
1

Understanding the Requirements of a Decision Support System for Agriculture. An

Agent-Oriented approach*

Anna Perini and Angelo Susi

ITC-irst, Trento-Povo – Italy

Email: {perini,susi}@itc.it

Abstract

Recent experiences in building environmental Decision Support Systems (DSS) point out the

need of a deep understanding of the application domain before starting system design. The

application domain under consideration has to be characterized in terms of stakeholders roles and

of their objectives and in terms of the decision making processes these stakeholders are involved

in for environmental management.

In this chapter we will focus on the domain and requirements analysis faced during the

development of a DSS for Integrated Production (IP) in agriculture. The DSS supports the

technicians of the agriculture advisory service while helping producers to apply IP guidelines in

growing apple in Trentino, a region in Northern Italy.

Examples taken from the analysis that has been performed adopting the Tropos methodology, an

agent-oriented software engineering methodology, will be illustrated, with the aim of proving the

effectiveness of the methodology in understanding strategic dependencies between domain

stakeholders and in identifying the DSS requirements in terms of goal and plan delegation from

stakeholders (the users) to the system-to-be. A short overview of the DSS will also be given.

1. Introduction

Recent approaches in building decision support systems (DSS) for environmental

management tend to adopt a “systemic” approach. That is to say a problem domain is

analyzed in terms of its stakeholders roles and objectives and in terms of the decision

making processes these stakeholders are involved in for the management of the

environmental problem under consideration.

* PICO project Technical Report. The "Decision Support Systems for Integrated Protection in
Agriculture" (PICO) project has been funded by the Italian Ministry for Research (MIUR), 2000-
2003. The aim of the project was to develop a decision support system for agronomists and
producers dealing with fruit disease management, according to Integrated Production.

2

Environmental management requires typically to exploit various information sources

which may be managed by different organizations dealing to the problem of integrating

heterogeneous, dynamic and distributed information sources.

Examples come from previous experiences in developing DSS for forest fire fighting

[3][4] and in works that analyzed a knowledge management perspective in environmental

management [11][12].

Moreover, environmental management has to be performed also when data on

environmental phenomena are not completely available or trustable and this requires

understanding alternative problem solving strategies (see for example [7][8][3] where

experiences in integrating different automated reasoning techniques in developing

environmental DSS are presented).

We refer here to a project devoted to the development of a DSS for Integrated Production

(IP) in agriculture. IP consists of a set of practices aimed at favoring the set up of a

production model characterized by a reduced environmental impact. The application of IP

practices requires a deep knowledge of natural phenomena, of agronomic techniques and

on modern chemicals, as well as updated information on the rules that the local

government adopts according to the European Union directives.

A closer look to this domain points out a complex network of dependencies between the

agriculture organization stakeholders which need to be deeply understood in order to

identify the requirements of an effective DSS for IP.

We adopted an agent-oriented methodology for software development, based on the

Tropos methodology [9] which gives a central role to early requirements analysis and

allows to derive system functional and non-functional requirements from a deep

understanding of the domain stakeholders goals and of their dependencies.

The rest of this chapter is structured as follows: section 2 presents the IP domain in

agriculture and gives examples referring to disease management in growing apples;

section 3 briefly recalls the Tropos methodology; section 4 illustrates the analysis of the

agriculture domain and how this analysis supported us in eliciting DSS requirements;

3

sections 5 and 6 describe respectively the system requirements analysis and how it drove

an architectural design which has been performed accordingly with well accepted design

principles, such as decoupling and cohesion. A short overview of the resulting DSS will

be presented in section 7. Related work is presented in section 8 and conclusion given in

section 9.

2. Integrated Production in Agriculture

Integrated Production (IP) in agriculture consists of a set of practices aimed at favoring

the set up of a development model characterized by a reduced environmental impact. The

application of IP practices in apple pest management, for instance, requires to use low-

impact and/or natural techniques to maintain the disease damage of a crop under a

specific tolerance threshold, that is an economically acceptable number of damaged

fruits.

The European Union proposes norms, guidelines and funds to favor the adoption of IP

and delegates the local governments of the European countries to support and monitor IP

application. The research on agronomic techniques compliant with the IP principles plays

a crucial role in this context, as well as the dissemination of its result to the producers.

More generally, the acquisition by the producers of information and knowledge on

updated norms and on new research findings can be an hard task without specific help.

On the other side, favoring the adoption of IP practices and monitoring for their correct

application, will become an impossible task for the local government, without the

collaboration of the producers themselves.

Yearly, the local government of Trentino, defines a set of guidelines for the application of

IP in the region, in agreement with the main actors of the local agricultural production

system which include a list of admissible chemicals and quantity limits, according to the

European Union agreements (these guidelines are also called production protocol).

Moreover the local government has set up an Advisory service whose technicians help

the producers in applying these guidelines. Finally, specific committee monitor the

producers and will allow to certify or not their product.

4

In our project we focused on IP pest management. For sake of simplicity, in exemplifying

our work we will consider the case of the Codling Moth (Cydia Pomonella), an important

pest for apple orchards in Trentino, which tend to be resistant to pesticides. Figure 1

shows a Codling Moth at larvae and adult stage and the type of damage it produces on the

fruit (left side). Typically two generations develops in a season, as shown by the data

plotted in the right part of Figure 1.

According to IP guidelines, an acceptable tolerance threshold for this pest in June can be

expressed as 0.2% of damaged small-fruits and as 1% of damaged fruit by the end of

August. Figure 2. A set of remedial actions should be performed in order to approach the

latter threshold if the number of damaged fruits in June is greater than 0.2%. This

requires monitoring the orchard about every 15 days (following the pest life-cycle in the).

Moreover, natural plant protection techniques must be known - for example the use of

antagonists or low impact pesticides - in order to determine the actions capable of

reaching the 1% damage threshold goal.

Figure 1: The Cydia Pomonella pest: larva, adult insect and an example of the damage it

produces in the fruits (left); its development cycle in a season (right).

IP management can be characterized along the following three main tasks: the diagnosis

of a disease from its observable manifestations; the assessment of the severity degree of

an orchard infection and the choice of remedial actions.

The first task rests on domain knowledge, such as a classification of disease

manifestations respect to a set of candidate diseases, and historical data on previous

infections in a given area [14].

5

A deeper analysis of the second and third tasks shows that the domain stakeholders

currently address them in different ways at two different moments, namely, at the

beginning of the year, when strategic decisions for the following crop are taken and

during the season, in reaction to unforeseen events which may prevent the correct

implementation of the selected growing strategy.

Preventive strategy made by growers at the beginning of the year rest on an estimate of

the plant disease risk, which is derived from a careful analysis of historical data, and on

economical goals. The technicians of the advisory center support the growers in making

this assessment and in deciding which preventive strategy to adopt. For example, for the

Codling Moth, a preventive strategy consists in using pheromone trapping (PT), a

techniques which allows to lower pest mating. Designing an effective PT system requires

to decide where to put pheromone bars in the orchard and with which density, taking into

account the geometrical features of the orchard and the presence of possible infection

sources,

During the season, that is during the implementation of the selected IP management

strategy (or in the absence of a preventive strategy), unforeseen disease could menace the

crop and this requires interleaving actions aimed at assessing the extent of the disease

with remedial actions. This task requires expert knowledge on the development models of

the disease and on specialized remedial techniques. This expert knowledge is provided by

research studies on disease biology and on agronomic techniques. Assessment activity

requires the periodical evaluation of the data gathered on the field taking into account the

meteo data and the weather forecast. In particular, deciding which are the most relevant

data for an effective assessment and how to use them for evaluating the infection risks are

both decision making tasks that need support. The aim is to minimize the number of

observations to be performed by growers and technicians in the field and to alert them for

critical events that need a direct measurement of the disease evolution in the field.

Having an effective model for predicting the development of a plant disease during the

season, in terms of a minimal set of environmental parameters, could be a solution to

both problems.

6

3. The modelling approach

In order to identify the requirements of a DSS which could enable the application of IP in

pest management we adopted the Tropos methodology [9][15], an agent-oriented

software engineering methodology which recognize a crucial role to the early phases of

system requirements.

Agent-oriented software engineering is being proposed as a general framework for

analysis and design, in spite of having adopted Multi-Agent System (MAS) as the target

development platform, especially when complex, distributed systems are concerned

[10][16][27].

The idea is that agent-oriented methodologies, which are founded on notions such as

those of agent, goal, plan, are inherently intentional, and allow to model explicitly

reasons behind the needs of the application domain stakeholder, as well as reasons behind

system requirements.

Tropos provides a conceptual modeling language, derived from the i* framework [28],

which uses a small set of intentional notions, such as actor, goal and dependency, and a

graphical notation to build views on the models in terms of actor and goal diagrams. This

approach proved to be suitable for modeling the organization where the system-to-be has

to be introduced. In particular, the Tropos methodology covers five software

development phases: early requirements analysis, late requirements analysis,

architectural design, detailed design, and implementation. Early Requirements analysis

focuses on the understanding of a problem domain by studying an existing organizational

setting where the system-to-be will be introduced. Social actors and software systems that

are already present in the domain are modeled as actors with their individual goals and

with mutual, intentional dependencies. Late Requirement analysis focuses on the

introduction of the system-to-be as a new actor into the model. The system actor is

related to the social actors in terms of dependencies; its goals are analyzed and will

eventually lead to revise and add new dependencies involving a subset of the social actors

7

(the users). Architectural design defines the system’s global architecture in terms of

subsystems, that are represented as actors. They are assigned subgoals or subplans of the

goals and plans assigned to the system. Detailed design which aims at specifying the

agent micro-level and code generation follow.

In this chapter we will illustrate how we applied an agent-oriented approach based on the

Tropos methodology to understand the IP agricultural domain and to derive the

requirements of a DSS, moreover we will show how general strategies for software

design and architecting have been addressed.

Our analysis of the domain of IP in agriculture aimed at identifying the actors who

performs the plant disease management activities and their main goals; at describing the

organizational processes these disease management activities rest on; at pointing out

strategic dependencies between these actors, that is to day “who depends on whom for

what”; at identifying the most critical information and knowledge required by disease

management processes; at characterizing the critical decisional steps in these processes,

together with alternative ways to perform a decision making step; and finally at

identifying which decisions could be supported by a DSS and who have to be its user.

4. The IP domain analysis

The domain analysis started identifying the stakeholders, that is social actors and

software systems that are already present in the domain, of the agriculture production

system of our region. They are modeled as actors, depicted by circles, in Figure 2.

The actor Producer represents the apple grower who pursues objectives such as to obtain

a profit following acceptable market strategies, and to work in a healthy environment.

The actor Advisor models the technician of the advisory service that has been set up by

the local government in order to provide a support to producers in choosing and applying

the best agricultural practices and techniques (see the goal support IP application). The

advisor plays a key role in our area since the majority of producers are not professional

farmers, they lack special skills and/or are not confident enough of adopting an IP

8

approach. The actor Local Government plays both an institutional and a practical role in

promoting IP diffusion in our region (see the goals favor IP production, follow EU

rules).

The actor Plant Disease Expert represents the researcher in biological phenomena and

in agronomical techniques. Among his/her objectives that of transferring research results

directly to the production level, for instance providing infection data and disease

simulation models, as well as new effective pest management techniques (see the goals

provide disease data & models, provide IP techniques). The actor diagram in Figure

2 shows some of the critical dependencies between the domain stakeholders which, at a

macroscopic level, result in a joint effort to disseminate IP.

Figure 2: Description of the Agricultural domain in Tropos

In particular, the actor Producer depends on the actor Local Government for obtaining

a product certification (i.e. obtain registration trademark) that states that he/she

follows IP practices, as required by specific market sectors. The local government sets

up the yearly IP production protocol and issues the desired certification only to the

producers that follow it. So, the actor Local Government depends on the actor

Producer in order to have its goal follow IP production protocol satisfied. As already

noticed, the actor Advisor plays the role of mentor, with respect to the producer, in

9

carrying up apple production according to the IP rule. So the actors Advisor and

Producer closely depends: the actor Producer depends on the actor Advisor in order to

choose & apply IP practices according to the production protocol and in order to

manage disease crisis which may occur in case of unforeseen events and that requires to

adopt an appropriate remedy action, still IP compliant. Viceversa, the actor Advisor

depends on the actor Producer for satisfying his/her goal to collect orchards data in

order to maintain an updated picture of the disease presence and evolution in the area

under their control. Moreover, the Advisor depends on the actor Plant Disease Expert

in order to use effective disease models (i.e. to attain the goal be advised on disease

models and to get information on new IP techniques be aware of new IP). The

Advisor and the Plant Disease Expert are funded by Local Government. The goal

dependency define the IP protocol between the Local Government and the Plant

Disease Expert closes the loop. It models the contribution of the expert in providing the

technical skills necessary for defining a production protocol that follows the European

Union strategic directives.

The Early Requirements model is further refined by considering all its actors and by

analyzing their goals. New actors and dependences can be added in the model. The goal

diagram depicted in Figure 3 shows the analysis of the goal support IP application,

from the point of view of the actor Advisor.

The goal support IP application contributes positively to the fulfillment of both goals

choose & apply IP practices and manage disease crisis for which the actor

Producer depends from the actor Advisor. The goal can be AND decomposed into a set

of more specific subgoals, i.e. acquire data, assess infection risk, plan the

intervention and monitor the situation after the intervention. Moreover, the softgoal

have a spatial representation that is being able to visualize the data on a map of the

whole area under control by the advisor shall allow him/her to perform in a more

effective way both the data acquisition activity and the assessment of an infection risk

(see the two positive contribution links in Figure 3).

10

In the following we consider the plans that the advisor performs in order to satisfy them

according to current practices. Means to satisfy the goal acquire data consists in getting

data resulting from

Figure 3: Advisor goal model for the goal support IP application.

observations and measurements activities performed, each season, in the orchards, as well

as in getting current meteo data. This is modeled in Figure 3 with a set of plans, depicted

as hexagonal shapes, which are related to the goal acquire data trough specific means-

end relationships, i.e. query disease historical data, which refers to historical data on

the presence of the disease in the area, query historical meteo data which refers to

historical climate and check weather forecast (the current meteo data). The analysis

points out a set of interaction processes related to the execution of these plans, they are

modeled in terms of resource dependencies. For instance, the dependency between the

actor Advisor and the actor Plant Disease Expert for the resource historical data

11

bases models the fact that the advisors usually perform searches into the data bases on

disease data held by the experts, as well as on climate data relative to the area under their

control. The plan run disease models is a mean to attain the goal assess infection

risk. In current IP practices, the advisors exploit phenology and/or epidemiological

models which help them in analyzing the behavior of a plant disease. For instance, they

allow them to estimate both the disease stage and the infection extent. These models

require specific data from the orchard in order to produce updated estimates.

Analogously, the remaining subgoals can be analyzed with the aim of identifying advisor

plans and dependencies with the other actors.

Figure 4: IP domain’s strategic dependencies (BEFORE the introduction of the system).

In Figure 4 is shown an excerpt of the domain strategic dependencies for the Codlyng

Moth pest management problem. Here the Producer delegates to the Advisor the goal of

designing an appropriate pheromone trapping (PT) system for her/his orchard (see the

goal PT plant design) to the other side the Advisor depends on the Producer to get the

necessary orchard data and to have the plan disease management plan executed. The

Advisor depends on the Plant Disease Experts to be advised on disease models

and from the Land Registry (the region maps archive) for the use of the maps. The

Plant Disease Expert will depend on Advisor for acquiring data collected through

monitoring activities in the field.

All the three stakeholders modeled in Figure 4, namely the producer, the advisor and the

expert could be supported by specific DSS functions. In the following, we will focus on

12

the advisor to show how intentional analysis, according to the Tropos methodology,

could support the elicitation and the analysis of the requirements o a DSS.

5. System requirements elicitation and analysis

During late requirements analysis the system-to-be, that is the decision support system

devoted to the advisors when dealing plant disease management, is introduced as a new

actor into the conceptual model, it is represented by the actor Advisor SW Agent.

The main questions which drive the analysis in this phase are the following. What the

system can do for its user and how? And how the adoption of a system will affects the IP

domain strategic dependencies?

Figure 5, depicts an example of late requirements analysis. The advisor (i.e. the system’s

user) rests on the system (actor Advisor SW Agent) for the fulfillment of some goals

and plans discovered during the goal analysis in the ER model depicted in Figure 3, such

as goals related to the acquisition of data, to the use of a spatial representation of the

territory. Figure 5, shows a sketch of the resulting LR goal diagram for the Advisor SW

Agent, which allows to analyze how the system can support the user.

According to domain knowledge, the goal acquire data can be operationalized in three

plans: orchards pests history, historical meteo data, weather forecast, devoted to

the acquisition of data from external resources (historical data bases and weather

forecast) that generating a new set of dependencies with the domain actors. The

acquisition of data positively contributes to the achievement of the plan run disease

model and to the goal use GIS techniques (that represents a possible means to satisfy

the softgoal have a spatial representation).

13

Figure 5: Late Requirement Goal diagram for the Advisor SW Agent.

Figure 6, depicts a fragment of late requirements actor diagram which points out how of

the stakeholders strategic dependencies will be affected by the adoption of a DSS. Here

we refer to the dependencies modeled in Figure 4, with reference to the example of the

Codlyng Moth pest.

The new dependencies are depicted in bold. In particular, the actor Advisor delegates the

system-to-be for the fulfillment of the goal acquire data and of the softgoal have a

spatial representation.

The system actor is now in charge of consulting the maps owned by the Land Registry

and to acquire the orchards data from the Producer; these two relationships are

modeled with two dependencies ---also in bold---. As a consequence the direct

dependencies between the Advisor, the Producer and Land Registry, for the orchards

data and for the maps --- in gray in the figure--- are no more critical dependencies.

14

Figure 6: Late requirements actor diagram showing how the IP domain strategic

dependencies will be affected by the introduction of the DSS (bold dependencies).

6. The transition from requirements to design

Approaching system design we face several questions, which are typical of the design of

complex systems [19]. Among them: how can we identify system components which

ensure an appropriate level of cohesion? How can we reduce coupling among

components? Is there any architectural styles that we can exploit in an effective way?

This last issue has been deeply analyzed, in the context of Tropos, in [21][22]. Here we

focus on the first questions.

In our approach, the late requirements goal analysis provides the basis for system

architecting and designing. In fact, Architectural Design (AD) in Tropos aims at defining

a macro-level view of the system architecture, in terms of components (modeled as sub-

actors), and interfaces between components (specified in terms of dependencies), which

results following to a top-down decomposition strategy.

In a sense, goal analysis applied to the system-to-be actor of the LR model provides a

method for implementing a divide-and-conquer strategy in software architecting. The

resulting AD model, which is depicted in Figure 7 includes a set of sub-actors which will

take care of goals and plans resulting from the goal analysis of the system’s goals.

15

Figure 7: Architectural Design. The actor diagram refined upon system subgoals.

In particular, the actor GISP (Geographic Information Services Provider) to which the

Advisor SW agent delegates the goal use GIS techniques; the actor DBL (Disease

Behavior Learner), which performs the plan run disease models on the basis of

information extracted from the seasonal data on the disease; three wrapper actors,

namely, the PDE-DBW (Plant Diseases Expert DB Wrapper) which takes care of

retrieving meteo and orchard historical data; the wrapper of the database of the meteo

service, called Meteo-DBW (Meteo Service DataBase Wrapper) which retrieves weather

forecast; the Local Knowledge actor, which is the wrapper of the local data base

containing data relative to the orchards belonging to the area under the advisor control

(represented by the actor Producers DB in Figure 7); the actor User Interface which

manages the interaction between the user of the application (represented by the actor

Advisor in the ER model) and the other specialized system actors. Relationships between

subsystems are specified in terms of plan dependencies. For instance, the advisor

16

involved in the study of a disease that needs to run the model describing the population

dynamic, requires the actor User Interface for the execution of the plan visualize rules;

as a consequence a new interaction between the User Interface and DBL is needed,

devoted to the running of the disease model in order to obtain the set of rules induced by

the meteo and orchards status data; this data can be retrieved by the DBL by means of the

plan dependencies retrieve weather forecasts and retrieve disease history among

DBL and the actors Meteo-DBW and Local Knowledge respectively. The resulting

architecture satisfies also principles of cohesion, in the sense that similar services have

been grouped into a single actor. For instance, the actor User Interface collects all the

user interface functionalities both for DBL actor and GISP actor. Moreover, coupling

among components, here represented in terms of the binary dependencies between actors,

is also minimized.

7. The DSS system

A prototype of the DSS system has been developed and evaluated by the technicians and

researchers of the Advisory Service providing useful suggestions for its improvement1.

The system has been implemented as a set of JavaScript and HTML pages (client side),

while the server components, implemented in Java, exploit a Tomcat servlet container

and a PostGreSQL data base.

In particular, the GISP component is based on a set of Geographic Information System

(GIS) functionalities that allow to visualize territorial data and to perform spatial queries

relatively to the apple orchards in the Trentino area. In particular, we have developed a

set of functions supporting the design of a pheromones sex trapping (PT) plant on a

multi-orchard basis. Figure 8, depicts the browser based Graphical User Interface of this

component. The visualization area is subdivided in three major areas: in the center is

depicted a map of the area of interest showing the organizational setting of the orchards;

1 See [23] for a description of the requirement analysis of the DSS and [24] for a complete
description of the DSS, its detailed design and the users it supports.

17

on the left, a set of functions allow the user to interact with the map; on the right, the user

can find a set of functions related to the management of a PT plant.

The DSS supports the advisor while performing the following decision-making tasks:

• assessing the risk of a disease infestation on a given orchard, taking into account the

environmental parameters of the area the orchard belongs to, the features of the

culture and the historical data;

• designing a pheromone trapping system using geometrical features of a given orchard

and information on the presence of infection sources, diffusion barriers, etc.;

• identifying alerting events that need to be communicated to the producers in order to

advise them during the execution of a disease management plan.

Figure 8: A snapshot of the GUI of the system composed of three major panels: in the

center is depicted a map of the area of interest showing the production; on the left, a set of

interactive functions for browsing the map; on the right, a set of functions related to PT

system design.

18

8. Related work

Several research lines are interesting for the work presented in this chapter. Here we will

mention two of them: first, works that discuss basic issues in building effective DSS for

environmental problems; second, approaches aiming at narrowing the semantic gap

between a requirement specification and the software architecture to be produced from it.

Along the first line, the need of a deep domain analysis aiming at pointing out the

organizational dimension in environmental management has been largely discussed

together with the need for involving domain stakeholders in requirements identification

and system design (see work proposing participatory design for environmental DSS [17]).

Previous experiences in developing DSS for environmental management problems,

mentioned in section 1, supported analogous considerations [3][4][5][7][11][12].

Among the works pertaining to the second research line, we shall mention the proposal of

a design approach based on a family of pattern (architectural style), in the context of the

Tropos effort [21][22]. This work is rooted in organizational theory which provides

business organization models. The authors propose to use these models as software

architectural styles (specified in i* notation [28]) for MAS and evaluate them respect

to software quality attributes.

An approach to component-based design that resembles several analogies with our work,

is that presented in [20]. Here, design issues related to component identification and

specification are put in relation with a parallel analysis of both business goals and

processes, which provides with the identification of enterprise components. Component

specification is given in UML notation (class diagram). In a sense, Responsibility-driven

design [26] can be considered an approach which bears analogies with our, but adopting

an object-oriented point of view. Instead of considering actors’ goals, here, class

responsibilities are analyzed, together with collaborations among classes, which are

devoted to fulfill responsibilities.

19

9. Conclusion

This chapter described the early phases of the development of a decision support system,

for the agriculture Advisory Service of our region which have been performed using

Tropos, an agent oriented software engineering methodology that allows to model

explicitly the domain stakeholders with their goals and the mutual dependencies.

We discussed the early requirement and late requirement analysis specifying the reasons

for dependencies between social and system actors. In particular, the DSS requirements

have been derived in terms of goal and plan delegations from social actors (the users) to

system actors.

A sketch of the architectural design, according to the Tropos methodology has been also

given. The architecture includes a set of software components (agents) wrapping existing

information systems and interacting with agents providing estimates on the evolution of a

specific plant disease. The resulting DSS has been briefly described.

References

[1] David Aha and Jody J. Daniels, editors. Case-Based Reasoning Integrations,

number WS-98-15. The AAAI Press, Jul 1998. Madison Wisconsin.

[2] W. Allen, O. Bosch, M. Kilvington, J. Oliver, and M. Gilbert. Benefits of

collaborative learning for environmental management: Applying the integrated

systems for knowledge management approach to support animal pest control.

Environmental Management, 27(2):215–223, 2001.

[3] A. Avesani, A. Perini, and F. Ricci. The Twofold Integration of CBR in Decision

Support Systems. In AAAI98 Workshop on Case-Based Reasoning Integrations.

Madison, July 1998.

[4] P. Avesani F. Ricci and A. Perini. Interactive case-based planning for forest fire

management. Applied Intelligence Journal, 4(13):41–57, 2000.

20

[5] Paolo Avesani and Emanuele Olivetti. Active Sampling for Data Mining. In

Prastacos P., Cortes U., Diaz de Leon J. L., and Murillo M., editors, e-Environment:

Progress and Challenges, Ist. Politecnico National, Mexico, 2004.

[6] C.A.L. Bailer-Jones and D.J.C. MacKay. A Recurrent Neural Network for

Modelling Dynamical Systems. Computation in Neural System, 9:531–547, 1998.

[7] L. K. Branting, J. D. Hastings, and J. A. Lockwood. Integrating Cases and Models

for Prediction in Biological Systems. AI Applications, 11(1):29–48, 1997.

[8] L. K. Branting, J. D. Hastings, and J. A. Lockwood. CARMA: A Case-Based Range

Management Advisor. In Proceedings of The Thirteenth Innovative Applications of

Artificial Intelligence Conference (IAAI-2001), Seattle, Washington, USA, August

2001.

[9] P. Bresciani, P. Giorgini, and F. Giunchiglia, J. Mylopoulos, A. Perini. Tropos: An

Agent-Oriented Software Development Methodology. In International Journal of

Autonomous Agents and Multi Agent Systems, 8(3):203–236, May 2004.

[10] P. Ciancarini and M. Wooldridge, editors. Agent-Oriented Software Engineering,

volume 1957 of Lecture Notes in AI. Springer-Verlag, March 2001.

[11] U. Cortes, I. Rodrıguez-Roda, M. Sanchez-Marre, J. Comas, C. Cortes, and M.

Poch. DAI-DEPUR: An Environmental Decision Support System for control and

supervision of Municipal Waste Water Treatment Plants. In IOS Press, editor,

Proceedings of European Conference on Artificial Intelligence (ECAI 2002), Lyon,

France, July 2002.

[12] U. Cortes, M. Sanchez-Marre, R. Sanguesa, J. Comas, I. Rodrıguez-Roda, M. Poch,

and D. Riano. Knowledge management in environmental decision support systems.

AI Commun., 14(3), IOS press, 2001.

[13] R. Denzer. Generic integration in environmental information and decision support

systems. In Andrea E. Rizzoli and Anthony J. Jakeman, editors, Integrated

Assessment and Decision Support, pages 53 – 60. iEMSs, June 2002.

[14] A. Gerevini, A. Perini, F. Ricci, D. Forti, C. Ioriatti, and L.Mattedi. Pomi: An expert

system for integrated pest management of apple orchards. AI Applications, (6):51–

62, 1992.

21

[15] F. Giunchiglia, J. Mylopoulos, and A. Perini. The Tropos Software Development

Methodology: Processes, Models and Diagrams. In Giunchiglia et al. [21].

[16] F. Giunchiglia, J. Odell, and G. Weiß, editors. Agent-Oriented Software Engineering

III. LNCS. Springer-Verlag, Bologna, Italy, Third International Workshop,

AOSE2002 edition, 2002.

[17] M. Hare, R. A. Lechter, and A. I. Jakeman. Participatory natural resource

management: A comparison of four case studies. In Andrea E. Rizzoli and Anthony

J. Jakeman, editors, Integrated Assessment and Decision Support, Proceedings of

the First Biennial Meeting of the International Environmental Modelling and

Software Society, volume 1, pages 73–79. iEMSs, June 2002.

[18] David C.-L. Lam and David A. Swayne. Issues of eis software design: some lessons

learned in the past decade. Environmental Modelling and Software, 16(5):419–425,

2001

[19] T. C. Lethbridge and R. Laganiere. Object-Oriented Software Engineering.

McGraw-Hill, 2001.

[20] K. Levi and A. Arsanjani. A goal driven approach to enterprise component

identification and specification. Communications of the ACM, 45(10), October 2002.

[21] J. Mylopoulos, M. Kolp, and P. Giorgini. Agent-Oriented Software Engineering. In

Proceedings of the 2nd Hellenic Conference on Artificial Intelligence (SETN-02).

2002.

[22] M. Kolp and J. Mylopoulos. Software Architecture as OrganizationalStructures. In

Proceedings of ASERC workshop. Edmonton, Canada, August 2001.

[23] A. Perini and A. Susi. Designing a Decision Support System or Integrated

Production in Agriculture. An Agent-Oriented approach. Environmental Modelling

and Software Journal, 19(9), September 2004

[24] Anna Perini and Angelo Susi. AI in support of Plant Disease Management.

AICommun. 18(4), pp. 281–291, IOS press, 2005.

[25] D.N. Stones R.E. Plant. Knowledge-Based Systems in Agriculture. McGraw-Hill

Inc., 1991.

[26] R. Wirfs-Brock and A. McKean. Object Design: Roles, Responsibilities, and

Collaborations. Pearson Education, 2002.

22

[27] M.J. Wooldridge, G. Wei , and P. Ciancarini, editors. Agent-Oriented Software

Engineering II. LNCS 2222. Springer-Verlag, Montreal, Canada, Second

International Workshop, AOSE2001 edition, May 2001.

[28] E. Yu. Modeling Strategic Relationships for Process Reengineering. PhD thesis,

University of Toronto, 1995.

