experiments on goal models and service engagements of

growing size. Our tests are not intended to assess the absolute performance of the rea-

soner, rather they aim to empirically check whether the query execution time grows

linearly or exponentially with the size of the problem.

We base our analysis on scenario cloning: a basic building block is cloned to obtain

larger scenarios. The building block consists of a goal model with 9 goals (with one top-

level goal, 3 and-decompositions and 1 or-decomposition) and a service engagement

with 2 commitments. Cloning this scenario produces a new scenario with 2 top-level

goals, 18 goals and 4 commitments; another cloning operation outputs 3 top-level goals,

27 goals and 6 commitments, and so on. The posed query consists of the conjunction of

all the top-level goals in the cloned scenario.

Note that cloning linearly increases the number of goals and commitments, whereas

it exponentially increases the number of solutions. Cloning is a useful technique to

check scalability for our reasoning, given that the size to consider is not the number of

goals and commitments but the number of solutions. The cloned scenario is character-

ized by high-variability.

# goals # comms # solutions time (s) ( s)

9 2 5 0.009 1866

18 4 25 0.013 533

27 6 125 0.033 266

36 8 625 0.112 179

45 10 3125 0.333 107

54 12 15625 1.361 87

63 14 78125 7.017 90

72 16 390625 37.043 95

81 18 1953125 199.920 102

Table 6. Experiments evaluating the scalability of goal support reasoning

The experiments have been run on a machine with an AMD Athlon(tm) 64 X2 Dual

Core Processor 4200+ CPU, 2GB DIMM DDR2 memory, Linux version 2.6.31-15-

generic kernel, DLV-Complex linux static build 20090727. We have executed three runs



for every experiment; the considered time is the average time; time has been measured

using the linux “time” utility and summing the user and sys values.

Table 6 present the results of the scalability experiments. The first three columns

show the number of goals, commitments and solutions, respectively. Notice how the

number of solutions grows exponentially: the biggest experiment has almost two mil-

lions solutions. The fourth column shows the total time needed to run the experiment;

the reasoning is applicable at design time to medium-large models, given that 2 millions

solutions are computed in 200 seconds on a desktop computer. The most significant re-

sult, however, is in the last column. It shows the average time to derive one solution in

microseconds. It is interesting to notice that the time per solution does not grow expo-

nentially. The average time for the smaller experiments is higher because the reasoner

initialization time has a strong impact, while the time grows pseudo-linearly for bigger

experiments.

5 Conclusion and Discussion

In this paper, we applied two high-level abstractions, goals and commitments, towards

the modeling of service-oriented applications. We illustrated the reasoning relationships

between the two abstractions, and applied it to a real car insurance scenario. We em-

phasize the following salient features of our modeling approach. (1) Architecture is

not specified in terms of intentional abstractions such as goals; neither is it specified

in term of control and data flow. Architecture is specified in terms of social abstrac-

tions, namely, commitments. (2) Commitment are conditional and capture the recipro-

cal nature of business relationships. (3) Commitments decouple agents: if an agent has

a commitment from another, it may not care what goals the other has.

Prominent goal-oriented methodologies such as Tropos [2] and KAOS [23] do not

distinguish between application architecture and the requirements of individual agents.

The reason is their basis in traditional information systems development where stake-

holders cooperate in building a fully specified system. Gordijn et al. [10] combine goal

modeling with profitability modeling for the various stakeholders; however, their ap-

proach shares the monolithic system-development point of view.

One may understand dependencies between actors in i* [24] as an architectural

description of the application. However, dependencies do not capture business relation-

ships as commitments do. Guizzardi et al. [11] and Telang and Singh [22] highlight

the advantages of commitments over dependencies for capturing relationships between

roles. Both Telang and Singh [22] and Gordijn et al. [10] especially note that depen-

dencies do not capture the reciprocal nature of a business transaction. Bryl et al. [3]

use a planning-based approach to explore the space of possible alternatives for satisfy-

ing some goal; however, unlike us, they follow goal dependencies inside the dependee

actors, thus violating heterogeneity. Castro et al. [4] highlight the lack of modularity

in goal models. Since commitments decouple agents, they significantly alleviate the

modularity problem.

Compatibility between a participant and a service engagement is a different kind

of correctness criterion compared to checking for progress or safety properties over

procedural specifications, as is done for example, in [7]. Mahfouz et al. [14] consider



the alignment between the goal model of an application, in terms of both dependencies

between the actors and their internal goals, and the choreography under consideration.

Their approach could be applied in the design of choreographies, that might be then

made available as architectural specifications.

Abstractions such as goals and intentions have been used to describe services [13,

18, 13]; however such approaches violate heterogeneity by making assumptions about

other participants’ internals. Specifications of service engagements are eminently more

reusable than the goal models of actors [9]. Liu et al. [12] formalize commitments in a

weaker sense—as a relation between an actor and a service, not between actors, as in

done in our approach.

Workflow-based approaches for business processes, for example, [17, 15], capture

interaction from the viewpoint of a single participant. As such, they may be used to code

up individual agents—either as an alternative to goal models or as their operationaliza-

tion. Benatallah et al. [1] formalize properties such the similarity and replaceability for

choreographies. Although such approaches are valuable, they are at a lower level of

abstraction than service engagements. Such properties have begun to be formalized for

service engagements [20]. Especially interesting is the formalization of interoperabil-

ity in terms of commitments in completely asynchronous settings [5]. The formalization

therein completely obviates the need for control flow constructs in service engagements,

for example, that an Accept or Reject should follow the Order.

One feature that distinguishes our model from some others in the literature, for

example [6], is the emphasis on roles and participants as opposed to on the service

itself. In our approach, a service is something that is realized when participants interact

according to the service engagement. Notice that there is no “service” entity in our

conceptual model.

Our approach opens up interesting directions of work. An agent would ideally mon-

itor both his goals and commitments. Compliance with legal and contractual require-

ments may be formulated directly in terms of commitments, instead of in terms of

following a process. An agent would adapt in case some goal is threatened by adopt-

ing new strategies; however, in doing so it should ideally also consider his outstanding

commitments, else it risks being noncompliant.
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