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Abstract. The objective of this paper is to give an overview of Tropos methodology.
Tropos is based on two key ideas. First, the notion of agent and related mentalistic
notions, such as goals and plans, are used in all phases of software development,
from early analysis down to the actual implementation. Second, Tropos covers the
very early phases of requirements analysis, thus allowing for a deeper understanding
of the environment where the software-to-be will eventually operate. We illustrate
the phases of the methodology, the Formal Tropos language, and the social and
intentional models that are used to support software development.
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1. Introduction

The explosive growth of application areas such as electronic commerce,
enterprise resource planning, and peer-to-peer computing has deeply
and irreversibly changed our views on software and Software Engineer-
ing. Software must now be based on open architectures that continu-
ously change and evolve to accommodate new components and meet
new requirements. Software must also operate on different platforms,
without recompilation, and with minimal assumptions about its op-
erating environment and its users. As well, software must be robust
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and autonomous, capable of serving end users with a minimum of over-
head and interference. These new requirements, in turn, call for new
concepts, tools and techniques for engineering and managing software.
For these reasons – and more – agent-oriented software development

is gaining popularity over traditional software development techniques,
including structured and object-oriented ones (see for instance [14]).
After all, agent-based architectures do provide for an open, evolving
architecture that can change at run-time to exploit the services of
new agents, or replace under-performing ones. In addition, software
agents can, in principle, cope with unforeseen circumstances because
their architecture includes goals along with a planning capability for
meeting them.
We are currently working on an agent-oriented software development

methodology called Tropos [2]. In a nutshell, Tropos is based on two key
features. First, the notion of agent and related mentalistic notions are
used in all software development phases, from the early requirements
analysis down to the actual implementation. Second, the methodology
emphasizes early requirements analysis, the phase that precedes the
prescriptive requirements specification. In this respect, Tropos is quite
different from other agent- and object-oriented software development
methodologies.
Paying attention to the activities that precede the specification of

prescriptive requirements for the system-to-be [6, 23] means that de-
velopers can capture and analyze the goals of stateholders. These goals
play a crucial role in defining the requirements for the new system. Put
another way, prescriptive requirements capture the what and the how
for the system-to-be. Early requirements, on the other hand, capture
the reasons why a software system is developed. This new perspective,
in turn, supports a more refined analysis of system dependencies and a
more uniform treatment of functional and non-functional requirements.
Tropos adopts Eric Yu’s i* model which offers actors (agents, roles,

or positions), goals, and actor dependencies as primitive concepts for
modeling an application during early requirements analysis. Tropos is
intended to support four phases of software development: early require-
ments analysis, concerned with the understanding of a problem by
studying its organizational setting; late requirements analysis, where
the system-to-be is described within its operational environment, along
with relevant functions and qualities; architectural design, where the
system’s global architecture is defined in terms of subsystems, inter-
connected through data, control, and other dependencies; and detailed
design, where the behavior of each component is defined in further
detail.
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The objective of this chapter is to present the Tropos methodol-
ogy. Section 2 offers an overview of the methodology, while Section 3
presents the Tropos formal language, designed to support the methodol-
ogy. Section 4 describes the social patterns used during the development
process, while Section 5 presents its goal model. Finally, Section 6
summarizes the contributions of the proposed methodology and points
to directions for further work.

2. Overview

In this section we present briefly the four phases supported by Tropos,
using the Media Shop case study. Media Shop is a store selling and
shipping media items such as books, magazines, audio CDs, video-
tapes, and the like. Media Shop customers (on-site or remote) can
use a catalogue describing available items to fill their orders. Media
Shop is supplied with the latest releases from Media Producer and in-
catalogue items by Media Supplier. To increase market share, Media
Shop has decided to open up Medi@, a B2C internet site. Through it,
a customer can put in orders to Media Shop through the internet. She
can also search the on-line store by either browsing the catalogue, or
by querying the database through keywords or full-text search. The
system uses communication facilities provided by Telecom Cpy and
on-line financial services supplied by Bank Cpy.

Early requirements analysis focuses on the intentions of stake-
holders. Intentions are modeled as goals. Through some form of goal-
oriented analysis, these initial goals eventually lead to the functional
and non-functional requirements of the system-to-be [6]. In i* [23],
stakeholders are represented as (social) actors who depend on each
other for goals to be achieved, tasks to be performed, and resources to
be furnished. The i* framework includes the strategic dependency model
for describing the network of relationships among actors, as well as the
strategic rationale model for describing and supporting the reasoning
that each actor goes through concerning its relationships with other
actors.
A strategic dependency model is a graph involving actors who have

strategic dependencies among each other. A dependency describes an
“agreement” (called dependum) between a depending actor (depen-
der) and an actor who is depended upon (dependee). The type of the
dependency describes the nature of the agreement. Goal dependen-
cies are used to represent delegation of responsibility for fulfilling a
goal; softgoal dependencies are similar to goal dependencies, but their
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Figure 1. i* Model for a Media Shop.

fulfillment cannot be defined precisely (for instance, the degree of ful-
fillment is subjective); task dependencies are used in situations where
the dependee is required to perform a given activity; and resource de-
pendencies require the dependee to provide a resource to the depender.
As shown in Figure 1, actors are represented as circles; dependums –
goals, softgoals, tasks and resources – are respectively represented as
ovals, clouds, hexagons and rectangles; and dependencies have the form
depender → dependum → dependee.
These elements are sufficient for producing a first model of an or-

ganizational environment. For instance, Figure 1 depicts an i* model
of our Medi@ example. The main actors are Customer, Media Shop,
Media Supplier andMedia Producer. Customer depends onMedia Shop
to fulfill her goal: Buy Media Items. Conversely, Media Shop depends
on Customer to increase market share and make “customers happy”.
Since the dependum Happy Customers cannot be defined precisely, it
is represented as a softgoal. The Customer also depends onMedia Shop
to consult the catalogue (task dependency). Furthermore, Media Shop
depends on Media Supplier to supply media items in a continuous way
and get a Media Item (resource dependency). The items are expected
to be of good quality, otherwise the Continuing Business dependency
might not be fulfilled. Finally, Media Producer is expected to provide
Media Supplier with Quality Packages.

Late requirements analysis results in a requirements specification
which describes all functional and non-functional requirements for the
system-to-be. In Tropos, the system is represented as one or more actors
which participate in a strategic dependency model, along with other
actors from the system’s operational environment. In other words, the
system comes into the picture as one or more actors who contribute to
the fulfillment of stakeholder goals.
As late requirements analysis proceeds, the system (Medi@) is given

additional responsibilities, and ends up as the dependee of several
dependencies. A strategic rationale model determines through a means-
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ends analysis how the system goals (including softgoals) identified dur-
ing early requirements can actually be fulfilled exploiting the contribu-
tions of other actors. A strategic rationale model is a graph with four
types of nodes - goal, task, resource, and softgoal - and two types of
links - means-ends links and decomposition links. A strategic rationale
graph captures the relationship between the goals of each actor and
the dependencies through which the actor expects these dependencies
to be fulfilled.
The analysis in Figure 2 focuses on the system itself and postu-

lates a root task Internet Shop Managed providing sufficient support
(++) [3] to the softgoal Increase Market Share. That task is firstly
refined (through decomposition links) into goals Internet Order Han-
dled and Item Searching Handled, softgoals Attract New Customer,
Security, Adaptability and Availability, and task Produce Statistics. To
manage internet orders, Internet Order Handled needs to be achieved
(means-ends link) through the task Shopping Cart. In turn, this task
is decomposed into subtasks Select Item, Add Item, Check Out, and a
subgoal Get Identification Detail. These are the main process activities
required to design an operational on-line shopping cart. The latter goal
is achieved either through secure or standard form orderings.
In addition, Figure 2 introduces softgoal contributions to model suffi-

cient/partial positive (respectively ++ and +) or negative (respectively
−− and −) support to softgoals Security, Availability, Adaptability,
Attract New Customers and Increase Market Share. The result of such
a means-ends analysis is a set of (system and human) actors who are
dependees for some of the dependencies that have been postulated.
Resource, task and softgoal dependencies correspond naturally to

functional and non-functional requirements. Leaving (some) goal de-
pendencies between system actors and other actors is a novelty. Tra-
ditionally, functional goals are “operationalized” during late require-
ments, while quality softgoals are either operationalized or “metri-
cized” [6]. In our example, we have left four (soft)goals (Availability,
Security, Adaptability and Increase Market Share) for architectural de-
sign. The operationalization of these non-functional requirements will
depend on the type of architecture chosen during design.

Architectural design. A system architecture constitutes a relatively
small, intellectually manageable model of system structure, which de-
scribes how system components work together [22]. In Tropos, we have
defined organizational architectural styles [15] for cooperative, dynamic
and distributed applications – such as multi-agent systems – to guide
the design of the system architecture. These organizational architec-
tural styles are based on concepts and design alternatives coming from
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Figure 2. Strategic Rationale Model for Medi@.

research in organization management. As such, they help match a
multi-agent system (hereafter MAS) architecture to the organizational
context within which the system will operate. We present more details
on these organizational styles and the Tropos architectural design phase
in Section 4.

Detailed design introduces additional detail for each architectural
component of a system. In particular, this phase determines how the
goals assigned to each actor are fulfilled by agents in terms of design
patterns. Design patterns (e.g., [11]) have attracted much attention.
Unfortunately, the literature focuses on object-oriented patterns, rather
than the intentional and social ones that are relevant here. Within
Tropos, social patterns [7] are used to find a solution to a specific goal
defined at the architectural level through the identification of organiza-
tional styles and relevant quality attributes. More details about social
patterns are presented in Section 4.
Detail design in Tropos also includes the specification of agent com-

munication and agent behavior. To support this task, we propose to
adopt existing agent communication languages, such as FIPA-ACL [16],
and extensions to UML, such as the Agent Unified Modeling Language
(AUML).
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3. Formal Tropos

The Tropos framework supports the application of formal analysis tech-
niques for the verification of requirements specifications. The analysis
is based on Formal Tropos (hereafter FT), a specification language
that offers all the standard mentalistic notions of Tropos and supple-
ments them with a rich temporal specification language inspired by
KAOS [17]. FT allows for the description of the dynamic aspects of
Tropos models. More precisely, in FT we focus not only on the in-
tentional elements themselves, but also on the circumstances in which
they arise, and on the conditions that lead to their fulfillment. In this
way, the dynamic aspects of a requirements specification are introduced
at the strategic level, without requiring an operationalization of the
specification. With an FT specification, one can ask questions such as:
Can we construct valid operational scenarios based on the model? Is it
possible to fulfill the goals of the actors? Do the dependencies represent
a valid synchronization between actors?
In this section we give a short description of the key aspects of the

FT language. A full definition can be found in [8, 10].
An FT specification describes the relevant elements (actors, goals,

dependencies...) of a domain and the relationships among them. The
description of each elements is structured in two layers. The outer
layer is similar to a class declaration. It associates to the element a
set of attributes that define its structure. The inner layer expresses
constraints on the lifetime of the objects, given in a typed first-order
linear-time temporal logic.
Figure 3 is an excerpt of the outer layer of the FT specification of the

Medi@ example. It focuses on the management of the on-line shopping
cart. Actors, intentional elements, and dependencies of the Strategic
Rational Model are mapped into corresponding “classes” in the outer
layer of FT. Moreover, “entities” (e.g., Cart and Item) are added to
represent the relevant non-intentional elements of the domain. Several
instances of a class may exist during the evolution of the system. For ex-
ample, different PlaceOrder instances may exist for different customers,
and several AddItem tasks can be done during the management of a
ShoppingCart.
Each class has an associated list of attributes. Most of the attributes

in FT are references to other classes and are used to define the relation-
ships among the different instances of these classes. For example, task
ShoppingCart refers to the specific Cart that is being managed (attribute
cart) and to the PlaceOrder dependency that triggered the management
of the ShoppingCart (attribute po). Moreover, each Cart refers to the
set of items that have been added to it. Constant attributes (i.e.,
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Figure 3. Excerpt of FT Class Declaration.

attributes whose values do not change over time) define static relations
among the class instances of a model. For instance, the cart associated
to a given instance of ShoppingCart does not change. The set of items
associated to the cart, on the other hand, can change over time. Special
attribute actor associates a goal or task to the corresponding actor.
Similarly, depender and dependee attributes define the two actors
involved in a dependency.
Intentional elements have aMode attribute that defines the modal-

ity of the fulfillment of the goal or task. For instance, the mode of task
ShoppingCart is achieve, which means that the Medi@ actor wants to
reach a state where the management of the cart has been fulfilled and
the corresponding order has been placed. Softgoal Security, instead,
has a maintain mode, since the security of the system has to be
continuously maintained.
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Figure 4. Example of FT Constraints.

Figure 4 contains some examples of constraints on the lifetime of
class instances that define the inner layer of an FT specification. In-
variant constraints define conditions that should be true throughout
the lifetime of class instances. Typically, invariants define relations on
the possible values of attributes, or cardinality constraints on the in-
stances of a given class. For instance, the first invariant of Figure 4
binds an AddItem task with its associated ShoppingCart task, while the
second invariant imposes a cardinality constraint on the AddItem tasks
for a given Item.
Two critical moments in the lifecycle of intentional elements and

dependencies are the instants of their creation and fulfillment. Creation
and fulfillment constraints can be used to impose conditions for these
two moments in the life of an intentional element. The creation of a goal
or task instance means that the owner or depender expects or desires
the achievement of the goal/task. Creation constraints should be sat-
isfied whenever a new instance is created, while fulfillment constraints
should hold whenever a goal or softgoal is satisfied, a task is performed,
a resource is made available, or a dependum is delivered. Creation and
fulfillment constraints are further distinguished as sufficient conditions
(keyword trigger), necessary conditions (keyword condition), and
necessary and sufficient conditions (keyword definition).
A first usage of creation and fulfillment constraints is to relate sub-

ordinate goals and tasks with their parent intentional elements. For
instance, Figure 4 shows that a creation condition for an instance of
task AddItem is that the parent task ShoppingCart is not yet fulfilled:
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it is not possible to add further items to a cart, once an order has
been placed and task ShoppingCart has been fulfilled. Together with
the fulfillment conditions of task ShoppingCart, this creation condition
elaborates the decomposition relation between the two tasks shown in
Figure 2.
The fulfillment condition of softgoal Security requires that, whenever

a GetIdentificationDetail goal has been fulfilled, the identified customer
(gid.customer) coincides with the customer that is interacting with the
system for placing the order (gid.sc.po.depender), that is, in a secure
system we do not allow for invalid identifications.

Once a FT specification has been defined, it can be formally veri-
fied in order to identify errors, ambiguities, and under-specifications.
The verification phase usually generates feedback on errors in the FT
specification and hints on how to fix them. In order to support the
verification process, we have developed a prototype tool, called the T-
Tool [9], that is based on finite-state model checking [5, 4]. On the basis
of an FT specification, the T-Tool builds a finite model that represents
all possible behaviors of the domain that satisfy the constraints of the
specification. The T-Tool then verifies whether this model exhibits the
desired behaviors.
The T-Tool provides several verification functionalities. Animation

of the specification consists of an interactive generation of a valid sce-
nario, namely, of a scenario that satisfies all the temporal constraints
of the FT specification. Animation allows for an immediate feedback
on the effects of constraints and for an early identification of trivial
bugs and missing requirements. Consistency checks verify that the
FT specification is not self-contradictory. Inconsistent specifications
occur quite often due to complex interactions among constraints in
the specification, and they are very difficult to detect without the
support of automated analysis tools. During the consistency checks, the
T-Tool verifies that there is some valid scenario that respects all the
constraints of the FT specification, that all the goals and dependencies
are fulfillable in some scenarios, and other similar properties. Possibility
checks verify whether we are over-constraining the specification, that
is, whether we have ruled out scenarios expected by the stakeholders.
These expected scenarios are described in the FT specification using
possibility properties. For instance, a scenario that we do not want to
rule out is the possibility of interrupting the placement of an order also
if we have already added some items to the cart. This property can
be expressed by the following FT possibility. It requires that, even
if items have been added to the cart, it is possible to never fulfill a
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ShoppingCart task (with “globally (c)” we specify that condition c is
true through all future history of the model):

Possibility ∃ sc: ShoppingCart (sc.cart 6= empty ∧ globally (¬ Fulfilled (sc)))

Assertion properties verify whether the requirements are under-speci-
fied and allowing for invalid scenarios. Also in this case, assertion
declarations in the FT specification are used to express conditions
on the valid scenarios. For instance, a requirement that one wants to
be true is that the system is secure, that is, that softgoal Security is
fulfilled:

Assertion ∀ sec: Security (Fulfilled (sec))

Since the fulfillment of the security goal depends on the success of goal
GetIdentificationDetail, the definition of the fulfillment conditions of this
goal need special care. If these conditions do allow for incorrect iden-
tifications, the previous assertion is violated and an error is reported
during the verification phase.

4. Socially-Based MAS Architectures

System architectural design has been the focus of considerable research
during the last fifteen years. This has produced well-established archi-
tectural styles and frameworks for evaluating their effectiveness with
respect to particular software qualities. Examples of styles are pipes-
and-filters, event-based, layered, control loops and the like [22]. In
Tropos, we are interested in developing a suitable set of architectural
styles for multi-agent software systems. Since the fundamental con-
cepts of a Multi-Agent System (MAS) are intentional and social, rather
than implementation-oriented, we turn to theories which study social
structures that result from a design process, namely Organization The-
ory and Strategic Alliances. Organization Theory (e.g., [21]) describes
the structure and design of an organization; Strategic Alliances (e.g.,
[19]) models the strategic collaborations of independent organizational
stakeholders who have agreed to pursue a set of business goals.

Organization Theory describes how practical organizations are ac-
tually structured, offers suggestions on how new ones can be con-
structed, and how old ones can change to improve effectiveness. To
this end, schools of organization theory have proposed models such as
the structure-in-5, the pyramid style, the chain of values, the matrix,
the bidding style to try to find and formalize recurring organizational
structures and behaviors.
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For instance the structure-in-5, as proposed by Minztberg [18],
specifies that an organization is an aggregate of five sub-structures. At
the base level sits the Operational Core which carries out the basic
tasks and procedures directly linked to the production of products and
services (acquisition of inputs, transformation of inputs into outputs,
distribution of outputs). At the top lies the Strategic Apex which makes
executive decisions ensuring that the organization fulfills its mission in
an effective way and defines the overall strategy of the organization in
its environment. The Middle Line establishes a hierarchy of authority
between the Strategic Apex and the Operational Core. It consists of
managers responsible for supervising and coordinating the activities
of the Operational Core. The Technostructure and the Support are
separated from the main line of authority and influence the operating
core only indirectly. The Technostructure serves the organization by
making the work of others more effective, typically by standardizing
work processes, outputs, and skills. It is also in charge of applying
analytical procedures to adapt the organization to its operational envi-
ronment. The Support provides specialized services, at various levels of
the hierarchy, outside the basic operating work flow (e.g., legal counsel,
R&D, payroll, cafeteria).
Figure 5 suggests a possible assignment of system responsibilities for

our Medi@ case study following the structure-in-5 organizational style.
It is decomposed into five principal components Store Front, Coordi-
nator, Billing Processor, Back Store and Decision Maker. Store Front
serves as the Operational Core. It interacts primarily with Customer
and provides her with a usable front-end web application for consulting
and shopping media items. Back Store constitutes the Support compo-
nent. It manages the product database and communicates to the Store
Front information on products selected by the user. It stores and backs
up all web information from the Store Front about customers, prod-
ucts, sales, orders and bills to produce statistical information to the
Coordinator. It provides the Decision Maker with strategic information
(analyses, historical charts and sales reports).
The Billing Processor is in charge of handling orders and bills for

the Coordinator and implementing the corresponding procedures for
the Store Front. It also ensures the secure management of financial
transactions for the Decision Maker. As the Middle Line, the Coor-
dinator assumes the central position of the architecture. It ensures
the coordination of e-shopping services provided by the Operational
Core including the management of conflicts between itself, the Billing
Processor, the Back Store and the Store Front. To this end, it also
handles and implements strategies to manage and prevent security gaps
and adaptability issues. The Decision Maker assumes the Strategic Apex
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Figure 5. The Medi@ Organizational Architecture in Structure-in-5.

role. To this end, it defines the Strategic Behavior of the architecture
ensuring that objectives and responsibilities delegated to the Billing
Processor, Coordinator and Back Store are consistent with that global
functionality.

Strategic Alliances link specific facets of two or more organizations.
At its core, this structure is a trading partnership that enhances the
effectiveness of competitive strategies of participant organizations by
providing for the mutually beneficial trade of technologies, skills, or
products derived from them.
For instance, the joint venture style involves agreement between

two or more intra-industry partners to obtain the benefits of larger
scale, partial investment and lower maintenance costs. A specific joint
management actor coordinates tasks and manages the sharing of re-
sources between partner actors. Each partner can manage and control
itself on a local dimension and interact directly with other partners to
exchange resources, such as data and knowledge. However, the strategic
operation and coordination of such an organization, and its actors on
a global dimension, are only ensured by the joint management actor in
which the original actors possess equity participations.
Other styles are the arm’s-length style, the hierarchical contracting

style or the co-optation style.



14 P. Giorgini, M. Kolp, J. Mylopoulos, M. Pistore

Advertise
Source

Location
Profile

Customer

Route Info
Request

Mediator

Source
Matchm.

Fwd Source
Change

Broker
Info

Cancelation
Handle

Request

Shopping
Cart

Provide
Item
Data

Locate
Source

Query
Information

Source

Info
Ask for

Advertising

Monitor

Translate
Response

Provide
Information

Wrapper Product
Database

Update
Notify

Figure 6. Decomposing the Store Front with Social Patterns.

Social Patterns. A further step in the architectural design of MAS
consists of specifying how the goals delegated to each actor are to be
fulfilled [15]. For this step, designers can be guided by a catalogue of
multi-agent patterns which offer a set of standard solutions. Consider-
able work has been done in software engineering for defining software
patterns (see e.g., [11]). Unfortunately, little emphasis has been put on
social and intentional aspects. Moreover, proposals for agent patterns
that do address these aspects (see e.g., [1]) are not intended for use at
a design level. Instead, such proposals seem to aim at the implemen-
tation phase, when issues such as agent communication, information
gathering, or connection setup are addressed.
Social patterns [7] are design patterns focusing on social and inten-

tional aspects that are recurrent in multi-agent and cooperative sys-
tems. In particular, the structures are inspired by the federated patterns
introduced in [13, 15]. We have classified them into two categories.
The Pair patterns – such as booking, call-for-proposal, subscription,

or bidding – describe direct interactions between negotiating agents.
For instance, the Bidding pattern involves an initiator and a number
of participants. The initiator organizes and leads the bidding process.
He publishes the bid to the participants and receives various proposals.
At every iteration, the initiator can accept an offer, raise the bid, or
cancel the process.
The Mediation patterns – such as monitor, broker, matchmaker,

mediator, embassy, or wrapper – feature intermediary agents that help
other agents to reach an agreement on an exchange of services. For
instance, in the Broker pattern, the broker agent is an arbiter and in-
termediary that requests services from a provider to satisfy the request
of a consumer.
Figure 6 shows a possible use of the patterns in the e-business system

shown in Figure 5. In particular, it shows how to realize the depen-
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dencies Manage catalogue browsing, Update Information, and Product
Information from the point of view of the Store Front. The Store Front
and the dependencies are decomposed into a combination of social
patterns involving agents, pattern agents, subgoals and subtasks.
The booking pattern is applied between the Shopping Cart and the

Information Broker to reserve available items. The broker pattern is
applied to the Information Broker, which satisfies the Shopping Cart ’s
requests of information by accessing the Product Database. The Source
Matchmaker applies the matchmaker pattern to locate the appropriate
source for the Information Broker, and the monitor pattern is used
to check any possible change in the Product Database. Finally, the
mediator pattern is applied to dispatch the interactions between the
Information Broker, the Source Matchmaker, and the Wrapper, while
the wrapper pattern makes the interaction between the Information
Broker and the Product Database possible.

5. Goal Models

Traditional goal analysis consists of decomposing goals into subgoals
through an AND- or OR-decomposition. If goal G is AND-decomposed
(respectively, OR-decomposed) into subgoals G1, G2, . . . , Gn, then all
(at least one) of the subgoals must be satisfied for the goal G to be
satisfied. Given a goal model consisting of goals and AND/OR rela-
tionships among them, and a set of initial labels for some nodes of the
graph (S for Satisfied, D for Denied) there is a simple label propagation
algorithm which can generate labels for all nodes of the graph [20].
Unfortunately, this simple framework for modeling and analyzing

goals won’t work for many domains where goals can’t be formally
defined, and the relationships among them can’t be captured by se-
mantically well-defined relations such as AND/OR ones. For example,
a goal such as “Highly reliable system” has no formal definition which
prescribes its meaning, though one may want to define necessary con-
ditions for its fulfillment. Moreover, such a goal may be related to
other goals, such as “Thoroughly debugged system”, “Thoroughly tested
system” in the sense that the latter obviously contribute to the satis-
faction of the former, but this contribution is partial and qualitative. In
other words, if the latter goals are satisfied, they certainly contribute
towards the satisfaction of the former goal, but don’t guarantee it. The
framework will also not work in situations where there are contradic-
tory contributions to a goal. For instance, we may want to allow for
multiple decompositions of a goal G into sets of subgoals, where some
decompositions suggest satisfaction of G while others suggest denial.



16 P. Giorgini, M. Kolp, J. Mylopoulos, M. Pistore

increase
profit per

vehicle

price
lower gas

mileage
improve

appeal
consumer
increase increase

 sales price

keep 
labour costs 

low

price rises
US gas

Japanese gas
price rises

Yen rises

rates rise
Japanese 

lower
Jap. interest

rates

sales 
increase

volume 

increase
Toyota 
sales 

markets
expand 

earnings
foreign
increase

production
costs 

lower 

sales
high margin

increase

improve

production
economies of 

materials
costs

reduce raw outsource

production
units of

+

rebates
offer

price
lower salesloan interst

rates

lower

costs
purchase

lower
environment

impact

lower

costs
operating 

reduce

price rises
gas

++

+

+

+

+

+

increase 
customer
loyalty

quality
car

improve 

services
car

improve 

+

+

+

increase 
return on

investment
(GM)

increase

sales 
VW 

−S

−S

−S

OR

AND

OR

AND

OROR

OR

−−

OR

−

−

−

−

−

Figure 7. A partial goal model for GM.

Tropos proposes a formal model for goals that can cope with qual-
itative relationships and inconsistencies among goals. Suppose we are
modeling the strategic objectives of a US car manufacturer, such as
Ford or GM. Examples of such objectives are increase return on in-
vestment or increase customer loyalty. Objectives can be represented
as goals, and can be analyzed using goal relationships such as AND,
OR, “+” and “−”. In addition, we will use “++” (respectively ”−−”)
a binary goal relationship such that if ++(G, G′) (−−(G, G′)) then
satisfaction of G implies satisfaction (denial) of G′.
For instance, increase return on investment may be AND-decom-

posed into increase sales volume and increase profit per vehicle. Like-
wise, increase sales volume might be OR-decomposed into increase
consumer appeal and expand markets. This decomposition and refine-
ment of goals can continue until we have goals that are tangible (i.e.,
someone can satisfy them through an appropriate course of action)
and/or observable (i.e., they can be confirmed satisfied/denied by sim-
ply observing the application domain).
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For vaguely stated goals, such as increase customer loyalty we may
want to simply model other relevant goals, such as improve car quality,
improve car services and relate them through “+” and “−” relation-
ships, as shown in Figure 7. These goals may influence positively or
negatively some of the goals that have already been introduced during
the analysis of the goal increase return on investment. Such lateral goal
relationships may introduce cycles in our goal models.
Examples of observable goals are Yen rises, gas prices rise etc. When

such a goal is satisfied, we will call it an event (the kind of event you
may read about in a news story) and represent it in our graphical
notation as a rectangle (see lower portion of Figure 7).
Figure 7 shows a partial and fictitious goal model for GM focusing

on the goal increase return of investment. In order to increase return
of investment, GM has to satisfy both goals increase sales and increase
profit per vehicle. In turn, increase sales volume is OR-decomposed into
increase consumer appeal and expand markets, while the goal increase
profit per vehicle is OR-decomposed into increase sales price, lower
production costs, increase foreign earnings, and increase high margin
sales. Additional decompositions are shown in the figure. For instance,
the goal increase consumer appeal can be satisfied by satisfying lower
environment impact, trying to lower purchase costs, or reducing the
vehicle operating costs (reduce operating costs).
The graph shows also lateral relationships among goals. For example,

the goal increase customer loyalty has positive (+) contributions from
goals lower environment impact, improve car quality and improve car
services, while it has a negative (−) contribution from increase sales
price. The root goal increase return on investment (GM) is also related
with goals concerning others auto manufacturer, such as Toyota and
VW. In particular, if GM increases sales, then Toyota loses a share of
the North American market; if Toyota increases sales increase Toyota
sales), it does so at the expense of VW; finally, if VW increases sales
(increase VW sales), it does so at the expense of GM.
So far, we have assumed that every goal relationship treats S and D

in a dual fashion. For instance, if we have +(G, G′), then ifG is satisfied,
G′ is partially satisfied, and (dually) ifG is deniedG′ is partially denied.
Note however, that sometimes a goal relationship only applies for S
(or D). In particular, the −− contribution from increase GM sales to
increase Toyota sales only applies when increase GM sales is satisfied
(if GM hasn’t increased sales, this doesn’t mean that Toyota has). To
capture this kind of relationship, we introduce −S , −D, +S , +D (see
also Figure 7).
In [12] we have presented an axiomatization of a qualitative and a

quantitative goal model. We report here the qualitative formalization.
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We consider sets of goal nodes Gi and of relations (G1, ..., Gn)
r
7−→ G

over them, including the (n + 1)-ary relations and, or and the binary
relations +S , −S , +D, −D, ++S , −−S , ++D, −−D, +, −, ++, −−.

We briefly recall the intuitive meaning of these relations: G2
+S
7−→ G1

[resp. G2
++S
7−→ G1] means that if G2 is satisfied, then there is some

[resp. a full] evidence that G1 is satisfied, but if G2 is denied, then

nothing is said about the denial of G1; G2
−S
7−→ G1 [resp. G2

−−S
7−→ G1]

means that if G2 is satisfied, then there is some [resp. a full] evidence
that G1 is denied, but if G2 is denied, then nothing is said about the
satisfaction of G1. The meaning of +D, −D, ++D, −−D is dual w.r.t.
+S , −S , ++S , −−S respectively (by “dual” we mean that we invert
satisfiability with deniability). The relations +, −, ++, −− are such

that each G2
r
7−→ G1 is a shorthand for the combination of the two

corresponding relationships G2
rS
7−→ G1 and G2

rD
7−→ G1. (We call the

first kind of relations symmetric and the latter two asymmetric.)
Let G1, G2, ... denote goal labels. We introduce four distinct predi-

cates over goals, FS(G), FD(G) and PS(G), PD(G), meaning respec-
tively that there is (at least) full evidence that goal G is satisfied and
that G is denied, and that there is at least partial evidence that G is
satisfied and that G is denied.
To formalize the propagation of satisfiability and deniability evi-

dence through a goal graph, we introduce in [12] a set of axioms stating:
full satisfiability and deniability imply partial satisfiability and denia-
bility, respectively; for an AND relation, full and partial satisfiability
of the target node require respectively the full and partial satisfiability
of all the source nodes; satisfiability (but not the full satisfiability)
propagates through a “+S” relation. Thus, an AND relation propagates
the minimum satisfiability value (and the maximum deniability one),
while a “+S” relation propagates at most a partial satisfiability value.
Dual axioms hold for the other relations.

Given a goal graph, we can perform two different kind of reasoning:
Top-Down and Bottom-Up. In Top-Down reasoning, we concentrate on
a set of root goals with a desired assignment (e.g., satisfy all of them),
and we want to find an assignment to the leaf nodes consistent with the
desired assignment. In other words, we want to find an initial assign-
ment to the leaf nodes that can be propagate the desiderata assignment
to the root nodes. In Bottom-Up reasoning, we concentrate on a set of
leaf nodes with an initial assignment, and propagate these assignments
upwards to find out their implications for root-level goals.
In [12] we have proposed sound and complete algorithms for qualita-

tive and quantitative Top-Down reasoning with goal models. In particu-
lar, given a goal model and labels for some of the goals, our algorithms
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propagate these labels upwards. If the graph contains loops, propa-
gation proceeds until a fixpoint is reached. We have also developed
algorithms for qualitative and quantitative Bottom-Up reasoning.

6. Conclusions

We have presented an overview of the Tropos methodology. The basic
assumption that distinguishes our work from others in Requirements
Engineering is that actors and goals are used as fundamental concepts
for modeling and analysis during all phases of software development,
not just early requirements. The distinguishing feature of Tropos com-
pared to other agent-oriented software development methodologies is
its emphasis on requirements analysis. Further information about the
Tropos project can be found at www.troposproject.org.
The methodology has only been applied so far to several modest-size

case studies, e.g. [2], with encouraging results. Moreover, the methodol-
ogy still lacks tools that support the transition between different phases.
Another limitation of the methodology is that it has not been used for
the development of full-fledged multi-agent systems.
Of course, much remains to be done to further refine and evaluate

the proposed methodology. We are currently working on several open
problems, such as the development of other formal analysis techniques
for Tropos models, and the development of tools that support design
activities during different phases of the methodology.
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