
Agent-Oriented Methodologies: An Introduction 1

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Agent-Oriented
Methodologies:
An Introduction

Paolo Giorgini
University of Trento, Italy

Brian Henderson-Sellers
University of Technology, Sydney, Australia

Abstract

As an introduction to agent-oriented (AO) methodologies, we first describe
the characteristics of both agents and multi-agent systems (MASs). This
leads to a discussion of what makes an AO methodology that can be used
to build an MAS. Finally, we briefly introduce the ten methodologies that
are described in the remaining chapters in this book.

Introduction

A methodology aims to prescribe all the elements necessary for the development
of a software system, especially in the context of commercial applications. Prior
to industry adoption, however, it is necessary for researchers to create that
methodology. This has led to academic and industry researchers creating a large
number of methodological approaches. A decade ago, there were estimated to

2 Giorgini & Henderson-Sellers

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

be over a thousand methodological approaches to software development
(Jayaratna, 1994), although these can be grouped into a much smaller number
(around five) of software development approaches (Iivari, Hirschheim, &
Klein, 1999). To these can be added a sixth: agent-oriented (AO) methodologies;
that is, methodological approaches suitable for the development of agent-
oriented or agent-based software.1

In parallel to the growth and availability of object-oriented (OO) systems
development methodologies in the nineties, we are now seeing the burgeoning of
a number of innovative AO methodologies, several of which form the core of this
book. However, in contrast to OO methodologies, the field is not industry-
driven—most AO methodologies are supported by small teams of academic
researchers. Based on an observation that the coalescence of groups of OO
methodologies in the late 1990s led to an increased take-up by industry of the
object-oriented paradigm for system development and project management, this
book aims to encourage first the coalescence and collaboration between
research groups and then, hopefully, more rapid industry adoption of AO
methodological approaches. In other words, most AO methodologies are (at the
time of writing) in an early stage and still in the first context of mostly “academic”
methodologies for agent-oriented systems development, albeit that many of
these methodologies have been tested in small, industrial applications. One
purpose of this book is to identify those predominant and tested AO methodolo-
gies, characterize them, analyse them, and seek some method of unification and
consolidation with the hope that, in so doing, the community of scholars
supporting AO methodologies will soon be able to transfer those innovative ideas
into industry acceptance. This means mimicking the OO transition curve by
seeking consolidation. One means of such consolidation is discussed in the last
chapter of the book: the use of a method engineering framework (e.g., Martin &
Odell, 1995) to create a repository of agent-oriented method fragments.

Agents and Multi-Agent Systems

Defining agents is not straightforward. There are many opinions, some of which
you will see reflected in later chapters of this book (see also discussions in, for
example, Luck, Ashri & D’Inverno, 2004). The key characteristics of agents are
widely understood to be highly autonomous, proactive, situated, and directed
software entities. Other characteristics such as mobility are optional and create
a special subtype of agent; whereas some characteristics cannot be used as
determining factors since they are really grey shades of a scale that encom-
passes both objects and agents.

Agent-Oriented Methodologies: An Introduction 3

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In this context, an autonomous agent is one that is totally independent and can
decide its own behaviour, particularly how it will respond to incoming communi-
cations from other agents. A proactive agent is one that can act without any
external prompts. However, it should be noted that this introduces some
problems, since there is also a large literature on purely reactive agents that
would not be classified as agents with this categorization. Although reactive
agents dominate in some domains, in reality, most agents being designed today
have both proactive and reactive behaviour. Balancing the two is the key
challenge for designers of agent-oriented software systems.
The characteristic of situatedness means that agents are contained totally within
some specific environment. They are able to perceive this environment, be acted
upon by the environment, and, in turn, affect the environment. Finally, the
directedness means that agents possess some well-defined goal and their
behaviour is seen as being directed towards effecting or achieving that goal.
Comparison with objects is often made. Some see agents as “clever objects” or
“objects that can say no.” This means that a hybrid agent+object system is
entirely feasible. Others see agents at a much higher level of abstraction (e.g.,
Milgrom et al., 2001), much in the same way that OO specialists view compo-
nents at a similar more granular level. Indeed, it is still unresolved as to how the
scale of objects, components, and agents are matched and to what extent hybrid
object/component/agent systems are feasible.
Some consequences of these high-level definitions are that agents participate in
decision-making cycles, sometimes labelled as “perceive-decide-act” cycles. To
achieve this, we have to consider other lower-level characteristics such as the
roles that agents play, the metaphor of the agents having a mental state, including
the possession of skills and responsibilities, aptitudes, and capabilities. When
considering their interactions via perceptions and actions with other agents and
the environment, we introduce notions of perceptions, actions, and agent
communication languages. Negotiating skills involve the consideration of con-
tract nets, auction strategies, and the issues of competition versus cooperation.
Defining a Multi-Agent System (MAS) is also not straightforward. However,
almost all the definitions given in the literature conceive a MAS as a system
composed of cooperative or competitive agents that interact with one another in
order to achieve individual or common goals. From the software engineering
point of view, one of the most important characteristics of a MAS is that the final
set of agents is generally not given at design time (only the initial set is specified),
but rather at run time. This basically means that, in practice, MASs are based on
open architectures that allow new agents to dynamically join and leave the system.
The major difference with the OO approach, where objects can also be given at
run time and join and leave the system dynamically, is that agents can do this
autonomously showing proactive behaviors not completely predictable a priori.

4 Giorgini & Henderson-Sellers

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A MAS contains agents (and not, say, objects); consequently, it too has some of
these typical agent characteristics. Thus key characteristics of a MAS can be
said to be autonomy, situatedness, proactivity, and sociality. Of these, perhaps
proactivity is the most contentious since, as noted above, it is generally agreed
that agents possess various degrees of both proactive and reactive behaviour.
Secondly, autonomy is not a binary characteristic either, since active objects,
used for instance in the context of event-driven programming, can also be said
to exhibit some degree of proactivity. Notwithstanding these two concerns, these
agent characteristics lead to a set of desirable high-level characteristics (Milgrom
et al., 2001) including adaptiveness, flexibility, scalability, maintainability, and
likely emergent behaviour. While these are said to be “desirable” characteristics,
it is perhaps the last of this list that causes most concern. Emergence is usually
linked to Complex Adaptive Systems (CAS) theory. Although there are many
shades of definition of what is meant by emergence in the CAS community, the
general interpretation is that an emergent behaviour is one that cannot be
predicted by inspection of the individual parts. This means that it is not visible
from a bottom-up analysis and, arguably therefore, must be considered at the
system level. Since this sort of emergent behaviour is generally encouraged,
allowing it to emerge unconstrained and unplanned is clearly dangerous in certain
circumstances (whilst beneficial in others). To alleviate this concern of an
uncontrolled and uncontrollable agent system wreaking havoc, clearly emergent
behaviour has to be considered and planned for at the systems level using top-
down analysis and design techniques. This is still an area that is largely unknown
in MAS methodologies. ADELFE starts along this path with its consideration of
adaptive MAS (see Chapter VII for further details) in which agents that
permanently try to maintain cooperative interactions with others.
Many AO methodologies (e.g., Gaia and Tropos) use the metaphor of the human
organization (possibly divided into sub-organizations) in which agents play one or
more roles and interact with each other. Human organization models and
structures are consequently used to design MAS (see, for instance, the use of
architectural patterns in Tropos or the organization models in MAS-
commonKADS). Concepts like role, social dependency, and organizational rules
are used not just to model the environment in which the system will work, but the
system itself. Given the organizational nature of a MAS, one of the most
important activities in an AO methodology results in the definition of the
interaction and cooperation models that capture the social relationships and
dependencies between agents and the roles they play within the system.
Interaction and cooperation models are generally very abstract, and they are
concretized implementing interaction protocols in later phases of the design.
Although the Agent-Oriented Programming (AOP) paradigm was introduced
more than ten years ago by Yoav Shoam in his seminal work (Shoham, 1993), still
there are no AO languages used in practice for developing an MAS. Some tools

Agent-Oriented Methodologies: An Introduction 5

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have been developed in recent years to support the implementation of agents and
multi-agent systems, but still none are based on a proper agent-oriented
language. An interesting and very long list of agent tools is available at the
AgentLink Web site (http://www.agentlink.org). Current agent development
tools are mainly built on top of Java and use the object-oriented paradigm for
implementing software. The methodologies presented in this book do not have as
their main focus the implementation phase, although many of them give some
indications how to do that. The most used developing tools are JACK (AOS,
2000) and JADE (http://www.jade.cselt.it/).
JACK is a commercial agent-oriented development environment built on top of
and fully integrated with Java. It includes all components of the Java develop-
ment environment and also offers specific extensions to implement agent
behaviour. JACK provides agent-oriented extensions to the Java programming
language whereby source code is first compiled into regular Java code before
being executed. In JACK, a system is modelled in terms of agents defined by
capabilities, which in turn are defined in terms of plans (set of actions), events,
beliefs, and other capabilities.
JADE (Java Agent DEvelopment Framework) is a free software framework
fully implemented in the Java language. It allows for the implementation of multi-
agent systems through middleware that complies with the FIPA specifications
and through a set of graphical tools that supports the debugging and deployment
phases. The agent platform can be distributed across machines (which do not
even need to share the same operating system) and the configuration can be
controlled via a remote GUI. The configuration can even be changed at run-time
by moving agents from one machine to another one, as and when required.

AO Methodologies

What is an AO Methodology?

While there is much debate on the use of terminology in various subcultures of
information systems and software engineering, it can be generally agreed (e.g.,
Rolland, Prakash, & Benjamen, 1999) that a “methodology” has two important
components: one that describes the process elements of the approach, and a
second that focuses on the work products and their documentation. The second
of these is more visible in the usage of a methodology, which is why the OO
modelling language UML (OMG, 2001) is so frequently (and totally incorrectly)
equated with “all things OO” or even described as a methodology! A modelling
language such as this or its agent-focused counterpart of AUML (Odell,

6 Giorgini & Henderson-Sellers

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Parunak, & Bauer, 2000) offers an important contribution but has limited scope
within the context of a methodology. The emphasis placed on the product side
of a methodology tends to vary between different authors, as will be seen in the
remainder of this book. Some use UML/AUML and others eschew this as being
inadequate to support the concepts of agents as described in our earlier section
on Agent and Multi-agent Systems, introducing instead their own individualistic
notation and underpinning concepts. When UML-style diagrams are used, it is
assumed that the reader has some familiarity with this kind of graphical notation2;
otherwise, each author fully defines the notational set of icons being used in that
particular methodological approach.
Although these two main components (process and product support) are
generically agreed upon, it is possible to elaborate a little more since there are
issues of people, social structures, project management, quality, and support
tools. These can be reconciled within the process domain along with concerns
about metrics and standards, organizational procedures and norms and, if
possible, all underpinned by a metamodel and ontology (e.g., Henderson-Sellers,
1995; Rolland & Prakash, 1996).
Any methodology also needs to contain sufficient abstractions to fully model and
support agents and MASs—arguably, simple extensions of OO methodologies
are too highly constrained by the sole focus on objects. Thus, an AO methodology
needs to focus on an organized society of agents playing roles within an
environment. Within such an MAS, agents interact according to protocols
determined by the agents’ roles.
We should also ask what it means for a methodology to be “agent-oriented” in
the sense that we talk of an OO methodology in the context of object technology.
In this case, however, object technology has two foci. In an OO methodology,
we use OO concepts to describe the methodology, which, in turn, can be used
to build object-oriented systems. In contrast, when we speak of an AO
methodology, we generally do not mean a methodology that is itself constructed
on agent-oriented principles but merely one that is oriented towards the creation
of agent-based software. Thus, all the chapters except one follow this “defini-
tion.” Only Tropos (described in detail in Chapter 2) claims to use “agent think”
in its very derivation.

Genealogy of Methodologies

Agent-oriented methodologies have several roots. Some are based on ideas from
artificial intelligence (AI), others as direct extensions of existing OO methodolo-
gies, whilst yet others try to merge the two approaches by taking a more purist
approach yet allowing OO ideas when these seem to be sufficient. Figure 1

Agent-Oriented Methodologies: An Introduction 7

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

shows these lineages and influences in what might be called a genealogy of the
ten AO methodologies discussed in this book.
Several methodologies acknowledge a direct descendancy from full OO meth-
ods. In particular, MaSE (DeLoach, 1999; Wood & DeLoach, 2000) acknowl-
edges influences from Kendall, Malkoun and Jiang (1996), as well as an heredity
from AAII (Kinny, Georgeff, & Rao, 1996), which in turns was strongly
influenced by the OO methodology of Rumbaugh and colleagues called OMT
(Rumbaugh, Blaha, Premerlani, Eddy, & Lorensen, 1991). Similarly, the OO
methodology of Fusion (Coleman, Arnold, Bodoff, Dollin, & Gilchrist, 1994) was
said to be highly influential in the design of Gaia (Wooldridge, Jennings, & Kinny,
2000; Zambonelli, Jennings, & Wooldridge, 2003). Two other OO approaches
have also been used as the basis for AO extensions. RUP (Kruchten, 1999) has
formed the basis for ADELFE (Bernon, Gleizes, Picard, & Glize, 2002) and also
for MESSAGE (Caire et al., 2001), which, in turn, is the basis for INGENIAS
(Pavon, Gomez-Sanz, & Fuentes, 2005). More recently, RUP has also been used
as one of the inputs (together with AOR [Wagner, 2003]) for RAP (Taveter &
Wagner, 2005). Secondly, the OPEN approach to OO software development has
been extended significantly to support agents, sometimes called Agent OPEN
(Debenham & Henderson-Sellers, 2003). Finally, two other methodologies
exhibit influences from object-oriented methodological approaches. Prometheus
(e.g., Padgham & Winikoff, 2002a,b), although not an OO descendant, does
suggest using OO diagrams and concepts whenever they exist and are compat-
ible with the agent-oriented paradigm. Similarly, PASSI (2005) merges OO3 and
MAS ideas, using UML as its main notation.

Figure 1. Direct and indirect influences of object-oriented methodologies
on agent-oriented methodologies

Agent OPEN

OO

RUP OMT Fusion OPEN

AAII Gaia

MESSAGE Adelfe

MaSE
Tropos

PASSI

AOR

RAP

Prometheus

INGENIAS

MAS-CommonKADS
(+AI/KE)

Agent OPEN

OO

RUP OMT Fusion OPEN

AAII Gaia

MESSAGE Adelfe

MaSE
Tropos

PASSI

AOR

RAP

Prometheus

INGENIAS

MAS-CommonKADS
(+AI/KE)

8 Giorgini & Henderson-Sellers

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Somewhat different is the MAS-CommonKADS methodology (Iglesias, Garijo,
Gonzalez, & Velasco, 1996, 1998). This is the only solidly-AI-based methodology
discussed in this book, yet it also claims to have been strongly influenced by OO
methodologies, notably OMT.
Then there are the methodologies that do not acknowledge any direct genealogi-
cal link to other approaches, OO or AO. Discussed in this book is Tropos
(Bresciani, Giorgini, Giunchiglia, Mylopoulos, & Perini, 2004; Castro, Kolp, &
Mylopoulos, 2002; Giorgini, Kolp, Mylopoulos, & Pistore, 2004). Tropos has a
significant input from i* (Yu, 1995) and a distinct strength in early requirements
modelling, focusing as it does on describing the goals of stakeholders that
describe the “why” as well as the more standard support for “what” and “how.”
This use in Tropos of the i* modelling language (particularly in the analysis and
design phases) gives it a different look and feel from those that use Agent UML
(a.k.a. AUML; Odell et al., 2000) as a notation. It also means that the non-OO
mindset permits users of Tropos to take a unique approach to the modelling of
agents in the methodological context. Other approaches not covered in this book
include Nemo (Huget, 2002), MASSIVE (Lind, 1999), Cassiopeia (Collinot &
Drogoul, 1998; Collinot, Drogoul, & Banhamou, 1996) and CAMLE (Shan &
Zhu, 2004)—although in CAMLE there are some parallels drawn between its
notion of “caste” and the concept of an OO class, as well as some connection
to UML’s composition and aggregation relationships.
Further comparisons of these methodologies are undertaken in Chapter 12,
which complements and extends earlier framework-based evaluative studies of,
for instance, Cernuzzi and Rossi (2002), Dam and Winikoff (2004), Sturm and
Shehory (2004) and Tran, Low and Williams (2004).

Common Terms/Concepts Used in the AO Methodologies

The basic set of concepts underlying agent-oriented (AO) methodologies and the
associated agent terminology are not universally agreed upon. Nevertheless,
there is sufficient agreement to make it worthwhile for us to summarize
commonly agreed upon terms here in Chapter 1 in order that authors of later
chapters need not repeat this material. Bear in mind, however, that each
methodological approach may treat these terms and their underpinning concep-
tual base slightly differently—as will be pointed out when necessary.
Agents are often contrasted with objects and the question —“What makes an agent
an agent and not an object?” – is particularly difficult to answer when one considers
the concepts of “active objects” in an OO modelling language such as the UML.
The novelty of agents is said to be that they are proactive (as well as reactive),
have a high degree of autonomy, and are situated in and interact with their

Agent-Oriented Methodologies: An Introduction 9

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

environment (Zambonelli, Jennings, & Wooldridge, 2001), which is sometimes
considered simply as a resource. This introduces (beyond objects) issues to do
with not only the environment itself but also the direct interactions between the
agent(s) and their environment. Thus, interfaces are as or more important in
agents than in objects and, particularly, object-implemented components. When
an agent perceives its environment, perhaps by means of a sensor of some kind,
it is common to model that in terms of percepts.4 When an agent interacts with
its environment in order to make a change in the environment, it is called an
action. The mechanism by which this is accomplished is often called an effector
(see Chapter VI for further details).
Agent behaviour can be classified as reactive or proactive. A reactive agent
only responds to its environment. These changes are communicated to the agent
as events (although events also occur as a direct result of messages sent from
other agents or indeed sent internally to the agent). Thus, changes in the
environment have an immediate effect on the agent. The agent merely reacts to
changing conditions and has no long-term objectives of itself. In contrast, a
proactive agent has its own objectives. These are usually represented as one or
more goals (e.g., Dardenne, Lamsweerde, & Fickas, 1993; Giorgini et al., 2004;
Kendall & Zhao, 1998). To achieve a goal, it is usual to construct a plan and then
to execute that plan by means of process elements known as actions (or often
as tasks) (Figure 2). In reality, many agents are designed as hybrid agents,
possessing both reactive and proactive characteristics. The challenge then is for
the designer to balance these two very different behaviours in order to create an
overall optimal behaviour.
One well-known agent architecture5 that reflects many of these notions is the
Beliefs, Desires, and Intentions (BDI) architecture of Rao and Georgeff (1995).
Winikoff, Padgham, and Harland (2001) summarize this architecture in terms of
three “abstraction layers” called philosophical (renamed here as psychological),
theoretical, and implementation (Table 1). Beliefs, Desires, and Intentions are
seen as high-level, abstract, externally ascribed characteristics. These three
characteristics are then mapped through to the design or model layer. In
particular, we note in Table 1 that Beliefs represent the agent’s knowledge at
various granularity levels, while Desires, which represent heterogeneous objec-
tives possibly including some conflicts, map to Goals (now a consistent set of
objectives) within the agent, and Intentions are mapped to Committed Goals (a
coherent subset of goals with no conflicts or contradictions). In this table (from
Henderson-Sellers, Tran, & Debenham, 2005), Plans are included specifically to
account for the “how” element not originally formalized in the original BDI
descriptions. Typically, each goal would have a link to at least one plan. These
ideas have been described by Henderson-Sellers et al., 2005) by a metamodel
fragment as shown in Figure 3.

10 Giorgini & Henderson-Sellers

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Plan

Intention
Action

(a.k.a. Task)

Event

{ consists of}

leads to
can trigger new

leads to

1

*

Percept Belief

Goal

Desire

*

1

1

Goalbank

{c
o

ns
is

te
n

t s
et

 o
f}

Plan

Intention
Action

(a.k.a. Task)

Event

{ consists of}

leads to
can trigger new

leads to

1

*

Percept Belief

Goal

Desire

*

1

1

Goalbank

{c
o

ns
is

te
n

t s
et

 o
f}

Figure 2. Metamodel fragment showing, inter alia, the links between goals
and tasks

Viewpoint Column 3 Column 3 +
Commitment

Psychology Belief Desire Intention Wherewithal
(“how”)

Design/Model World Model Goal Commitment Plan
Implementation Knowledge Base - - Running (or

instantiated)
Plan

Table 1. Relationships between terminology of BDI model (after Henderson-
Sellers et al., 2005)

The BDI and similar models offer a description of the internal structure of an
agent. However, agents are social entities and thus optimal performance is more
likely from a cluster of agents. This is an MAS or multi-agent system. The
methodologies in this book are aimed at building MASs and not single-agent
systems. A metaphor that is often used is that of the (human) organization, in
which the participating agents are said to exhibit social behaviour. Theories
developed for human organizations are often usefully applied, such as that of
social commitment (Cavedon & Sonenberg, 1998; Yolum & Singh, 2002) and
social norms (Castelfranchi, Dignum, Jonker, & Treur, 2000). Within this social
environment, as with humans, agents are seen to form teams (Cohen &
Levesque, 1991) in which agents play roles (Kendall, 2000). In fact, the notion
of a role, while supported in some OO approaches (e.g., Reenskaug, Wold &
Lehne, 1996; Firesmith & Henderson-Sellers, 2002), is a major differentiating
factor for agents. In fact, in the comparative surveys discussed above and
further in Chapter XII, one common, major classification axis is whether the AO
methodology is a role-based one or not.

Agent-Oriented Methodologies: An Introduction 11

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

If agents are operating in a communal workplace, then clearly they need to
communicate even more urgently than do objects. While objects react to
incoming messages and also to events in most modern OO language, agents have
the ability through their autonomy and proactive behaviour to cooperate and
coordinate with each other by the exchange of messages. The major difference
with objects is that agents can receive messages that are not confined to
execution requests but can also consist of information or requests for information
(Faber, 1999). Agent-to-agent communication is a major research area in MAS
behaviour. We note here that the key issues are how to describe agent messages
in terms of interaction and communication protocols, perhaps using a formal,
mathematically based language.
An MAS clearly contains many agents within the contextual environment. In
addition to inter-agent communication, we need to recognize that, within an
MAS, agents need to both compete and cooperate. Although essentially selfish
in their autonomy, agents act like humans: sometimes aiming to fulfil their own
goals at the expense of all other agents/humans but mostly in a more social
structure in which it is recognized that collaboration and sharing of work is
mutually beneficial as well as individualistically profitable. Thus, the notion of
agents organized to work within a social structure is also a very strong driver in
AO methodologies (e.g., Zambonelli et al., 2001). Indeed, some of the method-
ologies discussed in this book argue that their main differentiator is that they

Figure 3. Metamodel of concepts used in the BDI architecture (after
Henderson-Sellers et al., 2005)

Intention
com mitte d: TRUE

Desire

Belief

Commitment
com mitte d: TRUE

Goal or
Goalbank

Knowledge
Repository

Agent
External

Characteristic

Agent
Internal

Characteristic

Agent
Characteristic

1

1..*

Plan

Intention
com mitte d: TRUE

Desire

Belief

Commitment
com mitte d: TRUE

Goal or
Goalbank

Knowledge
Repository

Agent
External

Characteristic

Agent
Internal

Characteristic

Agent
Characteristic

1

1..*

Plan

12 Giorgini & Henderson-Sellers

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

address these issues of social structure as a top priority, perhaps downplaying the
discussions about agent infrastructure and whether models such as BDI are
optimum.
Moving from agent infrastructure and communication to process elements, we
should briefly outline the use of various terms such as lifecycle, analysis, design,
and implementation. In the 1970s and 1980s, these terms were generally
understood and related to organizational structure within software development
companies, particularly those using the waterfall approach. This described a
number of “phases,” the totality of which was called the software development
life cycle or SDLC. However, the advent of object technology and OO software
development methodologies throughout the 1990s led to an avoidance of these
terms on the macro-scale.
Analysis is equated to the understanding of something already in existence,
sometimes labelled “discovery.” It relates to the problem space. In contrast,
design is considered as part of the solution space in which various possible
“answers” are considered; thus, it could be labelled “invention” (Booch, 1994).
The argument is that these do not occur sequentially on a timescale of months
but in normal human cognition on a timescale of seconds and highly iteratively.
Together, these two obsolescent phases were frequently called “modelling” in
OO methodologies. This leads to a modelling language such as UML potentially
having an equivalent scope, that is, “analysis” and “design” (although, in reality,
UML is heavily biased towards “design”). This, in turn, often leads to confusion
since clearly the “modelling phase” is a lengthy one in which initially there is more
analysis than design, whereas towards the end of the phase there is more design
than analysis going on. The use of any particular technique or modelling notation
thus shifts in balance from those more useful for “discovery” to those more
focussed on the solution space. Notwithstanding, it is sometimes useful to re-
introduce the analysis and design terms, not as straitjackets for two lengthy
sequential, non-iterative phases, but simply to remind the reader and user of the
methodology of the shifting balance described above. This then permits discus-
sion of more “analysis-type/design-type” techniques under the banner of an
“analysis/design phase.”
Since different methodology authors have different models at a granularity
beneath the overall SDLC, we will not attempt here to prescribe the internal
structure of the SDLC but will leave that to individual chapter authors. An
emerging framework that is hinted at in some chapters is Model-Driven
Architecture (MDA). This is a fairly recent initiative of the Object Management
Group (OMG) that attempts to supply an architectural infrastructure to SDLC
by identifying a Platform-Independent Model (PIM) that avoids any assumptions
about operating system, programming language, hardware, and so forth. This
PIM is then translated (the aim is to eventually be able to do this automatically)
to a Platform Specific Model or PSM (Kleppe, Warmer, & Bast, 2003). The

Agent-Oriented Methodologies: An Introduction 13

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

applicability of this to AO methodologies has not yet been fully explored – initial
steps towards this goal are discussed by Taveter and Wagner (2005).

Introducing the Methodologies

The methodologies selected for this volume straddle object-oriented and AI
concepts. We begin with a methodology (Tropos) that avows to use the agent
paradigm in its very design, as well as being appropriate, as all the others in this
book, for the development of software systems aligned with the agent-oriented
paradigm of computing. The next two methodologies to be considered, MAS-
CommonKADS and PASSI, both epitomize the bridging to be undertaken
between OO and AI, while in Prometheus, OO concepts are used when they are
applicable but are otherwise eschewed. Gaia is a methodology that has been
highly influenced by object technology yet retains a truly agent-oriented feel.
The next group of four methodologies centers on specific extensions to the
object-oriented methodology, RUP. The specific agent extensions portrayed
here are ADELFE, which specializes in adaptive agents, MESSAGE (and its
“offspring” INGENIAS) together with RAP, which utilizes not only RUP but
also the modelling language of AOR, created by the same authors. A second OO
influence, that of the older approach of OMT, is seen in our last methodology,
MaSE, which is influenced also by the AAII work of a decade ago and the
influential role modelling work of Kendall and colleagues (Kendall, Malkoun, &
Jiang, 1996).

Acknowledgments

This is Contribution number 04/30 of the Centre for Object Technology Appli-
cations and Research.

References

AOS (2000). JACK Intelligent Agents User Guide, AOS Technical Report,
Agent Oriented Software Pty Ltd, July. Retrieved from: http://
www.jackagents.com/docs/jack/html/index.html

14 Giorgini & Henderson-Sellers

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Bernon, C., Gleizes, M.-P., Picard, G., & Glize, P. (2002). The ADELFE
methodology for an intranet system design. In P. Giorgini, Y. Lespérance,
G. Wagner, & E. Yu (Eds.), Proceedings of Agent-Oriented Information
Systems, AOIS-2002 (p. 1-15). AOIS.org.

Booch, G. (1994). Object-oriented analysis and design (2nd ed.). Redwood
City, CA: The Benjamin/Cummings Publishing Company, Inc.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopolous, J., & Perini, A. (2004).
Tropos: An agent-oriented software development methodology. Autono-
mous Agents and Multi-Agent Systems, 8(3), 203-236.

Burrafato, P. & Cossentino, M. (2002). Designing a multi-agent solution for a
bookstore with the PASSI methodology. In P. Giorgini, Y. Lespérance, G.
Wagner & E. Yu (Eds.), Proceedings of the Agent-Oriented Informa-
tion Systems 2002 (pp. 102-118). AOIS.org.

Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P.,
Kearney, P., Stark, J., Evans, R., & Massonet, P. (2001). Agent-oriented
analysis using MESSAGE/UML. In M. Wooldridge, G. Wei, & P. Ciancarini
(Eds.), Agent-oriented software engineering II (p. 119-135). LNCS
2222. Berlin: Springer-Verlag.

Castelfranchi, C., Dignum, F., Jonker, C., & Treur, J. (2000). Deliberate
normative agents: Principles and architectures. In N. Jennings & Y.
Lespérance (Eds.), Intelligent agents VI (p. 364-378). Berlin: Springer-
Verlag.

Castro, J., Kolp, M., & Mylopoulos, J. (2002). Towards requirements-driven
information systems engineering: The Tropos project. Information Sys-
tems, 27(6), 365-389.

Cavedon, L. & Sonenberg, L. (1998). On social commitment, roles and preferred
goals. In Proceedings of the Third International Conference on Multi-
Agent Systems (ICMAS), July 3-7, Paris (pp. 80-87). IEEE Computer
Society.

Cernuzzi, L. & Rossi, G. (2002). On the evaluation of agent oriented methodolo-
gies. In Proceedings of OOPSLA 2002 Workshop on Agent-Oriented
Methodologies (pp. 21-30). Sydney, AUS: Centre for Object Technology
Applications and Research.

Chan, K., Sterling, L., & Karunasekera, S. (2004). Agent-oriented software
analysis. In Proceedings of 2004 Australian Software Engineering
Conference (pp. 20-27). Los Alamitos, CA: IEEE Computer Society Press.

Cohen, P.R. & Levesque, H.J. (1991). Teamwork. Nous, 25(4), 487-512.
Coleman, D., Arnold, P., Bodoff, S., Dollin, C., & Gilchrist, H. (1994). Object-

oriented development. The fusion method. Englewood Cliffs, NJ: Prentice
Hall.

Agent-Oriented Methodologies: An Introduction 15

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Collinot, A. & Drogoul, A. (1998). Using the Cassiopeia method to design a
soccer robot team. Applied Artificial Intelligence (AAI) Journal, 12(2-
3), 127-147.

Collinot, A., Drogoul, A., & Benhamou, P. (1996). Agent-oriented design of a
soccer robot team. In Proceedings of the Second International Confer-
ence on Multi-Agent Systems (ICMAS’96) (pp 41-57). Menlo Park, CA:
American Association for Artificial Intelligence.

Cossentino, M. (2005). From requirements to code with the PASSI methodol-
ogy. In B. Henderson-Sellers & P. Giorgini (Eds.), Agent-oriented meth-
odologies (Chapter 4). Hershey, PA: Idea Group.

Cossentino, M. & Potts, C. (2002). A CASE tool supported methodology for the
design of multi-agent systems. In H.R. Ababnia & Y. Mun (Eds.),
Proceedings of the 2002 International Conference on Software Engi-
neering Research and Practice (SERP’02), Las Vegas, June 24-27 (pp.
315-321).

Dam, K.H. & Winikoff, M. (2004). Comparing agent-oriented methodologies. In
P. Giorgini, B. Henderson-Sellers, & M. Winikoff (Eds.), Agent-oriented
systems (pp. 78-93). LNAI 3030. Berlin: Springer-Verlag

Dardenne, A., Lamsweerde, A. v., & Fickas, S. (1993).Goal-directed require-
ments acquisition. Science of Computer Programming, 20, 3-50.

Debenham, J. & Henderson-Sellers, B. (2003). Designing agent-based process
systems - Extending the OPEN Process Framework. In V. Plekhanova
(Ed.), Intelligent agent software engineering (Chapter VIII, pp. 160-
190). Hershey, PA: Idea Group Publishing.

DeLoach, S.A. (1999). Multiagent systems engineering: A methodology and
language for designing agent systems. In Proceedings of the First
International Bi-conference Workshop on Agent-Oriented Informa-
tion Systems (AOIS ’99), May 1, Seattle. AOIS.org.

Faber J. (1999). Multi-agent systems: An introduction to distributed artifi-
cial intelligence. Reading, MA: Addison-Wesley.

Firesmith, D.G. & Henderson-Sellers, B. (2002). The OPEN process frame-
work. Harlow, UK: Addison Wesley.

Giorgini, P., Kolp, M., Mylopoulos, J., & Pistore, M. (2004). The Tropos
methodology: An overview. In F. Bergenti, M.P. Gleizes, & F. Zambonelli
(Eds.), Methodologies and software engineering for agent systems (pp.
89-106). Boston: Kluwer Academic Publishing.

Henderson-Sellers, B. (1995). Who needs an OO methodology anyway? Jour-
nal of Object Oriented Programming, 8(6), 6-8.

16 Giorgini & Henderson-Sellers

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Henderson-Sellers, B., Tran, Q.-N.N., & Debenham, J. (2005). An etymological
and metamodel-based evaluation of the terms “goals and tasks” in agent-
oriented methodologies. J. Object Technol., 4(2), 131-150.

Henderson-Sellers, B. & Unhelkar, B. (2000). OPEN modeling with UML.
London: Addison-Wesley.

Huget, M.-P. (2002). Nemo: An agent-oriented software engineering method-
ology. In Proceedings of OOPSLA 2002 Workshop on Agent-Oriented
Methodologies (pp. 43-53). Sydney, AUS: Centre for Object Technology
Applications and Research.

Iglesias, C.A., Garijo, M., Gonzalez, J.C., & Velasco, J.R. (1996). A method-
ological proposal for multiagent systems development extending
CommonKADS. In Proceedings of 10th KAW, Banff, Canada. Available
online http://ksi.cpsc.ucalgary.ca/KAW/KAW96/KAW96Proc.html

Iglesias, C.A., Garijo, M., Gonzalez, J.C., & Velasco, J.R. (1998). Analysis and
design of multi-agent systems using MAS-CommonKADS. In M.P. Singh,
A. Rao, & M.J. Wooldridge (Eds.), Intelligent agents IV: Agent theories,
architectures, and languages (LNAI Vol. 1365, pp. 313-326). Berlin:
Springer-Verlag.

Iivari, J., Hirschheim, R., & Klein, H.K. (1999). Beyond methodologies: Keeping
up with information systems development approaches through dynamic
classification. In Proceedings of HICSS 1999 (p. 7044). Los Alamitos,
CA: IEEE Computer Society Press.

Jayaratna, N. (1994). Understanding and evaluating methodologies, NISAD:
A systematic framework. Maidenhead, UK: McGraw-Hill.

Kendall, E.A. (2000). Software engineering with role modelling. In Proceedings
of the Agent-Oriented Software Engineering Workshop (pp. 163-169).
LNCS, Vol. 1957. Berlin: Springer-Verlag.

Kendall, E.A., Malkoun, M.T., & Jiang, C. (1996). A methodology for develop-
ing agent based systems for enterprise integration. In P. Bernus & L.
Nemes (Eds.), Modelling and methodologies for enterprise integra-
tion. London: Chapman and Hall.

Kendall, E.A. & Zhao, L. (1998). Capturing and structuring goals. Presented at the
Workshop on Use Case Patterns, Object Oriented Programming Systems
Languages and Architectures, Vancouver, BC, Canada, October 18-22.

Kinny, D., Georgeff, M., & Rao, A. (1996). A methodology and modelling
techniques for systems of BDI agents. Technical Note 58, Australian
Artificial Intelligence Institute, also published in Proceedings of Agents
Breaking Away, the 7th European Workshop on Modelling Autono-
mous Agents in a Multi-Agent World (MAAMAW’96) (pp. 56-71).
Springer-Verlag.

Agent-Oriented Methodologies: An Introduction 17

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA explained: The model driven
architecture - Practice and promise. Reading, MA: Addison-Wesley.

Kruchten, P. (1999). The rational unified process. An introduction. Reading,
MA: Addison-Wesley.

Lind, J. (1999). Iterative software engineering for multiagent systems. The
MASSIVE Method. LNAI 1994. Berlin: Springer-Verlag.

Luck, M., Ashri, R., & D’Inverno, M. (2004). Agent-based software develop-
ment. Boston: Artech House.

Martin, J. & Odell, J.J. (1995). Object-oriented methods: Pragmatics and
considerations. Upper Saddle River, NJ: Prentice-Hall.

Milgrom, E., Chainho, P., Deville, Y., Evans, R., Kearney, P., & Massonet, P.
(2001). MESSAGE: Methodology for engineering systems of software
agents. Final guidelines for the identification of relevant problem
areas where agent technology is appropriate. EUROSCOM Project
Report P907. Available online http://www.eurescom.dr/~public-
webspace/P800-series/P815/web/index.htm

Odell, J., Van Dyke Parunak, H., & Bauer, B. (2000). Extending UML for
agents. In G. Wagner, Y. Lesperance & E. Yu (Eds.), Proceedings of
Agent-Oriented Information Systems Workshop (pp. 3-17). 17th Na-
tional Conference on Artificial Intelligence, Austin, TX.

OMG (2001). OMG Unified Modeling Language Specification, Version 1.4.
September 2001. OMG document formal/01-09-68 through 80 (13 docu-
ments). Available online http://www.omg.org

Padgham, L. & Winikoff, M. (2002a). Prometheus: A methodology for develop-
ing intelligent agents. In F. Giunchiglia, J. Odell, & G. Weiß (Eds.), Agent-
oriented Software Engineering III Proceedings of the Third Interna-
tional Workshop on Agent-Oriented Software Engineering (AAMAS’02)
(pp. 174-185). LNCS 2585.

Padgham, L. & Winikoff, M. (2002b). Prometheus: A pragmatic methodology
for engineering intelligent agents. In J. Debenham, B. Henderson-Sellers,
N. Jennings, & J.J. Odell (Eds.), Agent-oriented Software Engineering
III Proceedings of the Workshop on Agent-oriented Methodologies at
OOPSLA 2002, November 4, Seattle (pp. 97-108). Sydney: Centre for
Object Technology Applications and Research.

Pavón, J., Gomez-Sanz, J., & Fuentes, R. (2005). The INGENIAS methodology
and tools. In B. Henderson-Sellers & P. Giorgini (Eds.), Agent-oriented
methodologies (Chapter 4). Hershey, PA: Idea Group.

Rao, A.S. & Georgeff, M.P. (1995). BDI agents: From theory to practice. In
V.R. Lesser & L. Gasser (Eds.), Proceedings of the First International

18 Giorgini & Henderson-Sellers

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conference on Multi-Agent Systems, San Francisco (pp. 312-319).
Cambrige, MA: MIT Press.

Rolland, C. & Prakash, N. (1996). A proposal for context-specific method
engineering. In Proceedings of the IFIP WG8.1 Conference on Method
Engineering (pp. 191-208). London: Chapman and Hall.

Rolland, C., Prakash, N., & Benjamen, A. (1999). A multi-model view of process
modelling. Requirements Eng. J., 4(4), 169-187.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991).
Object-oriented modeling and design. Englewood Cliffs, NJ: Prentice-
Hall.

Shan, L. & Zhu, H. (2004). Software engineering for multi-agent systems III:
Research issues and practical applications. In R. Choren, A. Garcia, C.
Lucena, & A. Romanovsky (Eds.), Proceedings of the Third Interna-
tional Workshop on Software Engineering for Large-Scale Multi-
Agent Systems, (pp. 144-161). Berlin: Springer-Verlag.

Shoham, Y. (1993). Agent-oriented programming. Artificial Intelligence, 60(1),
51-568.

Sturm, A. & Shehory, O. (2004). A framework for evaluating agent-oriented
methodologies. In P. Giorgini, B. Henderson-Sellers, & M. Winikoff (Eds.),
Agent-oriented systems (pp. 94-109). LNAI 3030. Berlin: Springer-
Verlag.

Taveter, K. & Wagner, G. (2005). Towards radical agent-oriented software
engineering processes based on AOR modelling. In B. Henderson-Sellers
& P. Giorgini (Eds.), Agent-oriented methodologies (Chapter 10). Hershey,
PA: Idea Group.

Tran, Q.-N.N., Low, G., & Williams, M.-A. (2004). A preliminary comparative
feature analysis of multi-agent systems development methodologies. In
Proceedings of AOIS@CAiSE*04, Faculty of Computer Science and
Information, Riga Technical University, Latvia (pp. 386-398).

Wagner, G. (2003). The agent-object relationship metamodel: Towards a unified
view of state and behaviour. Inf. Systems, 28(5), 475-504.

Winikoff, M., Padgham, L., & Harland, J. (2001). Simplifying the development
of intelligent agents. In M. Stumptner, D. Corbett, & M. J. Brooks (Eds.),
Proceedings of the 14th Australian Joint Conference on Artificial
Intelligence (AI’01), Adelaide, 10-14 December (pp. 557-558). LNAI
2256, Springer-Verlag.

Wood, M. & DeLoach, S.A. (2000). An overview of the multiagent systems
engineering methodology. In P. Ciancarini & M. Wooldridge (Eds.),
Proceedings of the 1st International Workshop on Agent-Oriented

Agent-Oriented Methodologies: An Introduction 19

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Software Engineering (AOSE-2000) (pp. 207-222). LNCS 1957, Springer-
Verlag.

Wooldridge, M., Jennings, N.R., & Kinny, D. (2000). The Gaia methodology for
agent-oriented analysis and design. Journal Autonomous Agents and
Multi-Agent Systems, 3, 285-312.

Yolum, P. & Singh, M.P. (2002). Flexible protocol specification and execution:
Applying event calculus planning using commitments. In Proceedings of
the 1st Joint Conference on Autonomous Agents and MultiAgent
Systems (AAMAS) (pp. 527-534). New York: ACM Press.

Yu, E. (1995). Modelling strategic relationships for process reengineering.
PhD Thesis, University of Toronto, Department of Computer Science.

Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2001). Organisational
abstractions for the analysis and design of multi-agent systems. In Pro-
ceedings of the Agent-Oriented Software Engineering Workshop (pp.
235-251). LNCS, Vol. 1957. Berlin: Springer-Verlag.

Zambonelli, F., Jennings, N., & Wooldridge, M. (2003). Developing multiagent
systems: The Gaia methodology. ACM Transactions on Software Engi-
neering and Methodology, 12(3), 317-370.

Endnotes

1 It has also been argued (Chan, Sterling, & Karunasekera, 2004) that use of
AO analysis may be beneficial even if the implementation is not in an AO
language but, say, uses object-oriented design and programming.

2 If not, a useful introduction is to be found in Henderson-Sellers and
Unhelkar (2000)

3 In earlier publications (e.g., Burrafato & Cossentino, 2002; Cossentino &
Potts, 2002) this was not obvious.

4 Since agents are part of the environment, messages received from other
agents can also be considered as percepts.

5 See also discussion in Chapter 10.

