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Abstract  

Recent experiences in building environmental Decision Support Systems (DSS) point out the 

need of a deep understanding of the application domain before starting system design. The 

application domain under consideration has to be characterized in terms of stakeholders roles and 

of their objectives and in terms of the decision making processes these stakeholders are involved 

in for environmental management.  

In this chapter we will focus on the domain and requirements analysis faced during the 

development of a DSS for Integrated Production (IP) in agriculture. The DSS supports the 

technicians of the agriculture advisory service while helping producers to apply IP guidelines in 

growing apple in Trentino, a region in Northern Italy. 

Examples taken from the analysis that has been performed adopting the Tropos methodology, an 

agent-oriented software engineering methodology, will be illustrated, with the aim of proving the 

effectiveness of the methodology in understanding strategic dependencies between domain 

stakeholders and in identifying the DSS requirements in terms of goal and plan delegation from 

stakeholders (the users) to the system-to-be. A short overview of the DSS will also be given. 

 

1. Introduction  

 

Recent approaches in building decision support systems (DSS) for environmental 

management tend to adopt a “systemic” approach. That is to say a problem domain is 

analyzed in terms of its stakeholders roles and objectives and in terms of the decision 

making processes these stakeholders are involved in for the management of the 

environmental problem under consideration.  

                                                
* PICO project Technical Report.  The "Decision Support Systems for Integrated Protection in 
Agriculture" (PICO) project has been funded by the Italian Ministry for Research (MIUR), 2000-
2003. The aim of the project was to develop a decision support system for agronomists and 
producers dealing with fruit disease management, according to Integrated Production. 
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Environmental management requires typically to exploit various information sources 

which may be managed by different organizations dealing to the problem of integrating 

heterogeneous, dynamic and distributed information sources. 

Examples come from previous experiences in developing DSS for forest fire fighting 

[3][4] and in works that analyzed a knowledge management perspective in environmental 

management [11][12]. 

Moreover, environmental management has to be performed also when data on 

environmental phenomena are not completely available or trustable and this requires 

understanding alternative problem solving strategies (see for example [7][8][3] where 

experiences in integrating different automated reasoning techniques in developing 

environmental DSS are presented). 

 

We refer here to a project devoted to the development of a DSS for Integrated Production 

(IP) in agriculture. IP consists of a set of practices aimed at favoring the set up of a 

production model characterized by a reduced environmental impact. The application of IP 

practices requires a deep knowledge of natural phenomena, of agronomic techniques and 

on modern chemicals, as well as updated information on the rules that the local 

government adopts according to the European Union directives. 

A closer look to this domain points out a complex network of dependencies between the 

agriculture organization stakeholders which need to be deeply understood in order to 

identify the requirements of an effective DSS for IP. 

  

We adopted an agent-oriented methodology for software development, based on the 

Tropos methodology [9] which gives a central role to early requirements analysis and 

allows to derive system functional and non-functional requirements from a deep 

understanding of the domain stakeholders goals and of their dependencies. 

 

The rest of this chapter is structured as follows: section 2 presents the IP domain in 

agriculture and gives examples referring to disease management in growing apples; 

section 3 briefly recalls the Tropos methodology; section 4 illustrates the analysis of the 

agriculture domain and how this analysis supported us in eliciting DSS requirements; 
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sections 5 and 6 describe respectively the system requirements analysis and how it drove 

an architectural design which has been performed accordingly with well accepted design 

principles, such as decoupling and cohesion. A short overview of the resulting DSS will 

be presented in section 7. Related work is presented in section 8 and conclusion given in 

section 9. 

 

 

2. Integrated Production in Agriculture  

 

Integrated Production (IP) in agriculture consists of a set of practices aimed at favoring 

the set up of a development model characterized by a reduced environmental impact. The 

application of IP practices in apple pest management, for instance, requires to use low-

impact and/or natural techniques to maintain the disease damage of a crop under a 

specific tolerance threshold, that is an economically acceptable number of damaged 

fruits.  

The European Union proposes norms, guidelines and funds to favor the adoption of IP 

and delegates the local governments of the European countries to support and monitor IP 

application. The research on agronomic techniques compliant with the IP principles plays 

a crucial role in this context, as well as the dissemination of its result to the producers.  

More generally, the acquisition by the producers of information and knowledge on 

updated norms and on new research findings can be an hard task without specific help. 

On the other side, favoring the adoption of IP practices and monitoring for their correct 

application, will become an impossible task for the local government, without the 

collaboration of the producers themselves.  

Yearly, the local government of Trentino, defines a set of guidelines for the application of 

IP in the region, in agreement with the main actors of the local agricultural production 

system which include a list of admissible chemicals and quantity limits, according to the 

European Union agreements (these guidelines are also called production protocol).  

Moreover the local government has set up an Advisory service whose technicians help 

the producers in applying these guidelines. Finally, specific committee monitor the 

producers and will allow to certify or not their product. 
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In our project we focused on IP pest management. For sake of simplicity, in exemplifying 

our work we will consider the case of the Codling Moth (Cydia Pomonella), an important 

pest for apple orchards in Trentino, which tend to be resistant to pesticides. Figure 1 

shows a Codling Moth at larvae and adult stage and the type of damage it produces on the 

fruit (left side). Typically two generations develops in a season, as shown by the data 

plotted in the right part of Figure 1.  

According to IP guidelines, an acceptable tolerance threshold for this pest in June can   be 

expressed as 0.2% of damaged small-fruits and as 1% of damaged fruit by the end of 

August. Figure 2. A set of remedial actions should be performed in order to approach the 

latter threshold if the number of damaged fruits in June is greater than 0.2%. This 

requires monitoring the orchard about every 15 days (following the pest life-cycle in the). 

Moreover, natural plant protection techniques must be known - for example the use of 

antagonists or low impact pesticides - in order to determine the actions capable of 

reaching the 1% damage threshold goal. 

 

 

 

 

Figure 1: The Cydia Pomonella pest: larva, adult insect and an example of the damage it 

produces in the fruits (left); its development cycle in a season (right). 

 

IP management can be characterized along the following three main tasks: the diagnosis 

of a disease from its observable manifestations; the assessment of the severity degree of 

an orchard infection and the choice of remedial actions. 

 

The first task rests on domain knowledge, such as a classification of disease 

manifestations respect to a set of candidate diseases, and historical data on previous 

infections in a given area [14].  
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A deeper analysis of the second and third tasks shows that the domain stakeholders 

currently address them in different ways at two different moments, namely, at the   

beginning of the year, when strategic decisions for the following crop are taken and 

during the season, in reaction to unforeseen events which may prevent the correct 

implementation of the selected growing strategy. 

Preventive strategy made by growers at the beginning of the year rest on an estimate of 

the plant disease risk, which is derived from a careful analysis of historical data, and on 

economical goals. The technicians of the advisory center support the growers in making 

this assessment and in deciding which preventive strategy to adopt. For example, for the 

Codling Moth, a preventive strategy consists in using pheromone trapping (PT), a 

techniques which allows to lower pest mating. Designing an effective PT system requires 

to decide where to put pheromone bars in the orchard and with which density, taking into 

account the geometrical features of the orchard and the presence of possible infection 

sources, 

 

During the season, that is during the implementation of the selected IP management 

strategy (or in the absence of a preventive strategy), unforeseen disease could menace the 

crop and this requires interleaving actions aimed at assessing the extent of the disease 

with remedial actions. This task requires expert knowledge on the development models of 

the disease and on specialized remedial techniques. This expert knowledge is provided by 

research studies on disease biology and on agronomic techniques. Assessment activity 

requires the periodical evaluation of the data gathered on the field taking into account the 

meteo data and the weather forecast. In particular, deciding   which are the most relevant 

data for an effective assessment and how to use them for evaluating the infection risks are 

both decision making tasks that need support. The aim is to minimize the number of 

observations to be performed by growers and technicians in the field and to alert them for 

critical events that need a direct   measurement of the disease evolution in the field. 

Having an effective model for predicting the development of a plant disease during the 

season, in terms of a minimal set of environmental parameters, could be a solution to 

both problems. 

 



6 

 

 

 

3. The modelling approach 
 
In order to identify the requirements of a DSS which could enable the application of IP in 

pest management we adopted the Tropos methodology [9][15], an agent-oriented 

software engineering methodology which recognize a crucial role to the early phases of 

system requirements. 

Agent-oriented software engineering is being proposed as a general framework for 

analysis and design, in spite of having adopted Multi-Agent System (MAS) as the target 

development platform, especially when complex, distributed systems are concerned 

[10][16][27].  

The idea is that agent-oriented methodologies, which are founded on notions such as 

those of agent, goal, plan, are inherently intentional, and allow to model explicitly 

reasons behind the needs of the application domain stakeholder, as well as reasons behind 

system requirements. 

Tropos provides a conceptual modeling language, derived from the i* framework [28], 

which uses a small set of intentional notions, such as actor, goal and dependency, and a 

graphical notation to build views on the models in terms of actor and goal diagrams. This 

approach proved to be suitable for modeling the organization where the system-to-be has 

to be introduced. In particular, the Tropos methodology covers five software 

development phases: early requirements analysis, late requirements analysis, 

architectural design, detailed design, and implementation. Early Requirements analysis 

focuses on the understanding of a problem domain by studying an existing organizational 

setting where the system-to-be will be introduced. Social actors and software systems that 

are already present in the domain are modeled as actors with their individual goals and 

with mutual, intentional dependencies. Late Requirement analysis focuses on the 

introduction of the system-to-be as a new actor into the model. The system actor is 

related to the social actors in terms of dependencies; its goals are analyzed and will 

eventually lead to revise and add new dependencies involving a subset of the social actors 
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(the users). Architectural design defines the system’s global architecture in terms of 

subsystems, that are represented as actors. They are assigned subgoals or subplans of the 

goals and plans assigned to the system. Detailed design which aims at specifying the 

agent micro-level and code generation follow.  

In this chapter we will illustrate how we applied an agent-oriented approach based on the 

Tropos methodology to understand the IP agricultural domain and to derive the 

requirements of a DSS, moreover we will show how general strategies for software 

design and architecting have been addressed. 

 

Our analysis of the domain of IP in agriculture aimed at identifying the actors who 

performs the plant disease management activities and their main goals; at describing the 

organizational processes these disease management activities rest on; at pointing out 

strategic dependencies between these actors, that is to day “who depends on whom for 

what”; at identifying the most critical information and knowledge required by disease 

management processes; at characterizing the critical decisional steps in these processes, 

together with alternative ways to perform a decision making step; and finally at 

identifying  which decisions could be supported by a DSS and who have to be its user. 

 

 

4. The IP domain analysis  

 

The domain analysis started identifying the stakeholders, that is social actors and 

software systems that are already present in the domain, of the agriculture production 

system of our region. They are modeled as actors, depicted by circles, in Figure 2. 

The actor Producer represents the apple grower who pursues objectives such as to obtain 

a profit following acceptable market strategies, and to work in a healthy environment. 

The actor Advisor models the technician of the advisory service that has been set up by 

the local government in order to provide a support to producers in choosing and applying 

the best agricultural practices and techniques (see the goal support IP application). The 

advisor plays a key role in our area since the majority of producers are not professional 

farmers, they lack special skills and/or are not confident enough of adopting an IP 
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approach. The actor Local Government plays both an institutional and a practical role in 

promoting IP diffusion in our region (see the goals favor IP production, follow EU 

rules).  

The actor Plant Disease Expert represents the researcher in biological phenomena and 

in agronomical techniques. Among his/her objectives that of transferring research results 

directly to the production level, for instance providing infection data and disease 

simulation models, as well as new effective pest management techniques (see the goals 

provide disease data & models, provide IP techniques). The actor diagram in Figure 

2 shows some of the critical dependencies between the domain stakeholders which, at a 

macroscopic level, result in a joint effort to disseminate IP. 

 
 

Figure 2: Description of the Agricultural domain in Tropos 

In particular, the actor Producer depends on the actor Local Government for obtaining 

a product certification (i.e. obtain registration trademark) that states that he/she 

follows IP practices, as required by specific market sectors. The local government sets 

up the yearly IP production protocol and issues the desired certification only to the 

producers that follow it. So, the actor Local Government depends on the actor 

Producer in order to have its goal follow IP production protocol satisfied. As already 

noticed, the actor Advisor plays the role of mentor, with respect to the producer, in 
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carrying up apple production according to the IP rule. So the actors Advisor and 

Producer closely depends: the actor Producer depends on the actor Advisor in order to 

choose & apply IP practices according to the production protocol and in order to 

manage disease crisis which may occur in case of unforeseen events and that requires to 

adopt an appropriate remedy action, still IP compliant. Viceversa, the actor Advisor 

depends on the actor Producer for satisfying his/her goal to collect orchards data in 

order to maintain an updated picture of the disease presence and evolution in the area 

under their control. Moreover, the Advisor depends on the actor Plant Disease Expert 

in order to use effective disease models (i.e. to attain the goal be advised on disease 

models and to get information on new IP techniques be aware of new IP). The 

Advisor and the Plant Disease Expert are funded by Local Government. The goal 

dependency define the IP protocol between the Local Government and the Plant 

Disease Expert closes the loop. It models the contribution of the expert in providing the 

technical skills necessary for defining a production protocol that follows the European 

Union strategic directives.  

 

The Early Requirements model is further refined by considering all its actors and by 

analyzing their goals. New actors and dependences can be added in the model. The goal 

diagram depicted in Figure 3 shows the analysis of the goal support IP application, 

from the point of view of the actor Advisor.  

The goal support IP application contributes positively to the fulfillment of both goals 

choose & apply IP practices and manage disease crisis for which the actor 

Producer depends from the actor Advisor. The goal can be AND decomposed into a set 

of more specific subgoals, i.e. acquire data, assess infection risk, plan the 

intervention and monitor the situation after the intervention. Moreover, the softgoal 

have a spatial representation that is being able to visualize the data on a map of the 

whole area under control by the advisor shall allow him/her to perform in a more 

effective way both the data acquisition activity and the assessment of an infection risk 

(see the two positive contribution links in Figure 3).  
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In the following we consider the plans that the advisor performs in order to satisfy them 

according to current practices. Means to satisfy the goal acquire data consists in getting 

data resulting from 

 

 

 

 

Figure 3: Advisor goal model for the goal support IP application. 

 

 

observations and measurements activities performed, each season, in the orchards, as well 

as in getting current meteo data. This is modeled in Figure 3 with a set of plans, depicted 

as   hexagonal shapes, which are related to the goal acquire data trough specific means-

end relationships, i.e. query disease historical data, which refers to historical data on 

the presence of the disease in the area, query historical meteo data which refers to 

historical climate and check weather forecast (the current meteo data). The analysis 

points out a set of interaction processes related to the execution of these plans, they are 

modeled in terms of resource dependencies. For instance, the dependency between the 

actor Advisor and the actor Plant Disease Expert for the resource historical data 
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bases models the fact that the advisors usually perform searches into the data bases on 

disease data held by the experts, as well as on climate data relative to the area under their 

control. The plan run disease models is a mean to attain the goal assess infection 

risk. In current IP practices, the advisors exploit phenology and/or epidemiological 

models which help them in analyzing the behavior of a plant disease. For instance, they 

allow them to estimate both the disease stage and the infection extent. These models 

require specific data from the orchard in order to produce updated estimates. 

Analogously, the remaining subgoals can be analyzed with the aim of identifying advisor 

plans and dependencies with the other actors. 

 

 

 

Figure 4: IP domain’s strategic dependencies (BEFORE the introduction of the system).  

 

In Figure 4 is shown an excerpt of the domain strategic dependencies for the Codlyng 

Moth pest management problem. Here the Producer delegates to the Advisor the goal of 

designing an appropriate pheromone trapping (PT) system for her/his orchard (see the 

goal PT plant design) to the other side the Advisor depends on the Producer to get the 

necessary orchard data and to have the plan disease management plan executed. The 

Advisor depends on the Plant Disease Experts to be advised on disease models 

and from the Land Registry (the region maps archive) for the use of the maps. The 

Plant Disease Expert will depend on Advisor for acquiring data collected through 

monitoring activities in the field.  

All the three stakeholders modeled in Figure 4, namely the producer, the advisor and the 

expert could be supported by specific DSS functions. In the following, we will focus on 
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the advisor to show how intentional analysis, according to the Tropos methodology, 

could support the elicitation and the analysis of the requirements o a DSS. 

 

 

5. System requirements elicitation and analysis  

 

During late requirements analysis the system-to-be, that is the decision support system 

devoted to the advisors when dealing plant disease management, is introduced as a new 

actor into the conceptual model, it is represented by the actor Advisor SW Agent.  

The main questions which drive the analysis in this phase are the following. What the 

system can do for its user and how? And how the adoption of a system will affects the IP 

domain strategic dependencies?  

Figure 5, depicts an example of late requirements analysis. The advisor (i.e. the system’s 

user) rests on the system (actor Advisor SW Agent) for the fulfillment of some goals 

and plans discovered during the goal analysis in the ER model depicted in Figure 3, such 

as goals related to the acquisition of data, to the use of a spatial representation of the 

territory. Figure 5, shows a sketch of the resulting LR goal diagram for the Advisor SW 

Agent, which allows to analyze how the system can support the user. 

According to domain knowledge, the goal acquire data can be operationalized in three 

plans: orchards pests history, historical meteo data, weather forecast, devoted to 

the acquisition of data from external resources (historical data bases and weather 

forecast) that generating a new set of dependencies with the domain actors. The 

acquisition of data positively contributes to the achievement of the plan run disease 

model and to the goal use GIS techniques (that represents a possible means to satisfy 

the softgoal have a spatial representation). 
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Figure 5: Late Requirement Goal diagram for the Advisor SW Agent.  

 

Figure 6, depicts a fragment of late requirements actor diagram which points out how of 

the stakeholders strategic dependencies will be affected by the adoption of a DSS. Here 

we refer to the dependencies modeled in Figure 4, with reference to the example of the 

Codlyng Moth pest. 

The new dependencies are depicted in bold. In particular, the actor Advisor delegates the 

system-to-be for the fulfillment of the goal acquire data and of the softgoal have a 

spatial representation. 

The system actor is now in charge of consulting the maps owned by the Land Registry 

and to acquire the orchards data from the Producer; these two relationships are 

modeled with two dependencies ---also in bold---. As a consequence the direct 

dependencies between the Advisor, the Producer and Land Registry, for the orchards 

data and for the maps --- in gray in the figure--- are no more critical dependencies. 
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Figure 6:  Late requirements actor diagram showing how the IP domain strategic 

dependencies will be affected by the introduction of the DSS (bold dependencies). 

 

 

6. The transition from requirements to design  

 

Approaching system design we face several questions, which are typical of the design of 

complex systems [19]. Among them: how can we identify system components which 

ensure an appropriate level of cohesion? How can we reduce coupling among 

components? Is there any architectural styles that we can exploit in an effective way? 

This last issue has been deeply analyzed, in the context of Tropos, in [21][22]. Here we 

focus on the first questions.  

In our approach, the late requirements goal analysis provides the basis for system 

architecting and designing. In fact, Architectural Design (AD) in Tropos aims at defining 

a macro-level view of the system architecture, in terms of components (modeled as sub-

actors), and interfaces between components (specified in terms of dependencies), which 

results following to a top-down decomposition strategy.  

In a sense, goal analysis applied to the system-to-be actor of the LR model provides a 

method for implementing a divide-and-conquer strategy in software architecting. The 

resulting AD model, which is depicted in Figure 7 includes a set of sub-actors which will 

take care of goals and plans resulting from the goal analysis of the system’s goals. 
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Figure 7: Architectural Design. The actor diagram refined upon system subgoals. 

 

In particular, the actor GISP (Geographic Information Services Provider) to which the 

Advisor SW agent delegates the goal use GIS techniques; the actor DBL (Disease 

Behavior Learner), which performs the plan run disease models on the basis of 

information extracted from the seasonal data on the disease; three wrapper actors, 

namely, the PDE-DBW (Plant Diseases Expert DB Wrapper) which takes care of 

retrieving meteo and orchard historical data; the wrapper of the database of the meteo 

service, called Meteo-DBW (Meteo Service DataBase Wrapper) which retrieves weather 

forecast; the Local Knowledge actor, which is the wrapper of the local data base 

containing data relative to the orchards belonging to the area under the advisor control 

(represented by the actor Producers DB in Figure 7); the actor User Interface which 

manages the interaction between the user of the application (represented by the actor 

Advisor in the ER model) and the other specialized system actors. Relationships between 

subsystems are specified in terms of plan dependencies. For instance, the advisor 
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involved in the study of a disease that needs to run the model describing the population 

dynamic, requires the actor User Interface for the execution of the plan visualize rules; 

as a consequence a new interaction between the User Interface and DBL is needed, 

devoted to the running of the disease model in order to obtain the set of rules induced by 

the meteo and orchards status data; this data can be retrieved by the DBL by means of the 

plan dependencies retrieve weather forecasts and retrieve disease history among 

DBL and the actors Meteo-DBW and Local Knowledge respectively. The resulting 

architecture satisfies also principles of cohesion, in the sense that similar services have 

been grouped into a single actor. For instance, the actor User Interface collects all the 

user interface functionalities both for DBL actor and GISP actor. Moreover, coupling 

among components, here represented in terms of the binary dependencies between actors, 

is also minimized.  

 

 

7. The DSS system  

 

A prototype of the DSS system has been developed and evaluated by the technicians and   

researchers of the Advisory Service providing useful suggestions for its improvement1.   

The system has been implemented as a set of JavaScript and HTML pages (client side), 

while the server components, implemented in Java, exploit a Tomcat servlet container 

and a PostGreSQL data base. 

In particular, the GISP component is based on a set of Geographic Information System 

(GIS) functionalities that allow to visualize territorial data and to perform spatial queries 

relatively to the apple orchards in the Trentino area. In particular, we have developed a 

set of functions supporting the design of a pheromones sex trapping (PT) plant on a 

multi-orchard basis. Figure 8, depicts the browser based Graphical User Interface of this 

component. The visualization area is subdivided in three major areas: in the center is 

depicted a   map of the area of interest showing the organizational setting of the orchards; 

                                                
1 See [23] for a description of the requirement analysis of the DSS and [24] for a complete 
description of the DSS, its detailed design and the users it supports. 
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on the left, a set of functions allow the user to interact with the map; on the right, the user 

can find a set of functions related to the management of a PT plant. 

 

The DSS supports the advisor while performing the following decision-making tasks:  

• assessing the risk of a disease infestation on a given orchard, taking into account the 

environmental parameters of the area the orchard belongs to, the features of the 

culture and the historical data; 

• designing a pheromone trapping system using geometrical features of a given orchard 

and information on the presence of infection sources, diffusion barriers, etc.; 

• identifying alerting events that need to be communicated to the producers in order to 

advise them during the execution of a disease management plan. 

 

 

Figure 8: A snapshot of the GUI of the system composed of three major panels: in the 

center is depicted a map of the area of interest showing the production; on the left, a set of 

interactive functions for browsing the map; on the right, a set of functions related to PT 

system design. 
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8. Related work  

 

Several research lines are interesting for the work presented in this chapter. Here we will 

mention two of them: first, works that discuss basic issues in building effective DSS for 

environmental problems; second, approaches aiming at narrowing the semantic gap 

between a requirement specification and the software architecture to be produced from it. 

 

Along the first line, the need of a deep domain analysis aiming at pointing out the 

organizational dimension in environmental management has been largely discussed 

together with the need for involving domain stakeholders in requirements identification 

and system design (see work proposing participatory design for environmental DSS [17]). 

Previous experiences in developing DSS for environmental management problems, 

mentioned in section 1, supported analogous considerations [3][4][5][7][11][12]. 

 

Among the works pertaining to the second research line, we shall mention the proposal of 

a design approach based on a family of pattern  (architectural style), in the context of the 

Tropos effort [21][22]. This work is rooted in organizational theory which provides 

business organization models. The authors propose to use these models as software 

architectural styles   (specified in i* notation [28]) for MAS and evaluate them   respect 

to software quality attributes. 

An approach to component-based design that resembles several analogies with our work, 

is that presented in [20]. Here, design issues related to component identification and   

specification are put in relation with a parallel analysis of both business goals and 

processes, which provides with the identification of enterprise components. Component 

specification is given in UML notation (class diagram). In a sense, Responsibility-driven 

design [26] can be considered an approach which bears analogies with our, but   adopting 

an object-oriented point of view. Instead of considering actors’ goals, here, class 

responsibilities are analyzed, together with collaborations among classes, which   are 

devoted to fulfill responsibilities.  
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9. Conclusion  

 

This chapter described the early phases of the development of a decision support system, 

for the agriculture Advisory Service of our region which have been performed using 

Tropos, an agent oriented software engineering methodology that allows to model 

explicitly the domain stakeholders with their goals and the mutual dependencies.    

We discussed the early requirement and late requirement analysis specifying the reasons 

for dependencies between social and system actors. In particular, the DSS requirements 

have been derived in terms of goal and plan delegations from social actors (the users) to 

system actors.  

A sketch of the architectural design, according to the Tropos methodology has been also 

given. The architecture includes a set of software components (agents) wrapping existing 

information systems and interacting with agents providing estimates on the evolution of a 

specific plant disease. The resulting DSS has been briefly described. 
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