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Abstract

Recent approaches in building decision support systems (DSS) for agriculture, and
more generally for environmental problems, tend to adopt a “systemic” approach.
That is to say a problem is analyzed in terms of all the knowledge, the data and the
responsibilities it depends on. So, the proposed applications aim to be integrated
in larger information systems exploiting the fact that different organizations may
manage information sources and resources that are relevant to problem solutions.

The paper focuses on design issues faced during the development of a DSS at use
of technicians of the advisory service performing pest management according to an
Integrated Production approach.

Designing this type of system requires to analyze basically, two main dimensions
of complexity: the organizational dimension dealing with all the dependencies be-
tween the domain stakeholders, and the technical dimension concerning the study
of natural plant protection techniques.

These considerations motivate the choice of an agent-oriented methodology for
software development. The methodology, called Tropos, gives a central role to early
requirements analysis and allows to derive system functional and non-functional
requirements from a deep understanding of the domain stakeholders goals and of
their dependencies.

Two components of the system have been implemented using web technologies
and they are currently under evaluation.
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1 Introduction

Integrated Production (IP) in agriculture consists of a set of practices aimed
at favoring the set up of a development model characterized by a reduced
environmental impact. So, for instance, the application of IP practices in plant
disease management by growers and agronomists requires specialistic skills
such as, historical data and information on the disease, as well as on chemicals
and on low impact techniques, that can be exploited to minimize or avoid
damages on the product and on the plants. These sources of information and
knowledge are distributed among different actors in the agriculture production
system. So, DSS – including AI applications – for IP can be effective if they are
integrated within larger information systems and if they are built taking into
account the different roles, in the production systems, that can be covered by
its users. For instance, using Machine Learning (ML) techniques (see Mitchell
(1997)) in the development of plant disease models that simulate the seasonal
evolution of a disease – a relevant activity when assessing the seriousness of
an infection – poses critical issues such as providing mechanisms for making
the model easily adaptable to different geographical environments or defining
a suitable maintenance policy that allows for automatic updates of data (e.g.
daily updates of meteo data, pesticides updates twice a year, daily observation
on disease manifestations during spring and summer, etc.) 1 . This motivated
the adoption of an approach that considers the activities of data acquisition
and of data analysis as part of an iterative process aimed at providing accurate
predictions on disease evolution (see Avesani et al. (2002)). A process that
involves different actors, such as technicians of the meteo center, agronomists,
researchers in biology and agronomy.

Analogous considerations resulted from previous experiences aimed at apply-
ing AI techniques to environmental problems. In Branting et al. (1997), the
problem of predicting the behavior of a biological system, such as grasshop-
pers, when dealing with pest management activities, has been faced adopting
an approach called model-based adaptation. This approach integrates case-
based reasoning with model-based reasoning in order to overcome problems
due to incomplete causal theory and limited empirical data for the biologi-
cal behaviour of grasshoppers. Avesani et al. (1998) described a solution to
the problems related to the intervention planning for fire fighting, where AI
techniques for planning and scheduling were integrated with a DBMS and a
Geographical Information Systems (GIS). Moreover, features such as the dis-
tributedness and the heterogeneity of data and knowledge involved in decision
making for environmental problems have been discussed from a Knowledge
Management perspective in Cortés et al. (2000).

1 A discussion of critical issues to be faced when building plant disease model can
be found in Susi et al. (2002)
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More generally, these issues motivate the adoption of a “systemic” approach
in designing software systems for environmental problems. That is to say a
problem is analyzed in terms of all the knowledge, the data and the respon-
sibilities it depends on. So, the proposed applications aim to be integrated
in larger information systems exploiting the fact that different organizations
may manage information sources and resources that are relevant to problem
solutions. This basically has a twofold effect: first, an organizational analysis
becomes a necessary step when specifying application requirements; second,
the resulting applications should be designed in terms of a set of specific, in-
terrelated services, such as information providing or reasoning services, that
are provided by specialized software components.

Depending on the required capabilities, each software component can be im-
plemented as a software Agent using specific AI techniques for reasoning or as
a generic software component, such as a wrapper to existing DBMS, or GIS.

This paper focuses on the requirement analysis and the design of a software
system devoted to support decision making by the technicians of the agri-
cultural advisory service when managing apple plant diseases as described in
Perini (2000).

We adopt the Tropos methodology, described in Giunchiglia et al. (2002a), an
agent-oriented software development methodology which includes intentional
analysis techniques. The paper is structured as follows. Section 2 recalls the
main concepts and the practical steps of the Tropos methodology. Sections 3
and 4 describe the results of early and late requirements analysis, according
to Tropos. Section 5 describes the initial phase of the the architectural design
of the system. Related work is considered in Section 6. Finally, conclusions
and the future work are presented in Section 7.

2 The Methodology

The Tropos methodology, described in Giunchiglia et al. (2002a), is an agent-
oriented software development methodology based on two key ideas, namely:
(i) the use of knowledge level concepts, such as actor, goal, plan and de-
pendency between actors, along the whole software development process, and
(ii) the critical role assigned to the preliminary phase of requirements anal-
ysis aimed at understanding the environment in which the system-to-be will
operate. Tropos covers five software development phases: early requirements
analysis, late requirements analysis, architectural design, detailed design, and
implementation. From a practical point of view, the methodology guides the
software engineer along the whole process in building conceptual models, with
the help of a visual modeling language which provides an ontology including
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knowledge level concepts. An actor models an entity that has strategic goals
and intentionality, such as a physical agent, a role or a position. A role is an
abstract characterization of the behavior of an actor within some specialized
context, while a position represents a set of roles, typically covered by one
agent. The notion of actor in Tropos is a generalization of the classical AI
notion of software agent. Goals represent the strategic interests of actors. A
dependency between two actors indicates that an actor depends on another in
order to achieve a goal, execute a plan, or exploit a resource. Tropos distin-
guishes between hard and soft goals, the latter having no clear-cut definition
and/or criteria as to whether they are satisfied. Softgoals are useful for mod-
eling software qualities, such as security, performance and maintainability, as
described also in Chung et al. (2000). A Tropos model is represented as a
set of diagrams: actor diagrams describe the network of dependency relation-
ships among actors, goal diagrams, illustrates goal and plan analysis from the
point of view of a specific actor. Three basic types of analysis are provided: (i)
means-end analysis, which consists in identifying goals, plans or resources that
represent means for reaching a goal (plan); (ii) contribution analysis which
consists in discovering goals, plans or resources that can contribute positively
or negatively towards the fulfillment of a goal (or the execution of a plan); (iii)
AND/OR decomposition which allows for a combination of AND and OR de-
compositions of a root goal (plan) into sub-goals (sub-plans), thereby refining
a goal (plan) structure.

The purpose of conceptual modeling in each phase of the software development
process is briefly recalled below.

Early Requirements analysis focuses on the understanding of a problem do-
main by studying an existing organizational setting where the system-to-be
will be introduced.

Late Requirement analysis focuses on the system-to-be which is introduced as
a new actor into the model.

Architectural design defines the system’s global architecture in terms of sub-
systems, that are represented as actors. They are assigned subgoals or subplans
of the goals and plans assigned to the system. Each actor is characterized by:
(i) a set of individual capabilities and (ii) a set of social capabilities required
by actor coordination. Here, the choice of a specific architectural style for dis-
tributed systems (see for instance Garlan and Shaw (1996)), such as MAS,
Peer to Peer, Client/Server, can be included. The output of the architectural
design is the mapping of the system subactors (with their capabilities) to a
set of components (possibly agents).

Detailed design aims at specifying the agent micro-level. At this point, usually,
the implementation platform has already been chosen and this can be taken
into account in order to perform a detailed design that will map directly to
the code.

The Implementation activity produces an implementation skeleton according
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Fig. 1. Early requirements model. A portion of the actor diagram modeling the IP
organizational setting.

to the detailed design specification. Code is added to the skeleton using the
programming language supported by the implementation platform.

In the following sections we will describe the application of the methodology
to the design of the DSS for the IP Advisor we are developing. We will focus
only on the first phases of the development process.

3 Early Requirements

The analysis starts identifying the stakeholders, both social actors and soft-
ware systems that are already present in the domain, of the agriculture pro-
duction system of our region. They are modeled as actors, depicted by circles,
in Figure 1:

• The actor Producer represents the apple grower who pursues objectives such
as to obtain a profit following acceptable market strategies, and to work in a

healthy environment.
• The actor Advisor models the technician of the advisory service that has been

set up by the local government in order to provide a support to producers in
choosing and applying the best agricultural practices and techniques (see the
goal support IP application). The advisor plays a key role in our area since
the majority of producers are not professional farmers, they lack specific
skills and/or are not confident enough of adopting an IP approach.

• The actor Local Government plays both an institutional and a practical role
in promoting IP diffusion in our region (see the goals favor IP production,
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follow EU rules). It sets up a list of admissible chemicals and quantity lim-
its, according to the European Union agreements. These rules are yearly
updated and coded into a production protocol.

• The actor Plant Disease Expert represents the researcher in biological phe-
nomena and in agronomical techniques. Among his/her objectives that of
transferring research results directly to the production level, for instance
providing infection data and disease simulation models, as well as new ef-
fective pest management techniques (see the goals provide disease data &

models, provide IP techniques).

The actor diagram in Figure 1 shows some of the critical dependencies between
the domain stakeholders which, at a macroscopic level, result in a joint effort
to disseminate IP.

In particular, the actor Producer depends on the actor Local Government for
obtaining a product certification (i.e. obtain registration trademark) that states
that he/she follows IP practices, as required by specific market sectors. The
local government sets up the yearly IP production protocol and issues the
desired certification only to the producers that follows it. So, the actor Local

Government depends on the actor Producer in order to have its goal follow IP

production protocol satisfied. As already noticed, the actor Advisor plays the
role of mentor, with respect to the producer, in carrying up apple production
according to the IP rule. So the actors Advisor and Producer closely depends:
the actor Producer depends on the actor Advisor in order to choose & apply IP

practices according to the production protocol and in order to manage disease

crisis which may occur in case of unforeseen events and that requires to adopt
an appropriate remedy action, still IP compliant. Viceversa, the actor Advisor

depends on the actor Producer for satisfying his/her goal to collect orchards

data in order to maintain an updated picture of the disease presence and
evolution in the area under their control. Moreover, the Advisor depends on
the actor Plant Disease Expert in order to use effective disease models (i.e. to
attain the goal be advised on disease models and to get information on new IP
techniques be aware of new IP). Both actors, the Advisor and the Plant Disease

Expert are funded by Local Government. The goal dependency define the IP

protocol between the Local Government and the Plant Disease Expert closes the
loop. It models the contribution of the expert in providing the technical skills
necessary for defining a production protocol that follows the European Union
strategic directives.

The Early Requirements model is further refined by considering all its actors
and by analyzing their goals. New actors and dependences can be added in
the model. The goal diagram depicted in Figure 2 shows the analysis of the
goal support IP application, from the point of view of the actor Advisor. The
goal support IP application contributes positively to the fulfillment of both
goals choose & apply IP practices and manage disease crisis for which the actor
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Fig. 2. Early requirements model. The goal diagram of the goal support IP application

analyzed from the point of view of the actor Advisor.

Producer depends from the actor Advisor. The goal can be AND decomposed
into a set of more specific subgoals, i.e. acquire data, assess infection risk, plan

the intervention and monitor the situation after the intervention. Moreover, the
softgoal have a spatial representation that is being able to visualize the data
on a map of the whole area under control by the advisor shall allow him/her
to perform in a more effective way both the data acquisition activity and
the assessment of an infection risk (see the two positive contribution links in
Figure 2).

In the following we consider the plans that the advisor performs in order to
satisfy them according to current practices. Means to satisfy the goal acquire

data consists in getting data resulting from observation and measurements
activities performed, each season, in the orchards, as well as in getting cur-
rent meteo data. This is modeled in Figure 2 with a set of plans, depicted as
hexagonal shapes, which are related to the goal acquire data trough specific
means-end relationships, i.e. query disease historical data, which refers to his-
torical data on the presence of the disease in the area, query historical meteo

data which refers to historical climate and check weather forecast (the current
meteo data).

The analysis points out a set of interaction processes related to the execution of
these plans, they are modeled in terms of resource dependencies. For instance,
the dependency between the actor Advisor and the actor Plant Disease Expert

for the resource historical data bases models the fact that the advisors usually
perform searches into the data bases on disease data held by the experts, as
well as on climate data relative to the area under their control. The plan run

disease models is a means to attain the goal assess infection risk. In current IP
practices, the advisors exploit phenology and/or epidemiological models which
help them in analyzing the behavior of a plant disease. For instance, they allow
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Fig. 4. Late requirements model. The Advisor SW Agent goal diagram.

them to estimate both the disease stage and the infection extent. These model
require specific data from the orchard in order to produce updated estimates.

Analogously, the remaining subgoals can be analyzed with the aim of identi-
fying advisor plans and dependencies with the other actors.

4 Late Requirements

During late requirements analysis the system-to-be, that is the decision sup-
port system at use of the advisors when dealing plant disease management,
is introduced as a new actor into the conceptual model. Its relationships with
social actors, such as Advisor, are modeled in terms of dependencies. Figure 3
depicts a fragment of the late requirements model where the actor Advisor SW
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Agent models the system-to-be. In particular, the actor Advisor delegates the
system-to-be for the fulfillment of the goal acquire data and of the softgoal
have a spatial representation, and for the execution of the plan run disease mod-

els. This implies that also the dependencies to the other social actors related
with these model elements have to be appropriately revised. For instance all
the dependencies with actors holding data relevant for disease management
have been delegated to the system-to-be actor. Figure 4 shows the resulting
goal diagram for the actor Advisor SW Agent. Notice that the plans that the
actor executes in order to fulfill the goal acquire data have to be redefined from
the point of view of the system actor, i.e., appropriate interaction procedures
have to be defined between the system actor and the social actors who held
the specific data. In the goal diagram a new goal use GIS techniques has been
introduced as a mean to satisfy the softgoal have a spatial representation.

5 Architectural Design

This phase consists of three steps, namely, refining the system actor diagram
taking into account goal and plan decomposition, as well as exploiting useful
architectural styles (i), identifying actors capabilities (ii) and mapping them
to system components (agents) (iii). We will focus on the first two steps.

The system actor diagram is refined by including new actors which will take
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care of subgoals which have been discovered upon goal analysis of the sys-
tem’s goals in the late requirement phase. Figure 5 depicts the refined actor
diagram. Six sub-system actors have been introduced. The actor Advisor SW

agent delegates them the sub-goals and the plans that were found during the
goal analysis performed from the point of view of the system actor (see Fig-
ure 4). They are:

• the actor GISP (Geographic Information Services Provider) to which the
Advisor SW agent delegates the goal use GIS techniques;

• the actor DBL (Disease Behavior Learner), which performs the plan run

disease models on the basis of information extracted from the seasonal data
on the disease;

• three wrapper actors, namely, the PDE-DBW (Plant Diseases Expert DB
Wrapper) which takes care of retrieving meteo and orchard historical data;
the wrapper of the database of the meteo service, called Meteo-DBW (Me-
teo Service DataBase Wrapper) which retrieves weather forecast; the Local

Knowledge actor, which is the wrapper of the local data base containing
data relative to the orchards belonging to the area under the advisor con-
trol (represented by the actor Producers DB in Figure 5);

• the actor User Interface which manages the interaction between the user of
the application (the actor Advisor) and the other specialized sub-actors of
the Advisor SW agent.

The actor diagram shows some of the relationships between subsystems spec-
ified in terms of plan dependencies. For instance, the user that wants to do
spatial reasoning, such as analyzing the distribution on a geographical area of
a given pest in a certain period of time, requires the actor User Interface for
the execution of the plan allow spatial reasoning (see the correspondent plan
dependency between the two actors). As a consequence, a new interaction be-
tween the User Interface and the actor GISP is needed, devoted to the definition
of an appropriate electronic map to be visualized by the user interface (see the
plan dependency visualize map between the actor User Interface and the actor
GISP).

The system architecture model can be further enriched with other system
actors resulting from the inclusion of design patterns, as in Hayden et al.
(1999) and in Busetta et al. (2001), that provide solutions to heterogeneous
agents communication, or upon the analysis of non-functional requirements,
as described in Giorgini et al. (2001).

Further steps are required in Tropos to complete the architectural design,
such as that aimed at identifying actor capabilities from the analysis of the
dependencies going-in and -out from the actor and from the goals and plans
that the system actors will carry on.
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For instance, focusing on the system actor User Interface in Figure 5, and
in particular on its ongoing and outgoing dependencies we can identify the
following capabilities: ask for map visualization, provide rule feedback, ask for

rules visualization, ask for rule feedback, support analytic reasoning, support spatial

reasoning. Table 1 lists the capabilities associated to the actor User Interface

Actor Capability

UI ask for map visualization

provide rule feedback

ask for rules visualization

ask for rule feedback

support analytic reasoning

support spatial reasoning

Table 1
Architectural design - step 2. Actors capabilities.

and should be completed considering all the system actors included in the
architectural design. A given capability may be needed by different actors.

The architectural design ends with a mapping of the system subactors to a set
of software components (agents). Each component is characterized by a set of
the capabilities identified in the actor diagram.

The next phase in the Tropos development process is detailed design, where
the components micro-level is specified in terms of component capabilities
and plans. Here a set of diagrams proposed in Agent UML by Odell et al.
(2000) can be used. The detailed design specifies the interaction between soft-
ware components, that will allow to realize the dependencies designed at the
architectural design level.

6 Related work

Different lines of research are relevant to the work presented here. We already
mentioned in the introduction works which deal with the problem of apply-
ing AI techniques to complex environmental problems (Avesani et al. (1998),
Branting et al. (1997)). Here we focus on two research lines which aim at
defining the design methodologies of complex distributed systems. The first
concerns how the Agent paradigm has been exploited in software systems de-
voted to environmental management. The second focuses on Agent Oriented
Software Engineering methodologies.
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A natural use of the Agents paradigm can be found at the logical and techno-
logical level in environmental simulation models. Here an agent may represent
a counterpart of a physical entity in the domain. Agents interacts among
them, according to elementary rules, resulting in the macroscopic phenomena
or behaviors at interest. Agent based simulation requires to define (assume
hypotheses on the) micro-level interactions while the traditional simulation
approach assumes a set of rules (laws) governing the interaction among enti-
ties, at the macroscopic level. In Bruse (2002), the agent based systems may
allow to discover and simulate the dependencies and relationships between
environmental variables although they are not included in the model a priori.
Agent based simulation has been also exploited in the analysis of the behavior
of social networks, as in Pahl-Wostl (2002). Here the simulation involves the
relationship between agents that represents people involved in the manage-
ment of environmental resources and “Integrated Assessment”; the objective
is that of building of a domain model at support of decision making pro-
cesses. Another interesting application of the Agent paradigm is the control
and management of complex plants, such as in Borrel et al. (2002), where
an application to Wastewater Treatment Plants is described. In this case, the
software system interacts with the domain experts and gives them support
in supervising the treatment process collecting plant sensors’ data, support-
ing the planning and the execution of suitable control actions, according to
macro-level strategies previously chosen by the experts.

Agent Oriented Software Engineering aims at providing methodologies and
tools at support of requirements analysis and design of complex systems,
such as Multi Agent Systems. Several interesting approaches have been pro-
posed (see the AOSE workshops acts in Ciancarini and Wooldridge (2001),
Wooldridge et al. (2001), Giunchiglia et al. (2002b)). Most of them focus
on architectural design and detailed design issues, see for instance GAIA
in Wooldridge et al. (2000) and AUML in Bauer et al. (2001). The Tropos
methodology aims at covering the whole software development process, from
early requirements to the implementation of the system using the same no-
tions of agent, goal, dependencies. Tropos exploits techniques for goal analysis
originally proposed for Requirement Engineering, like the Eric Yu’s i* (intro-
duced in Yu (1995)) and can be combined with other agent and non-agent
software development paradigms like UML or AUML for the system design
phases.

7 Conclusion and Future Work

This paper described the requirement analysis and the design of a decision
support system, for the agriculture Advisory Service of our region which have
been performed using Tropos, an agent oriented software engineering method-
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Fig. 6. The GISP component graphic user interface.

ology that allows to model explicitly the domain stakeholders goal and mutual
dependencies.

We discussed the early requirement and late requirement analysis specifying
the reasons for dependencies between social and system actors. In particular,
goal and plan delegations from social actors (the users) to system actors were
pointed out.

A sketch of the architectural design, according to the Tropos methodology
has been also given. The architecture includes a set of software components
(agents) wrapping existing information systems and interacting with agents
providing estimates on the evolution of a specific plant disease.

We are currently developing some of the agents of the Advisor SW Agent sys-
tem: the GISP component and the DBL component with reference to a critical
pest for apple, called the Codling Moth (Cydia Pomonella). A first proto-
type of the system has been developed and evaluated by the technicians and
researchers of the Advisory Service providing useful suggestions for its im-
provement. The GISP component is based on a set of Geographic Information
System (GIS) functionalities that allow to visualize territorial data and to
perform spatial queries relatively to the apple orchards in the Trentino area.

In particular, we have developed a set of functions supporting the design of
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a pheromones sex trapping plant (a technique for reducing the effects of the
Cydia Pomonella infections in an orchard), on a multi-orchard basis. Figure 6
depicts the browser based Graphical User Interface of this component. The
visualization area is subdivided in three major areas: in the center is depicted a
map of the area of interest showing the organizational setting of the orchards;
on the left, a set of functions allow the user to interact with the map; on
the right, the user can find a set of functions related to the management of a
pheromones trapping plant.

The DBL component is based on the Weka software library (see Witten and
Frank (1999)) which provides Machine Learning and Data Mining Algorithm,
applied to the analysis of the data collected by researchers from the field and
from lab tests, during the last ten years.
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