
Modelling Secure Multiagent Systems
Haralambos Mouratidis

University of Sheffield
Computer Science Department

211 Portobello Street
S11 4DP, Sheffield, UK

H.Mouratidis@dcs.shef.ac.uk

Paolo Giorgini
University of Trento

 Department of Information and
Communication Technology

Via Sommarive, 14 38050 Povo, Italy
Paolo.Giorgini@dit.unitn.it

Gordon Manson
University of Sheffield

Computer Science Department
211 Portobello Street

S11 4DP, Sheffield, UK

G.Manson@dcs.shef.ac.uk

ABSTRACT
Security plays an important role in the development of
multiagent systems. However, a careful analysis of software
development processes shows that the definition of security
requirements is, usually, considered after the design of the
system. This is, mainly, due to the fact that agent oriented
software engineering methodologies have not integrated security
concerns throughout their developing stages. The integration of
security concerns during the whole range of the development
stages could help towards the development of more secure
multiagent systems. In this paper we introduce extensions to the
Tropos methodology to enable it to model security concerns
throughout the whole development process. A description of the
new concepts is given along with an explanation of how these
concepts are integrated to the current stages of Tropos. An
example from the health care sector is used to illustrate the
above.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specification –
Methodologies;

I.2.11 [Artificial Intelligence]: Distributed Artificial
Intelligence – Multiagent Systems.

General Terms
Design, Security.

Keywords
Agent Oriented Software Engineering, Methodologies,
Multiagent Systems, Security, Tropos.

1. INTRODUCTION
Agent Oriented Software Engineering (AOSE) introduces an
alternative approach in analysing and designing complex
computerised systems [1,2]. According to AOSE, a complex

computerised system is viewed as a multiagent system in which
autonomous software agents (subsystem) interact with each
other in order to satisfy their design objectives. AOSE provides
designers with more flexibility in their analysis and design. The
actual design of the system takes place by specifying a
multiagent system as a society, similar to a human society,
consisting of entities that possess characteristics similar to
humans such as mobility, and intelligence with the capability of
communicating.

It has been argued, “if agents are to realise their potential as a
software engineering paradigm, then it is necessary to develop
software engineering techniques that are specifically tailored to
them” [3]. Thus, agent oriented software engineering have been
developed to one of the most active research areas within the
agent research community, and many methodologies have been
developed. However, it is recognised amongst the agent research
community [1,2] the need of developing a complete
methodology for analysing and designing multi-agent systems.
The main role of such a methodology will be to help in all the
phases of the development of a system, and more importantly, to
help capture and model the unique characteristics that agent-
oriented systems introduce such as flexibility, autonomous
problem solving, and the rich interactions between the
individual agents.

Security plays an important role in the development of
multiagent systems and is considered as one of the main issues
to be dealt for agent technology to be widely used outside the
research community. As a result, research on security for
Multiagent systems is an important area within the agent
research community. However, the research has been mainly
focused on the solution of individual security problems of the
multiagent systems, such as attacks from an agent to another
agent, attacks from a platform to an agent, and attacks from an
agent to a platform.

Only little work has been carried out to integrate security
concerns into an agent-oriented methodology. Developers of
agent oriented software engineering methodologies mainly
neglect security. The common approach towards the inclusion of
security within a system is to identify security requirements after
the definition of a system. This approach has provoked the
emergence of computer systems afflicted with security
vulnerabilities [4]. From the viewpoint of the traditional security
paradigm, it should be possible to eliminate such problems
through better integration of security and systems engineering.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS’03, July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007…$5.00.

In this paper, we introduce extensions to the Tropos
methodology to accommodate security concerns during the
software development stages. Section 2 provides an overview of
how security is usually defined and gives some real facts of
security failures. Section 3 describes our approach of
integrating security and systems engineering in Tropos, by
describing the modelling features we introduce in our approach,
and how these are integrated to the current concepts and stages
of the methodology. In Section 4 we illustrate our approach with
the aid of an example taken from the health care sector, and in
Section 5 we present a discussion of related work. Section 6
presents some concluding remarks and future work.

2. SECURITY
Security is usually defined in terms of the existence of any of the
following properties:

� Confidentiality: The property of guaranteeing

information is only accessible to authorised
entities and inaccessible to others

� Authentication: The property of proving the
identity of an entity

� Integrity: The property of assuring that the
information remains unmodified from source
entity to destination entity

� Access Control: The property of identifying the
access rights an entity has over system resources

� Non repudiation: The property of confirming the
involvement of an entity in certain
communication

� Availability: The property of guaranteeing the
accessibility and usability of information and
resources to authorised entities

Failure of any of the above-mentioned security properties might
lead to many dangers ranging from financial losses to sensitive
personal information losses. According to the Computer Crime
and Security Survey, contacted by the Computer Security
Institute (CSI) during the first three quarters of 2002, about
ninety (90) percent of respondents, mainly large US
corporations and US government agencies, detected computer
security breaches and eighty (80) percent acknowledged
financial losses due to those security breaches.

Security vulnerabilities have also been dramatically increased
the last few years. According to the CERT Coordination Center1
while during 1995, 171 vulnerabilities were reported, this
number increased to 3,222 during the first three quarters of
2002. In addition, the last 10 years the number of incidents
reported has increased from 773 (in 1992) to 73,359 (the first
three quarters of 2002).

All those figures prove that security is not considered as much
as it should. A reason for this is that for software developers,
security interferes with features and time to market. Thus,
currently the definition of security requirements is usually
considered after the design of the system. This typically means
that security enforcement mechanisms have to be fitted into a

1 http://www.cert.org/

pre-existing design therefore leading to serious design
challenges that usually translate into software vulnerabilities.

The same is true for Multiagent systems. A main reason for this
situation is that developers of agent-oriented methodologies
have mainly neglected security. Although, many agent oriented
methodologies have been developed during the last few years
[2,5], very little evidence have been reported of methodologies
that they adequately integrate security and systems engineering
within their development process. Agent Oriented software
engineering considers security as a non-functional requirement.
However, differently than other non-functional requirements,
such as performance and reliability, the definition of security is
usually considered after the design of the system.

We believe that security concerns should be considered during
the whole development process of a Multiagent system and it
should be defined together with the requirements specification.
Taking security requirements into account together with the
functional requirements of a Multiagent system throughout the
development stages helps to limit cases of conflict between
security and system requirements, by identifying them very early
in the system development, and find ways to overcome them. On
the other hand, adding security as an afterthought not only
increases the chances of such a conflict to exist, but it requires
huge amount of money and valuable time to overcome it, once
they have been identified (usually a major rebuild of the system
is needed).

The integration of security concerns within the context of a
multiagent system will require for the subsystems (agents) of the
system to consider the security requirements when specifying
their goals and interactions therefore causing the propagation of
security requirements to the rest of the subsystems.

3. SECURE TROPOS
Tropos [5] is a software development methodology, for building
agent-oriented software systems, that uses concepts such as
actors, goals, soft goals, tasks, resources (see figure 1 for
graphical representation) and intentional dependencies (see
figure 2a for graphical representation) throughout all the phases
of the software development [6]. A key feature of Tropos is that
it pays great deal of attention to the early requirements analysis
that precedes the specification of the perspective requirements,
emphasizing the need to understand the how and why the
intended system would meet the organisational goals.

Figure 1: Graphical Representation of Tropos concepts
Tropos supports four development stages, namely early and late
requirements, architectural design, and detailed design. Early
and late requirements analysis represents the initial phases in the
Tropos methodology and the final goal is to provide a set of
functional and non-functional requirements for the system-to-be.
Both phases, early and late, share the same conceptual and
methodological approach. This means, that most of the

techniques used during the early requirements analysis are used
for the late as well. The main difference is that during the early
requirements analysis, the developer models the main
stakeholders of the system and their dependencies, while in the
late requirements analysis the developer models the system itself
by introducing it as another actor and model its dependencies
with the other actors of the organisation. The architectural
design stage defines the system’s global architecture in terms of
actors interconnected through data and control flows
(represented as dependencies). In addition, during this stage the
actors of the system are mapped into a set of software agents,
each characterized by its specific capabilities. During the
detailed design stage, the developer specifies, in detail, the
agents’ goals, beliefs, and capabilities as well as the
communication between the agents. For this reason, Tropos
employs a set of AUML diagrams [7].

Tropos was not conceived with security in mind and as a result
it fails to adequately capture security requirements [8]. The
process of integrating security and functional requirements
throughout the whole range of the development stages is quite
ad hoc, and in addition, the concept of soft goal that Tropos uses
to capture security requirements fails to adequately capture some
constraints that security requirements often represent [8]. Thus,
we have extended the Tropos methodology to enable developers
to adequately capture security requirements. The next section
describes our extensions and how they have been integrated
within the Tropos methodology process.

3.1 The “secure” concepts
Extra concepts were introduced to the methodology to enable it
to model security requirements during the software development
process. These are:

Security Diagram [9], The security diagram represents the
connection between security features, threats, protection
objectives, and security mechanisms that help towards the
satisfaction of the objectives. Security features [9] represent
security related features that the system-to-be must have.
Protection objectives [9] represent a set of principles that
contribute towards the achievement of the security features.
Threats [9] on the other hand represent circumstances that have
the potential to cause loss or problems that can put in danger the
security features of the system, while security mechanisms [9]
identify possible protection mechanisms of achieving protection
objectives.

Security Constraint [8], which represents constraints that are
related to the security of the system. Since, constraints can
influence the security of the system either positively or
negatively, we further define positive and negative security
constraints respectively. An example of a positive security
constraint could be Allow Access Only to Personal Information,
while a negative security constraint could be Send Information
Plain Text (not encrypted).

Secure Entities [8], which represent any secure goals/tasks/
resources of the system. Secure goals are introduced to satisfy
possible security constraints that exist in the system, while
security tasks represent ways of achieving the introduced

security goals. A resource that is related to a secure entity or a
security constraint is considered a secure resource.
Secure Dependencies [8], represent that a dependency between
two actors involves the introduction of a security constraint that
must be satisfied either by the depender, the dependee or both
for the dependency to be valid. Secure dependencies are
categorized into depender secure dependency, in which the
depender introduces security constraints for the dependency and
the dependee must satisfy the security constraints for the
dependency to be valid, dependee Secure Dependency, in which
the dependee introduces security constraints and the depender
must satisfy them, and double Secure Dependency, in which
both the depender and the dependee introduce security
constraints for the dependency that both must satisfy for the
dependency to be valid. A graphical representation of the
different types of dependencies is illustrated in figure 2.

Figure 2: Different types of dependencies

Secure Capabilities, which represent capabilities that the actors
(agents) of the system must have in order to help towards the
satisfaction of the security requirements of the system.

3.2 Modelling Activities
Many different modeling activities contribute to the capture of
security requirements and their integration within the Tropos
development process. These are:

Security diagram modelling, which involves the modelling of
security needs of the system-to-be, problems related to the
security of the system (such as possible threats and
vulnerabilities) and possible solutions to the security problems
(these solutions can usually be identified in terms of a security
policy that the organisation might have). We have decided to use
Tropos concepts to capture the concepts of the security diagram.
This helps to better integrate the security diagram within the
Tropos methodology and make its concepts easily
understandable to developers familiar with Tropos. Thus, we are
using the concept of a soft goal to capture security features. Soft
goals in Tropos are used to model quality attributes for which
there are no clear criteria for satisfaction. In the same sense,
security features are not subject to any clear criteria for

satisfaction. Protection objectives are represented using the
concept of a goal, because as goals define desired states of the
world, protection objectives define desired security states that
the system must have. To represent security mechanisms we use
the concept of a task, since as a task represents a way of doing
something (usually a goal), a security mechanism represents a
way of achieving a security objective. The following figure
shows how the above-mentioned concepts can be graphically
represented.

Figure 3: Security diagram concepts

Security constraint modelling involves the modeling of

the security constraints imposed to the actors and the system and
it allows the designer to perform an analysis by introducing
relationships between the constraints or a constraint and its
context [9]. Security constraints are imposed by the stakeholders
(during the early requirements stage) and by the security
diagram (during the late requirements stage) and are guaranteed
by assigning capabilities (secure capabilities) to the components
of the system (i.e. the actors or the agents of it). Stakeholders
can impose positive and negative security constraints, while the
constraints imposed by the security diagram are only positive
security constraints. By imposing security constraints to
different parts of the system, we are able to identify possible
conflicts between security and other (functional and non
functional) requirements of the system, identify (stakeholder)
constraints that can put in danger the security of the system, and
propose possible ways towards a design that will integrate
security and systems engineering leading to the development of
a more secure system. A security constraint is represented
graphically as shown in figure 4.

Secure entities modelling, which is considered as
complementary to the security constraints modeling. The
analysis of the secure entities follows the same reasoning
techniques identified by Tropos for the goal and task analysis
[10]. Secure Entities are represented by introducing an S within
brackets (S) before the text description as shown in figure 4.

Figure 4: Security constraint and secure entities graphical

representations

Secure capability modelling, involves the identification of the
capabilities of the subsystems (actors) to guarantee the
satisfaction of the security constraints. In order for the system to
be able to satisfy its goals and the security constraints, the
system’s agents has to be provided with capabilities. Secure
Capabilities modelling takes place alongside with the
capabilities modelling during the architectural design. Secure
capabilities can be identified by considering dependencies that
involve secure entities in the extended actor diagram. Later,

during the detailed design, these capabilities are further
specified (in terms of plans, etc) and they are coded during the
implementation stage.

3.3 Integration to the current Tropos stages
A difficult but necessary task when extending a methodology is
to successfully integrate the extensions to the current stages of
the methodology. In our case, we have integrated the extensions
as follows:

Early requirements stage: During the early requirements
analysis stage the Security Diagram (SD) is constructed and
security constraints are imposed to the stakeholders of the
system (by other stakeholders). However, the imposed security
constraints are expressed in high-level statements, so they are
furthered analysed [9] and security entities are introduced to
satisfy them.

Late requirements stage: During the late requirements stage
security constraints are imposed to the system-to-be (by the
security diagram). These constraints are further analysed
according to the constraint analysis processes [9].

Architectural design stage: During the architectural design we
identify the security constraints and secure entities that the new
actors introduce and also during the actor decomposition we
identify security sub-constraints and sub-entities. In addition
secure capabilities are identified and assigned to each agent of
the system.

Detailed design stage: We specify the agent capabilities and
interactions taking into account the security aspects as well. In
doing so we are using AUML [7] notation in which we
introduce the tag of security rules. This is similar to the
business rules that UML has for defining constraints on the
diagrams.

4. AN EXAMPLE
In this section, we go through the development stages using a
case study. This case study is part of a real-life system, called
electronic Single Assessment Process (eSAP), under
development at the University of Sheffield [11]. The electronic
Single Assessment Process (eSAP) system is an agent-based
health and social care system for the effective care of older
people. To make this example simpler and more understandable,
we consider a substantial part of the eSAP system.

4.1 Early Requirements
Early Requirements stage is concerned with the understanding
of a problem by studying an existing organisational setting. The
output of this phase is an organisational model, which includes
relevant actors and their respective dependencies. In our
example, we consider the following actors for the eSAP system:

� Professional: The health and/or social care
professional

� Older Person: The Older Person (patient) that wishes
to receive appropriate health and social care

� DoH: The English Department of Health

� R&D Agency: A Research and Development Agency
interested in obtaining medical information

� Benefits Agency: An agency that helps the older
person financially

Threat

Figure 5: Part of the security diagram of the eSAP system

The first step in the early requirements analysis is the
construction of the security diagram. The main security features
of the security diagram for the eSAP system are privacy,
integrity and availability. However, for our example we consider
only two desired security feature, namely privacy and
availability. A part of the security diagram, taking into account
privacy and availability is shown in figure 5.

The next step involves the modelling of goals, dependencies and
security constraints between the stakeholders (actors). For this
purpose we are employing actors’ diagram. In such a diagram
each node represents an actor, and the links between the
different actors indicate that one depends on the other to
accomplish some goals. In addition, the imposed security
constraints (by other stakeholders) indicate that the actors must
satisfy them for the dependencies to be valid. For example, the
Older Person depends on the Benefits Agency to Receive
Financial Support. However, the Older Person worries about
the privacy of their finances so they impose a constraint to the
Benefits Agency actor, to keep their financial information
private. The Professional depends on the Older Person to
Obtain (Older Person) OP Information, however one of the
most important and delicate matters for the older person (as with
any patient) is the privacy of their personal medical information,
and the sharing of it. Thus, most of the times, the Professional is
imposed a constraint to share this information if and only if
consent is achieved. One of the main goals of the R&D Agency
is to Obtain Clinical Information in order to perform tests and
research. To get this information the R&D Agency depends on
the Professional. However, the Professional is imposed a
constraint (by the Department of Health) to Keep Patient
Anonymity. Figure 6 illustrates part of the actor diagram of the
eSAP system taking into consideration the above-mentioned
constraints that are imposed to the stakeholders of the system.

When the stakeholders, their goals, the dependencies between
them, and the security constraints have been identified, the next
step of this phase is to analyse in more depth each actor’s goals

and the security constraints imposed to them. In addition, secure
entities are introduced to help towards the satisfaction of the
imposed security constraints.

Figure 6: The stakeholders of the eSAP System

The analysis of the security constraints starts by identifying
which goals of the actor they restrict. The assignment of a
security constraint to a goal is indicated using a constraint link
(a link that has the “restricts” tag). For example, the
Professional actor (figure 7) has been imposed two security
constraints (Share Info Only If Consent Achieved and Keep
Patient Anonymity). During the means-end analysis of the
Professional actor we have identified the Share Medical Info
goal. However, this goal is restricted by the Share Info Only If
Consent Achieved constraint imposed to the Professional by the
Older Person. For the Professional to satisfy the constraint, a
secure goal is introduced Obtain Older Person Consent.
However this goal can be achieved with many different ways,
for example a Professional can obtain the consent personally or
can ask a nurse to obtain the consent on their behalf. Thus a sub-
constraint is introduced, Only Obtain Consent Personally. This
sub constraint introduces another secure goal Personally Obtain

-

-

-

-

-

-

Social
Engineering

 Eavesdropping

 Denial Of

Service Attack

System
Crashes

 Viruses

Consent. This goal is divided into two sub-tasks Obtain Consent
by Mail or Obtain Consent by Phone. The Professional has also
a goal to Provide Medical Information for Research. However,
the constraint Keep Patient Anonymity has been imposed to the
Professional, which restricts the Provide Medical Information
for Research goal. As a result of this constraint a secure goal is
introduced to the Professional, Provide Only anonymous Info.

Figure 7: Professional Actor Partial Analysis

4.2 Late Requirements
When all the actors have been analysed, the next phase involves
the analysis of the system-to-be. During the late requirements
stage, the system-to-be is analysed within its operation
environment, along with relevant functions, security concerns
and qualities. The system is presented as one or more actors,
who have a number of dependencies with the other actors of the
organisation. These dependencies define all the functional and
non-functional requirements of the system. However, in this
example, we are focusing on the security modeling. From the
security point of view, security constraints are imposed to the
system-to-be (by taking into account the security diagram).
These constraints are further analysed according to the
constraint analysis processes [9].

The main aim of the eSAP system (figure 8) is to Automate Care
in order to help professionals provide faster and more efficient
care, and allow on the other hand older people get more
involved in their care. Taking into consideration the security
diagram there are two main constraints imposed (by the desired
security features of the system- privacy and availability) to the
eSAP’s main goal - Keep Data Private and Keep Data
Available. For the eSAP to satisfy these constraints two secure
goals have been identified. Ensure Data Privacy and Ensure
Data Availability.

This example focuses only on the Keep Data Private constraint.
This constraint can be further analysed to sub-constraints Allow
Only Encrypted Transfer of Data, Allow Only Authorised
Access, and Allow Access Only to Personal Care Plan. Taking

into account the security diagram, secure goals are introduced
to help towards the satisfaction of the imposed security
constraints. Thus the secure goals Use Cryptography, Check
Authorisation, Check Access Control, and Check Information
Flow are introduced. In addition, some of the secure goals are
further analysed in terms of secure tasks.

Figure 8: eSAP System Partial Analysis

Thus, the Use Cryptography goal is divided to two secure tasks
Encrypt Data and Decrypt Data. Although these tasks could be
furthered decomposed by indicating for example the type of the
encryption algorithm this is not the case in this stage, since the
type of the encryption algorithm depends on the implementation
of the system and it will restrict the designers of the system in a
particular implementation style. The Check Authorisation is
decomposed into four secure tasks, Check Password, Check
Digital Signatures, Check Biometrics and Call Back. However,
it is indicated in the diagram that the last two tasks contribute
negatively towards the mobility of the system, and this is one
factor that the developers must take into consideration in the
implementation of the system.

4.3 Architectural Design
The architectural design involves the addition of new actors, in
which new actors are added to make the system interact with the
external actors; actor decomposition, in which each actor is
described in detail with respect to their goals and tasks;
capabilities identification, in which capabilities needed by the
actors to fulfill their goals are identified; and agent assignment,
in which a set of agent types is defined and each agent is
assigned one or more capabilities. From the security point of
view, we identify the security constraints and secure entities that
the new actors introduce and also during the actor
decomposition we identify security sub-constraints and sub-
entities. In addition secure capabilities are identified and
assigned to each agent of the system.

As it was derived from the late requirements stage, one of the
systems secure goals is to “Ensure Data Privacy”. To achieve
this goal the eSAP depends on the Privacy Manager (Figure 9).

Figure 9: Actors’ Decomposition Diagram

The Privacy Manager has four main secure goals, as derived
from the analysis, (sub-goals to the “Ensure Data Privacy” goal)
“check authorisation”, “check access control”, “check
information flow” and “use cryptography”. For achieving these
goals the Privacy Manager depends on the “Authorisation
Manager”, “Access Control Manager”, “Information Flow
Manager” and “Cryptography Manager” respectively. Although
the other actors of the system can be furthered decomposed, due
to lack of space, this example focuses only in the privacy
concerns of the system. For each new actor introduced in the
system, an extended diagram is required to capture the
dependencies of the new actor with the already existing actors of
the system. Figure 10 shows a part (focused on the privacy) of
the extended diagram for the plan “Access Care Plan Info” of
the Professional. The Care Plan Manager is responsible for
providing access at the Professional to “Care Plan Info”. It
depends on the Authorisation Manager to deal with
authorisation procedures, on the Access Control Manager and
the Information Flow Manager to perform access control checks
and information flow checks respectively, and on the
Cryptography Manager for encrypting and decrypting
information.

The next step in the architectural design is to identify (secure)
capabilities for each actor. Taking into consideration the
extended actor diagram (figure 10), each dependency
relationship can give place to one or more capabilities triggered
by external events. The actors along with their capabilities with
respect to the extended diagram of figure 10 are shown in Table
1. When the actors along with their capabilities have been
identified the next step is the agents’ assignment. A set of agent
types are defined and each one of them is assigned one or more
different capabilities (Table 2) with respect to the capabilities
identified in the previous step (Table 1).

4.4 Detailed Design
From the security point of view, during the detailed design the
developers specify the agent capabilities and interactions taking
into account the security aspects derived from the previous steps
of the analysis. In doing so AUML notation is employed. The
only difference is the introduction of security rules. These are
similar to the business rules that UML has for defining
constraints on the diagrams.

Figure 10: Extended Diagram wrt “Access Care Plan Info”

task

Table 1: Actors and their Capabilities
 Actors Capability Cap

. ID

Professional Provide Care Plan Info Request 1

 Provide Authorisation Details 2

 Obtain Care Plan Info 3

Care Plan Manager Obtain Care Plan Info Request 4

 Provide Care Plan Info 5

 Request Encryption of Data 6

 Obtain Encrypted Data 7

 Request Decryption of Data 8

 Obtain Plain Data 9

 Obtain Authorisation Clearance 10

 Obtain Access Control Clearance 11

 Obtain Information Flow
Clearance

12

Cryptography Manager Encrypt Data 13

 Decrypt Data 14

Information Flow
Manager

Provide Information Flow
Clearance

15

Access Control
Manager

Provide Access Control Clearance 16

Authorisation Manager Obtain Authorisation Details 17

 Provide Authorisation Clearance 18

5. RELATED WORK
As stated in the introduction, very little work has taken place in
considering security requirements as an integral part of the
whole software development process. None of the existing agent
oriented methodologies, to our knowledge, have been
demonstrated enough evidence to support claims of adequately
integrate security modeling during the whole software
development stages. Only recently, some initial steps have been
taken towards this direction. Eric Yu has initiated work [12] that
provides ways of modeling and reasoning about non-functional
requirements (with emphasis on security). Yu is using the

concept of a soft goal to assess different design alternatives, and
how each of these alternatives would contribute positively or
negatively in achieving the soft goal.

Table 2: Agents and their Capabilities
Agent Capabilities

Professional 1,2,3

Care Plan Agent 4,5,6,7,8,9,10,11,12

Privacy Agent 13,14,15,16,17,18

Lodderstedt et al present a modeling language, based on UML,
called SecureUML [13]. Their approach is focused on modeling
access control policies and how these (policies) can be
integrated into a model-driven software development process.
Differently than these two approaches that are focused in
particular stages of the development (Yu’s effort is focused only
in the requirements area while Lodderstedt’s work is focused in
the design stage) our approach covers the whole development
process. It is important to consider security using the same
concepts and notations during the whole development process.

In addition, Huget [14] proposes a new methodology, called
Nemo and claims that it tackles security. In his approach,
security is not considered as a specific model but it is included
within the other models of the methodology. Nemo is a new
methodology and as such it has not been extensively presented
on literature. From our point of view, the methodology tackles
security quite superficial and as the developer states
“particularly, security has to be intertwined more deeply within
models” [14]. Thus, more evidence will be required to satisfy
the claim of the developer that the methodology tackles security.

6. CONCLUSIONS AND FUTURE WORK
This paper presents results from our work to extend Tropos
methodology to enable it to consider security requirements
throughout its development stages. During the process of
extending Tropos some very useful observations were obtained.
First of all, the concept of constraints is a natural extension of
the Tropos methodology and it allows for a systematic approach
towards the modelling of security requirements. This is because,
although functional and security requirements are defined
alongside, a clear distinction is provided. Secondly, the security
diagram allows identifying desired security requirements very
early in the development stages, and helps to propagate them
until the implementation stage, introducing a security-oriented
paradigm to the software process. In addition, the iterative
nature of the methodology, allows the re-definition of security
requirements in different levels therefore providing a better
integration with system functionality.

However, this in an ongoing research and more work is required
to achieve our aim, which is to provide a well guided process of
integrating security and functional requirements throughout the
software development process of agent-based systems, using the
same concepts and notations throughout the process. Currently
we are working on refining the identified concepts, notations,
and the process, and we are integrating our extensions to the
Formal Tropos [6] specification language. This will enable us to
formally evaluate our extensions, since Formal Tropos is
amenable to formal analysis.

7. REFERENCES
[1] N. R. Jennings, M. Wooldridge, “Agent-Oriented Software

Engineering” in Handbook of Agent Technology (ed. J.
Bradshaw) AAAI/MIT Press 2001

[2] C. Iglesias, M. Garijo, J. Gonzales, “A survey of agent-
oriented methodologies”, Intelligent Agents IV, A. S. Rao,
J. P. Muller, M. P. Singh (eds), Lecture Notes in Computer
Science, Springer-Verlag, 1999

[3] M. Wooldridge, N. R. Jennings, D. Kinny, “ The GAIA
Methodology for Agent-Oriented Analysis and Design”,
Journal of Autonomous Agents and Multi-Agent Systems 3,
(3) pp. 285-312, 2000

[4] W. Stallings, “Cryptography and Network Security:
Principles and Practice”, Second Edition, Prentice-Hall
1999.

[5] J. Castro, M. Kolp and J. Mylopoulos. “A Requirements-
Driven Development Methodology,” In Proc. of the 13th
Int. Conf. On Advanced Information Systems Engineering
(CAiSE’01), Interlaken, Switzerland, June 2001.

[6] A. Perini, P. Bresciani, F. Giunchiglia, P. Giorgini, J.
Mylopoulos. A Knowledge Level Software Engineering
Methodology for Agent Oriented Programming. in Proc. of
the Fifth International Conference on Autonomous Agents,
Montreal, Canada, 28 May - 1 June 2001.

[7] B. Bauer, J. Müller, J. Odell, “Agent UML: A Formalism
for Specifying Multiagent Interaction”. In Agent-Oriented
Software Engineering, Paolo Ciancarini and Michael
Wooldridge (eds), Springer, Berlin, pp. 91-103, 2001.

[8] H. Mouratidis, P. Giorgini, G. Manson, I. Philp, “A Natural
Extension of Tropos Methodology for Modelling Security”,
In the Proceedings of the Agent Oriented Methodologies
Workshop (OOPSLA 2002), Seattle-USA, November 2002

[9] H. Mouratidis, “Extending Tropos Methodology to
accommodate Security”, Computer Science Report,
University of Sheffield, September 2002

[10] P. Bresciani, A. Perini, P. Giorgini, G. Giunchiglia, J.
Mylopoulos, “Modelling early requirements in Tropos: a
transformation based approach”, Agent Oriented Software
Engineering II, M. Wooldridge, G. Wei� (eds), Lecture
Notes in Computer Science, Springer-Verlag 2222, 2002

[11] H. Mouratidis, i. Philp, G. Manson, “Analysis and Design
of eSAP: An Integrated Health and Social Care Information
System”, in the Proceedings of the 7th International
Symposium on Health Information Managements Research
(ISHIMR2002), Sheffield, June 2002

[12] L. Liu, E. Yu, J. Mylopoulos, “Analysing Security
Requirements as Relationships Among Strategic Actors”, in
the Proceedings of 2nd Symposium on Requirements
Engineering for Information Security, North Carolina -
USA, November 2002.

[13] T. Lodderstedt, D. Basin, J. Doser, “SecureUML: A UML-
Based Modelling Language for Model-Driven Security”, in
the Proceedings of the 5th International Conference on the
Unified Modeling Language, 2002.

[14] M.P. Huget, “Nemo: An Agent-Oriented Software
Engineering Methodology”, in the Proceedings of the
Agent Oriented Methodologies Workshop (OOPSLA
2002), Seattle – USA, November 2002.

