MODELING AND REASONING ABOUT CONTEXTUAL REQUIREMENTS

Raian Ali, Fabiano Dalpiaz, Paolo Giorgini

UNIVERSITY OF TRENTO - Italy Information Engineering and Computer Science Department

MOTIVATION

- Some requirements aren't absolute, but context dependent:
 - Context stimulates a requirement
 - It is humid inside \rightarrow fresh air is required
 - Context enables an alternative to meet a requirement
 - It is sunny and not windy outside \rightarrow windows can be opened
 - Context influences the quality of each alternative
 - He is sleeping \rightarrow opening windows violates his privacy/comfort
- Meeting requirements leads to changes in context.
 - Opening the windows \rightarrow opened windows and high light level

MOTIVATION..

- Most RE presumes uniform, not varying, contexts.
- In emerging computing, like UbiCom, PerCom, AmI, this assumption is no longer valid.
- Why Context with Goals?

- Context influences human intentions & choices first.
- Software has to reflect human adaptation to context.

- Example:
 - if a context like ``tourist has not had lunch yet and it is around lunch hour" holds
 - the tour guide will try to reach a goal like ``find a place for tourist to eat".
 - Moreover, the context ``tourist is vegetarian'' will limit the restaurants from which the guide would choose..

CONTEXTUAL GOAL MODEL ICAISE08, ER08, CAISE09 FORUM, EMMSAD091

CONTEXTUAL GOAL MODEL

- Context is the reification of the environment that is whatever provides a surrounding in which the system is to operate [Finkelstien STRAW'01].
- Adaptability is, essentially, selecting between variants.
- Associating each goal model variant & context is hard:
 - Exponential number of variants
 - Inability to understand variant at once.
- To bypass, we identify context on variation points in the goal model.

VARIATION POINTS

1. Or-Decomposition: each variant could require a valid context to be adoptable.

2. Contribution: contributions to softgoals are not absolutely positive or negative.

VARIATION POINTS

3. Actors Dependency: to depend on other, a certain context has to hold.

4. Root goals: context stimulates root goals

C6: staff is free, speaks a language common to customer, knows well the product, and close to customer C1: enough time to promote, customer is not in a hurry, customer does not have the product

5. And-Decomposition: certain contexts make a subgoal /subtask in an And-decompsition needed.

6. Means-end: some tasks require a valid context to be adoptable in a means-end analysis.

C12: customer is not around and can not be seen directly by the sales staff

C7 : the customer place is not noisy, the system is trained enough on the customer voice **C8:** customer has technology expertise and the used device has a touch screen

CONTEXT ANALYSIS

- While Goal is a state of the world to reach; Context is a state of the world that is the case.
 - We analyze goals to know what to do to reach them
 - We analyze contexts to know what to monitor to verify them.

CONTEXT ANALYSIS CONSTRUCTS

- Fact: a predicate specifying a context, its truth value can be objectively computed.
 - E.g. F1: customer never bought the product [p] from the mall.
- **Statement:** can not be objectively computed.
 - E.g. St1: Customer does not have the product [p]
- Help: F: fact, S: statement. help(F,S) iff $F \rightarrow S$.
 - E.g. Help(F1,St1)
- **Decomposition:** or/and of facts and statements.
 - E.g. customer is interested in product: (i) behaviorally or (ii) historically.

CONTEXT ANALYSIS NOTATION

CONTEXT EFFECT TAXONOMY

- For each goal model variant:
 - Stimulating context: the conjunction of contexts at the Root goal and And-decopmositions.
 - tourist is hungry
 - Required context: the conjunction of contexts at Ordecompisition, Means-End, and Delegation.
 - there is a close restaurant that accepts tourist credit card
 - Quality contexts: for each (variant, SG contribution).
 - the restaurant is close enough.

OVERALL

REASONING ABOUT CONTEXTUAL GOAL MODEL

FORMALIZATION

- The context analysis hierarchy translated to Boolean formula of leaf facts as variables.
- The contextual goal model into Datalog.
- A prototype tool ``RE-Context'' has been implemented.
- Up to now, we encode the model manually.

VALIDATION

- We developed reasoning to validate the context of each goal model variant :
 - Relations (implication and contradictions) are specified between contexts (at whatever level of the context hierarchy).
 - SAT solver is used to find a model for the conjunction of the Boolean formula expressing a context and the assumed relations.
- Note: the compact form of goal model could naturally include variants with inconsistent contexts. i.e. not necessarily modeling errors, but indeed unadoptable.

EXPLAINING CONFLICTS

- We provide reasoning to detect conflicts and:
 - The goals behind them.
 - The context in which they happens.
 - The alternatives that can avoid us the conflict.
 - The conflicts that are Core where a resolution is critical.
- As an example: Water Conflict.

CONTEXTUALIZATION

- Given a context and a user prioritization, we derive a suitable goal model variant.
- Prioritization is given over softgoals for two reasons:
 - Bypassing the enumeration of goal model variants.
 - Talking to stakeholder in their terms.

DERIVING CORE REQUIREMENTS

- Core requirements are system requisite that can't be bargained on.
- Discovering them is useful for timing & budget constraints, and when flexibility & quality is not a main issue. I.e. when we need just a Valid System.
- The variants that, at certain context, have no alternatives are core.
 - We discover core variants. (actually, core groups!)
 - We process the groups to elicit variants for minimum costs.

EXAMPLE

The non-core variant	The variants excluding the non-core variants	The core groups of variants	The cost relations	The min-cost core requirements
NV1= {T6, T10}	V1 = {T1, T3}	Core1= {V1, V2, V3, V4}	Cost(T1,30), Cost(T2,40), Cost(T3,60),	The variants to develop=
NV2= {T6, T11}	V2 = {T1, T4}	Core2= {V5}	Cost (T4,80), Cost(T5,25),	{ V2, V5, V6}
Both can be	V3 = {T2, T3}	Core3= {V6}	Cost(T6,35), Cost(T7,50), Cost	
replaced by V2	V4= {T2, T4}		(T8,30), Cost (T9,50),	The tasks to develop=
due to the	V5= {T5, T8, T9}		Cost (T10,50), Cost (T11, 30).	{T1, T4, T5, T7, T8, T9}
implications:	V6= {T7, T8, T9}		Include(T2, T1), Intersect(T3, T4, 40),	
C13→C12 and			Intersect (T3, T5, 20), Intersect(T4, T5,	Costs= 215 (development of the
the trivial C15 $ ightarrow$			20), Intersect (T4, T9, 30)	core variants V2, V5, V6)
true.			Cost= 340 (development of all	
			variants)	

COLLABORATIVE WORK IIWSPM@RE09 , DSPL@SPLC 091

UNIVERSITY OF TRENTO - Italy Information Engineering and Computer Science Department

AN INTEGRATED FRAMEWORK

USEFULNESS OF INTEGRATION

CONTEXT FOR GOAL LEVEL SPLE

- Variability is that of human intentions and choices first.
- Context influences decisions at this level first.
- A Dynamic SPL has to reflect such adaptation to derive a contextualized product variant.
- We introduced the terms:
 - Online SPL Contextualization.
 - Offline SPL Contextualization.
 - Maintenance based on operation in multiple contexts.

FUTURE 3 WORKS

• Lifelong Contextualization!!

- "What are the requirements? Well, it depends on the context, but I do not know exactly how".
- Viewpoints in Context Specification:
 - E.g., Tourist is interested in attending a cultural event if
 - the event conveys very new information
 - If the event is related to the tourist culture.
- Security Requirements in Varying Vontexts.
 - E.g., unless I am unconscious or far away from my city, no one but my private doctor can see my medical record without my permission.