
Delegation Mechanisms for Agent Architectural Design

Stéphane Faulkner1, Stéphane Dehousse1, Manuel Kolp2, Haralambos Mouratidis3 and Paolo
Giorgini4

1Information Management Research Unit

 University of Namur,
{stephane.faulkner, stephane.dehousse}@fundp.ac.be

2Information System Unit, University of Louvain,

kolp@isys.ucl.ac.be

3School of Computing and Technology, University of East London
haris@uel.ac.uk

4Department of Information and Communication Technology

University of Trento - Italy
giorgini@dit.unitn.it

Abstract

Multi-agent Systems (MAS) are now being considered a
promising architectural approach for designing
collaborative information systems. In such a perspective,
the concept of delegation has often been considered as a
key concept for modeling cooperative behavior in MAS.
However, despite considerable work on delegation
mechanisms in MAS, few research efforts have aimed at
truly defining a delegation model for designing MAS. This
paper deals with this issue in defining the foundations for
a delegation model aimed to help developers during the
phase of designing collaborative MAS.

1. Introduction

Collaborative information systems have been growing

and gaining substance in technological infrastructure
(e.g., middleware and Web technologies) and application
areas (e.g., Business Process Management, e-Commerce,
e-Government, and virtual enterprises). They involve
large networks of information systems that manage large
amounts of information and computing services and
cooperate to fulfill their mission.

In the last few years, one promising source of ideas for
designing collaborative information systems is the field of
multi-agent systems (MAS) architectures. They appear to
be more flexible, modular, and robust than traditional

including object-oriented ones. Research in this area has
notably emphasized that MAS is conceived as a society of
autonomous, collaborative, and goal-driven software
components (agents).

In such a distributed and cooperative perspective, the
concept of delegation has often been considered as a key
concept for modeling collaborative behavior in MAS [3,
11, 14]. Delegation allows an agent to assign authority
and/or responsibility for the execution of an action or the
fulfillment of a goal. However, even if the concept of
delegation has received increasing attention, the majority
of researches have been focusing either on requirement
analysis [7, 8] or on the definition of delegation models
through communication acts [14, 17] or socio-cognitive
theories [4].

Few research efforts have aimed at truly defining
delegation models for designing MAS architectures. This
paper deals with this issue in defining a “core” set of
concepts, including relationships and constraints that are
fundamental to propose a delegation model. This model is
aimed to help the developers during the design phase of
collaborative MAS.

The paper is structured as follows. Section 2 provides
an overview of the delegation model and details some
concepts using the Z specification language. Section 3
applies the delegation model on a case study. Section 4
discusses some of the related work and Section 5
summarizes the contributions of the paper and proposes
some possible extensions.

Figure 1. The delegation Model

2. The Delegation Model

Figure 1 depicts the Delegation Model using a UML
type class diagram. An Agent is an intentional entity,
which has some Beliefs and Goals that guide its action. A
Belief defines current states about the MAS, while a Goal
defines desired states that the Agent wants to bring about.
Each Agent occupies one or more Roles that are a
characterization of the expected behavior of an Agent in
the MAS. A Role requires a set of Plans to fulfill the
Goals for which it is responsible. A Plan defines a
sequence of actions.

In order to easier or better achieve its Goals, one or
more Agents can delegate to another Agent, called the
delegatee, the execution of a Plan or the responsibility of
a Role (i.e., Responsibility). The Delegation of a plan can
be classified as a Right or an Obligation. A Delegation of
Right defines one or more Plans that the delegatee is
allowed (or not) to execute, while a Delegation of
Obligation defines Plans that the delegatee must execute.
The Delegation can also be self-determined (i.e., Free), or
imposed (i.e., Forced) by the context of the environment
(i.e., Blind) or by other Agents (i.e., Coercive). In the
case of Free Delegation, Agent requires Trust in the
delegatee in order to effectively make the Delegation.
Trust is a Belief an Agent has on the ability and the
dependability of another agent to execute a Plan or to
achieve a Goal. An agent can also be allowed to re-
delegate a given delegation to another agent. This kind of
situation leads to a Chain of Delegation.

A Delegation is trigged or stopped by an Event. An
Event is an instantaneous state of the system. It is either
output of a Plan, or exogenous to the system.

Because Agents can collaborate autonomously,
Delegation Inconsistencies may exist. A Delegation
Inconsistency concerns two or more Delegations that
cannot be assigned to the same Agent in the system. The
resolution to a Delegation Inconsistency takes the form of
new Delegations.

Figure 1 shows only concepts and relationships. In the
next sections, we specify attributes and constraints of
some concepts using the Z state-based specification
language [19]. Following UML to Z translation rules
from Shroff and France [18], attributes are specified as Z
state variables and constraints as Z predicates. However,
due to a lack of space we only specify in details the
concept of Delegation and its specializations (i.e.,
Responsibility, Right, Obligation, Free and Forced).

2.1 Delegation and Chain of Delegation

Figure 2 shows the Z formal specification of the

Delegation concept. The first part of the specification
represents the definition of types. A given type defines a
finite set of items. The Delegation specification first
defines the type Name (which represents the Name
attribute) by writing [Name]. Such a declaration
introduces the set of all names, without making
assumptions about the type (i.e., whether the name is a
string of characters and numbers, or only characters,
etc.).

More complex and structured types are defined with
schemas. A schema groups a collection of related

declarations and predicates into a separate namespace or
scope. The schema in Figure 2 is entitled Delegation and
is partitioned by a horizontal line into two sections: the
declaration section above and the predicate section below
the line. The declaration section introduces a set of
variable declarations, while the predicate section provides
predicates that constrain values of the variables.

[Name]
[Actor] := Agent | Agent Group
[Value]

 Delegation
delegation_name : Name
delegator : Actor
delegatee : Actor
trigger: Event
expiration : ℙ Event
depth : Value
linked_ delegation : Boolean
monitor : Actor
combined_with : Delegation j Delegation
name ≠ ∅ ∧ delegator ≠ ∅ ∧ delegatee ≠ ∅ ∧
trigger ≠ ∅
dom depth = N
disjoint„Responsibility, Right, ObligationÒ
disjoint„Free, ForcedÒ
A d1, d2: Delegation ● d1.combined_with = d2
 fi d2.delegator = d1.delegator ¶
 d2.delegatee = d1.delegatee
A d1, d2: Delegation ● d1.combined_with = d2 ¶
 d1.expiration
 fi d2.expiration

Figure 2. Delegation Concept

A delegation defines an action by which an agent
assigns to another agent the responsibility of a role, or the
right or the obligation to execute a plan. It is specified
with the following variables:

− delegator and delegatee: the delegator identifies the

actor initiating the delegation, while the delegatee
identifies the actor to which the delegation has been
assigned. An actor is either an agent or a group of
agent. The concept of agent group allows modeling
multiple delegations (i.e., delegation from a group of
agent and/or delegation to a group of agent). An agent
group is specified with two variables: leader and joint.
The leader variable defines one or more agents that
cannot leave the group without causing the extinction
of the group, and consequently the revocation of the
delegation. The joint variable determines whether all
or only one agent of the group has to contribute to the
fulfillment of the delegation

− trigger and expiration: the trigger defines the reason
why the delegation starts and the expiration why the
delegation stops.

− depth: defines restrictions on re-delegations. A depth
set to 0 implies that no re-delegation is allowed, while
a depth set to a value greater than 0 allows a chain of
delegation composed of a number of re-delegations
equivalent to the depth’s value. The depth attribute is
particularly interesting in a chain of delegation [7, 11,
12, 15] to control delegation propagation and avoid
erratic re-delegation that could destabilize the system.

− linked_delegation: specifies if the delegation stops its
effects when the delegator leaves the system. This
variable is useful to design open MAS architectures
[9] in which agents can constantly integrate or leave
the system.

− monitor: identifies one or more agents that monitor
the delegation. Monitoring is used in order to check
and to evaluate the fulfillment of a delegation
assigned to a trusted or distrusted agent. The act of
monitoring can be done by the delegator himself or by
other agents. Depending on the kind of delegation, a
monitor is required or not.

− combined_with: specifies if the delegation is
combined with another delegation. By combining
delegation of responsibility and delegation of
obligation, an agent can delegate a role and force the
execution of one or more plans in order to fulfill a
goal for which this role is responsible. Such a
combination is useful to constraint some agent’s
behaviors in cooperative MAS. For instance, an agent
may delegate to another agent a role with the goal get
personal data and a delegation of obligation on the
plan, encrypt the data. For the delegator, this ensures
that whatever the plans used to get the personal data,
they will be encrypted.

A Delegation Chain is a non-empty set of delegations.

The predicate section of the Chain schema specifies that
all delegations which belong to the same chain have an
identical value for their respective linked_delegation and
combined_with variables, and that for each re-delegation
the depth variable is decreased by 1.

 Delegation Chain
chain: ℙ Delegation
delegations ≥ 2
A d1 , d2 : Delegation, c : Chain
 d1 e c ¶ d2 e c
 fi d1.linked_delegation = d2.linked_delegation
 ¶ d1.combined_with = d2.combined_with
A d1 , d2 : Delegation, c : Chain, x e N
 d1 e c ¶ d2 e c ¶ d1.delegatee = d2.delegator ¶
 d1.depth = x
 fi d2.depth = x - 1

Figure 3. Chain of Delegation Concept

2.2 Delegation of responsibility

A delegation of responsibility defines a set of roles

that the delegatee has to occupy. Roles provide the
building blocks for agent social systems and the
requirements by which agents interact [6]. The concept of
role is important to abstractly model the agents in multi-
agent systems and helpful to manage its complexity
without considering the concrete details of agents (e.g.,
implementation architectures and technologies) [18].
They enable separation between different functionalities
of software agents (e.g., mobility from collaboration), or
between different phases of the development process
(e.g., functions in the design from methods in the
implementation).

A delegation of responsibility involves that the
delegatee who has to occupy the roles is constrained to
fulfill the goals for which the roles are responsible.
However, the delegation of responsibility is the least
restrictive kind of delegation. Indeed, it only constrains
the delegatee to fulfill goals without constraining the
selection or the execution of plans which will make
possible to fulfill them.

 Responsibility
Delegation
roles : ℙ Role
roles ≠ ∅

Figure 4. Responsibility Delegation Concept

2.3 Delegation of right

A delegation of right defines a set of plans that the

delegatee is allowed to execute. It is specified in Figure 5.
This definition allows the representation of the concept of
authorization or permission [4, 7, 10, 12] that are often
described in the literature. An authorization is defined as
the right to grant to an agent an access to a resource in the
system. In our case, this kind of authorization can be
modeled by a delegation of right on the plan with which
the resource is associated. For instance, the authorization
on a personal data resource can be modeled as a
delegation of right on the plan which accesses to the
personal data.

 Right

Delegation
plans : ℙ Plan
plans ≠ ∅

Figure 5. Right Delegation Concept

2.4. Delegation of obligation

A delegation of obligation defines a set of plans that

the delegatee must (or not) execute. It is specified in
Figure 6. The polarity variable describes whether the
obligation is positive or negative. A negative delegation
of obligation enables an agent to forbid another agent to
execute a plan. It corresponds to the notion of prohibition
[7].

[Obligation_polarity] := Positive | Negative

 Obligation
Delegation
polarity: Obligation_Polarity
plans : ℙ Plan
polarity ≠ ∅ ∧ plan ≠ ∅
A ob: Obligation, p : Plan
p e ob ∧ ob.expiration fi p.executed

Figure 6. Obligation Delegation concept

2.5. Forced Delegation

Delegation is generally strictly based on trust.

However, [4, 8] has mentioned rarer cases of delegation
where trust is not required. This kind of delegation is
called a forced delegation. It occurs when an agent is in a
situation of blind or coercive delegation [4].

A blind delegation occurs when the delegator does not
have sufficient information to form a trust opinion on the
delegatee. Compare to other forms of delegation, a blind
delegation requires a monitor in order to compensate the
lack of trust in the delegatee.

 Blind
Delegation
A bl: Blind , bl.monitor Î 0

Figure 7. Blind Delegation Concept

A coercive delegation implies one or more agents,
called the requesters, that force the delegator to delegate
the responsibility of a role or the execution of a plan. The
requesters can force the delegation towards a given
delegatee (i.e., full coercive delegation), or can only force
the delegation without mentioning the delegatee (i.e.,
partial coercive delegation).

[Status] := Full | Partial

 Coercive

Delegation
requesters: ℙ Actor
status: Status
requesters ≠ 0 ¶ status ≠ 0

Figure 8. Coercive Delegation Concept

2.6 Free Delegation

Contrary to the forced delegation, a free delegation

requires trust in the delegatee. Indeed, a delegation
implies that the delegator exposes himself through the
behavior of a delegatee. A free delegation is defined as an
intentional delegation (i.e., the delegator can freely
decide to delegate or not). Consequently, the delegator
decides to delegate only if it trusts the delegatee.

 Free
Delegation
require : Trust

Figure 9. Free Delegation Concept

Trust is a belief an agent has on the ability and the
dependability of another agent to execute a plan or to
achieve a goal. The concept of trust is essentially human
mental state and therefore difficult to transpose in the
agent paradigm. Authors have, many times [3, 4, 13, 16],
tried to formalize this concept through, for example,
computation of different components without being able
to achieve the definition of a universally admitted model.
However, due to a lack of space, we do not address in
this work the issues related to trust models.

3. Using the Delegation Model in a Case
Study

The following examples are part of a substantial case

study on the development of an open system that supports
the management of paper submission and the reviewing
process for a conference. We focus on the phase of
reviewing which involves three categories of actors: PC
Chair (PCC), PC Member (PCM) and Scientific Expert
(SE).

Example 1: The PCC distributes submitted papers for
reviewing to the PCM. Each PCM have to select papers
they agree to review. For selecting a paper, a PCM
depends on PCC to get access to the submitted papers.

The example suggests the use of a delegation of

responsibility (Reviewing) from the PCC to the PCM
about the role of “reviewer”. This delegation of
responsibility is combined with the delegation of
obligation to select a paper (Select Paper) and the
delegation of right to access a paper (Accessing Paper).

The rest of this section describes the mentioned
delegations using the Z specification language.

ResponsibilityDelegation
name: Reviewing
delegator: PC Chair
delegatee: P PC Member
trigger: end_submission
expiration: end_reviewing
combined_with: Select Paper, Accessing Paper
role: Reviewer

ObligationDelegation

name: Select Paper
delegator: PC Chair
delegatee: PC Member
trigger: end_submission
expiration: end_reviewing
polarity: positive
plan: Select

RightDelegation

name: Accessing Paper
delegator: PC Chair
delegatee: P PC Member
depth: 1
trigger: end_submission
linked_delegation = 1
plans: Access

We specify the plans Select Paper and Accessing

Paper that are used in both delegations as follows:

Select
paper: Paper
reviewer : Paper ß PC Member
paper = dom reviewer

Access

list_paperkey : P PaperKey
paper_to_review: PaperKey å Paper
list_paperkey = dom paper_to_review

Example 2: A PCM has to review a paper for which he
has no enough expertise. The PCM chooses to delegate
the review to a Scientific Expert with which he is not
familiar.

This example illustrates the situation of a chain of

delegation. The chain of delegation concerns the right to
execute the plan Access. This plan was delegated firstly
by the PCC to the PCM and then by the PCM to the SE.
This re-delegation is only possible if the first delegation
have a depth attribute with a value greater than zero. As
this re-delegation also corresponds to a blind delegation,
we define the PCC like monitor.

RightDelegation
name: Accessing paper
delegator: PC Member
delegatee: Scientific Expert
trigger: end_submission
depth = 0
linked_delegation = 1
monitor: PC Chair
plans: Access

Example 3: The PCM cannot achieve the review of the
selected paper because the author is a colleague. The
PCM has to ask to a SE, designated by the PCC, to do the
review of the paper. To make the review, the SE depends
on the PCM to get access to the submitted papers.

While the previous example illustrated a blind

delegation, this one refers to a coercive delegation.
Indeed, the PCC requests that the PCM delegates the
reviewing of the paper to a specific SE. Therefore, this
form of delegation corresponds to a full coercive
delegation. In case of a partial coercive delegation, the
PCM could have chosen himself the delegatee.

RightDelegation
name: Accessing paper
delegator: PC Member
delegatee: Scientific Expert
trigger: end_submission
depth = 0
linked_delegation = 1
requester: PC Chair
status: full
plans: Access

4. Related work

Giorgini et al. [8] in their attempt to model security
requirements emphasize the distinction between
delegation of execution, i.e. at-least delegation, and
delegation of permission, i.e. at-most delegation. The
model proposed in this work takes into account this
distinction respectively through the concepts of
delegation of obligation and delegation of right.
Moreover, from the idea of Norman and Reed [15] that
have argued for a theory of delegation on an action to be
done and on a goal to be achieved, our model proposes
the delegation of responsibility. Such a delegation
constrains the delegatee which has to occupy the roles to
fulfill the goals for which the roles are responsible.

The concept of delegation chain has been largely
discussed in the literature [7, 12, 15]. In addition, [8]
mentions the combination of several delegations in order
to deal with complex delegation behaviors. Our model
allows specifying a chain, as well as a combination of
delegations. Moreover, we add the concept of agent
group in order to define multiple delegations (or
sponsoring) [15].

Finally, Castelfranchi and Falcone mention [4] that in
exceptional cases the delegator is not free to delegate.
From this statement, we propose to distinct two classes of
forced delegation: coercive and blind. The importance to
handle forced delegation has been confirmed by [8]
which recognize, after a large study, that for pragmatic
reasons agents may be forced to delegate to agent they do
not trust.

5. Conclusion and Future Work

MAS constitute a highly promising software architectural
approach for collaborative application domains such as
peer-to-peer, information retrieval, semantic web services
or e-business. The literature has often considered the
concept of delegation as a key concept for modeling
cooperative behavior in MAS [3, 11, 14].

Unfortunately, despite considerable work in software
design and architecture during the last decade, few
research efforts have aimed at defining a delegation
model for designing collaborative mechanisms when
MAS architectures are developed.

This paper has attempted to gather the key points of
different perspectives on delegation, as discussed in
Section 4. It has defined a conceptual model to design
delegation in MAS architectures. The main contribution
of this work is that our approach aims at modeling
delegation to use it at the design level, while others
approaches focus on requirement analysis or on the
definition of delegation models through communication
acts or socio-cognitive theories.

The research reported here calls for further work. We
are currently working on:

- the extension of the delegation model with trust
management concepts;

- the specification of the delegation model according
to a set of rules in order to perform consistency
analysis to be included in verification tools such as
PVS;

- the identification of a suitable set of delegation
abstractions, inspired by organizational metaphors, to
be used during the detailed design phase of the MAS
architecture.

6. References

[1] K. S. Barber and J. Kim, “Soft Security: Isolating
Unreliable Agents”, Proceedings of the AAMAS 2002
Workshop on Deception, Fraud and Trust in Agent
Societies, Bologna, Italy, July 2002.
[2] M. Blaze, J. Feigenbaum, J.Ioannidis, and K.
Keromytis, ”The Role of Trust Management in
Distributed System Security”, Secure Internet
Programming, J. Vitec, and C. Jensen (Eds)., 1999.
[3] J. Carter, E. Bitting and A. A. Ghorbani, "Reputation
Formalization Within Information Sharing Multiagent
Architectures", Computational Intelligence, Vol 18, No.
4, pp. 45-64, 2002.
[4] Castelfranchi C. and Falcone R., "Principles of trust
for MAS: cognitive anatomy, social importance, and
quantification". In Proceedings of the International

Conference of Multi-Agent Systems (ICMAS’98), pp.
72–79, 1998.
[5] S. Faulkner, T. T. Do, T. Hoang and M. Kolp,
Architectural Styles and Patterns for Multi-Agent
Systems, in N. Ichalakaranje, R Khasla and L.C. Jain
(Eds), Design of Intelligent Multi-Agent Systems:
Human-Centredness, Architecture, Learning and
Adaptation, vol. 162, pp 67-98, Springer, 2004.
[6] J. Ferber, "Multi-agent Systems". Addison-Wesley,
Reading, MA, 1999.
[7] P. Giorgini, F. Masscci, J. Mylopoulos, and N.
Zannone, "Filling the Gap Between Requirements
Engineering and Public Key/Trust Management
Infrastructures", Proc. of the 2nd Int. Conf. on Trust
Management iTrust 2004.
[8] P. Giorgini, F. Massacci, J. Mylopoulos and N.
Zannone, "Modelling Social and Individual Trust in
Requirements Engineering Methodologies", 3rd
international conference on trust management (iTrust
2005), Rocquencourt, France, 23-26 May 2005.
[9] D. Huynh, N. R. Jennings, and N. R. Shadbolt,
"FIRE: An integrated trust and reputation model for open
multi-agent systems". In Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI),
2004.
[10] L. Kagal, T. Finin, and Y. Peng, "A Framework for
Distributed Trust Management". In Proceedings of
IJCAI-01, Workshop on Autonomy, Delegation and
Control, 2001.
[11] Lalana Kagal et al., "Developing Secure Agent
Systems Using Delegation Based Trust Management",
InProceedings, Security of Mobile Multi-Agent Systems
Workshop, Autonomous Agents and Multiagent Systems
(AAMAS 2002) , July 2002.
[12] Ninghui Li, Joan Feigenbaum , Benjamin N. Grosof,
"A Logic-based Knowledge Representation for
Authorization with Delegation", Proceedings of the 1999
IEEE Computer Security Foundations Workshop, p.162,
June 28-30, 1999

[13] L. Mui, M. Mohtashemi, and A. Halberstadt, “A
Computational Model of Trust and Reputation”,
Proceedings of the 35th Hawaii International Conference
on System Sciences, Big Island, Hawaii, January 2002.
[14] T. J. Norman, and C. A. Reed, "Delegation and
responsibility", In Proceedings of the Seventh
International Workshop on Agent Theories,
Architectures, and Languages. Edited by C. Castelfranchi
and Y. Lesp’erance. Springer-Verlag, Berlin, pp. 136-
149, 2001.
[15] T. J. Norman and C. A. Reed, "Group Delegation
and Responsibility", In Proceedings of the First
International Joint Conference on Autonomous Agents
and Multi-Agent Systems, pages 491-498, 2002.
[16] S. D. Ramchurn, D. Huynh, and N. R. Jennings,
"Trust in multi-agent systems". The Knowledge
Engineering Review, 2004.
[17] J. Sabater, "Trust and Reputation for Agent
Societies". Phd thesis, Universitat Autnoma de
Barcelona, 2003.
[18] M. Shroff and R. B. France, "Towards a
formalization of UML class structures in Z", Proceedings
of the 21st International Computer Software and
Applications Conference, IEEE Computer Society, 1997.
[19] J. M. Spivey, "The Z notation: a reference manual",
Prentice Hall International (UK) Ltd., Hertfordshire, UK,
1992.
[20] H.C. Wong, and K. Sycara, "Adding Security and
Trust to Multi-Agent Systems", Proceedings of
Autonomous Agents’99 (Workshop on Deception, Fraud
and Trust in Agent Societies), 1999.
[21] Qi Yan, Xin-Jun Mao and Zhi-Chang Qi, "Modeling
role-based organization of agent system", UKMAS’02,
2002.

