[\SIL HH(A
-:(
;; UNIVE \r A DEGLI STUDI

\“ DI u NTO

= Universiteit Utrecht

AAMAS’'09, Budapest, 13.05.09

Pl Operational Semantics of Goal
Models in Adaptive Agents

Mirko Morandinil, Loris Penserini?2 and Anna Perinil

IFBK IRST — Center for Information Technology, Trento, Italy
2Department of Computer Science, Universiteit Utrecht, NL

QOutline

= Background and motivations

= Goal models in software engineering
L = Goals in agent-oriented programming
= Work objective

= Semantics for goal models at run-time

= Semantics for “leaf’-goals [Riemsdijk08]
= Semantics for goals in goal trees

= A small example
= Conclusions & future work

—

Morandini, Penserini, Perini — AAMAS‘09

Universiteit Utrecht
o=y RICERCA SCIENTIFICA
£ TECNOLOGICA
D
ONDAZ? N

> Goal models in Sw. Engineering

= from Goal-Oriented Requirements Engineering

,f = Capture stakeholders' objectives -
g = Analyse and structure them

= Decompose goals, £ &
71X

L identify alternatives /ﬂ

a7 .
£ = ldentify tasks (plans/capabilities)
. Plan 3 Plan 4
to perform, to achieve a goal < = > < - > <P'a" 5>

= used in KAQS, i*, many AOSE methodologies: Tropos, Prometheus,
MaSE, Ingenias,... but most AOSE methodologies “loose” the concept
of goal in the later development phases!

\ Research question:

/ How to use this knowledge to shift decision making (evaluation of
' ‘?7(alternatives) from design- to run-time, to gain in autonomy, for the
| development of adaptive and fault-tolerant systems?

Morandini, Penserini, Perini — AAMAS‘09 2

ryiteit Utrecht

& Unive
L) RICERCA SCIENTIFICA
E TECNOLOGICA
D

» Goals in agent-oriented programming

s Jason, 2APL, Jadex, Jack:

P « BDI-architecture: Goals, Plans, Beliefs

@,;*’ = Represent “operationalised” goals, Go

with possible plans to achieve them / 7B\
(goal model “leaf level”). CPian3) Cpan4) (pins)

= Plans can contain activities to execute and other goals
to achieve.

= Various goal types for a specific run-time behaviour
(achieve, maintain, perform,...) [DastaniO6]

| Research question:
> How can we deal with goal models at run-time?

Morandini, Penserini, Perini — AAMAS‘09

. o= s (
From goal models to run-time

) Maintain goal models also at implementation and run-time!
7 # _ Previous work

&4? = Tropos4AS: extends the AOSE methodology TROPQOS for
pa modelling properties of adaptive systems [MorandiniO8]:
- goal types
- conditions to the environment
m . automated mapping of Tropos4AS goal models to
Jadex BDI agents [PenseriniAAMASO07]
Agent-Oriented Design (TROPOS) BDI Agent-Oriented
o =0 Implementation (Jadex)
& o e t2x tool SEEEE——
‘@ . «:w | 9
X s

Morandini, Penserini, Perini — AAMAS‘09

Universiteit Utrecht

- s (PR
¢« Work Objective
p
P = Goal models in most AOSE methodologies, but “lost” in
'y the later development phases
2 il = Agent languages: goals, but no support for goal structures
@@’ = We have an (informal) mapping of goal models to code
/’
Try to formalise the intended behaviour of the satisfaction
process for a goal model!
Goal models at run-time — motivation:
= Maintain high-level design information and traceability of the
requirements
= Use this knowledge to shift design decisions (evaluation of
alternatives) to run-time to gain in autonomy, for the
X development of adaptive and fault-tolerant systems

Morandini, Penserini, Perini — AAMAS‘09

Semantics for leaf goals [Riemsdijk08] =5<

B. van Riemsdijk, M. Dastani and M. Winikoff, “Goals in Agent
"4 Systems: An Unifying Framework”, AAMAS, 2008.

g o Unified representation of operational semantics for the different

f@/ goal types available in current agent programming languages.

. . Activ Gener
~ # = Abstract architecture for goals L N

#: = possible goal states @ i active <P (@

= Operational semantics | e
7 defined by transition rules Opes 5;;‘““

e.g.
Activation condition ¢ true on current belief (c,ACTIVATE) € E. B¢
(belief, goal susp.) — (belief, goal activated) (B,g(C, E, SUSPENDED, €¢)) — (B,g(C, E, ACTIVE,¢))

goal

Formalisation of common goal types state-based action-based

\ -] .)) (declarative) (procedural)

N e.g.: "Achieve-goal” with satisfaction

X condition s and failure condition f : . . ,

% : A . : single state multiple states perform

A'(s,f)=a({}.{(sV f,DropP), (true, ACTIVATE) })
quéry ainte:nance

Morandini, Penserini, Perini — AAMAS‘09

¢« . Semantics for non-leaf goals

Challenges:
P = Semantics for goal AND-OR

v decompositions,

7 = Interplay between subgoal =
satisfaction and the satisfaction J L
of the achievement conditions ‘ ‘i
for different goal types, o>

. = Customisable formalisation L
to capture different satisfaction T~
¥ & behaviours.

Morandini, Penserini, Perini — AAMAS‘09

. - 5 (PRSI
Semantics for non-leaf goals

Extend [Riemsdijk08] for non-leaf goals in goal models

)
active failed drop-failure
(subg.)
. fail

activate , . ,
suspended active_delib —————3p| active undef retry |fail |succeed @

. / deliberate
(subg.)
succeed
suspend subg-achieve active succeededJ drop-success

“Active” state extended to
“Active, deliberate” (AD): get applicable subgoals

= “Active, undefined” (AU): subgoal achievement taking place, result
still undefined

= “Active, succeeded” (AS): “provisional” success state. Subgoal
achievement succeeded, evaluate goal achievement conditions

= “Active, failed” (AF): “provisional” failure state. Subgoal achievement
failed, evaluate goal achievement conditions

reactivate

Transition rules — example for OR:
In state AU, try to achieve a subgoal, |25 (B.adopt(Cro)) = (B.G) B = sucee
I (B,g(C,E,AU,T")) — (B',g(C,E,AS.T'\ {v:}))
if it succeeds, go to AS [OR:subg-succeed]

Morandini, Penserini, Perini — AAMAS‘09 8

O o
Instantiation of the abstract =5

4, architecture for different goal types

The behaviour of the different goal types can be defined by defining

/f the conditions linked to the transition actions.
f P [E: conditions evaluated when the list of subgoals to achieve is empty]
R @ [C: conditions evaluated when the list of subgoals is not empty]

":;7 @ g(E,C),with E = C = {{true, ACTIVATE),

(true, DROPFAILURE), (true, DROPSUCCESS) }

Perform-Goal

reactivate active failed

drop-failure
_

= active_delib retry fail =tceed @
- d : (OR only)/(AND

¢ B eliberate = y
j\/ VM subg-achieve active wcceeded)@ess
' &

o(E,C), with E = H U {(=sV f,FAIL)}
’ j{ Achieve-Goal and C = H U {(f, FAIL), (—s, RETRY) }

success & failure conditions H = {(true, ACTIVATE), (f, DROPFAILURE), (s, SUCCEED),
(s, DROPSUCCESS), (=8, REACTIVATE) }
Morandini, Penserini, Perini — AAMAS‘09 9

fail

Cleaner Robot:;
7 # Should clean a room, with

satisfaction condition
“floor clean”’.

A scenario:

p
P 4
#
iz’
n
n
n

Robot cleans the floor,
achieving “dryCleaning”.

Sweeping performed,

Universiteit Utrecht
s RICERCA SCIENTIFICA

£ TECNOLOGICA
.

A small example

Satisf-cond.:

floorclean |—— Floor

Sensor

Key:
@ Actor ;
(O Hard Goal /
{Z3SoftCoal | @ ®
< Plan ‘- R —

still some dirt spots on the floor!
The agent tries “wetCleaning”.

Cleaning fails, because it runs out of water,
—> but dirty area already cleaned,
—> top goal “clean room” achieved with success!

Morandini, Penserini, Perini — AAMAS‘09

—> Means-end f,,-"
—> Contribution »_\ \™°P ’
—> Cr decomposit.™_ -
=+H> And decempesition™-.__ o
- Dependency link e

10

@ Universiteit Utrecht

RICERCA SCIENTIFICA
E TECNOLOGICA

succeed @

%

,}; active succeeded | UroP SUCCESS

‘ . . _ —
P, Satisfy the achieve-goal clean room
/f = @) deliberate(g, B) gives back subgoals =
y . wetCleaning (WC) and dryCleaning (DC)
i ﬁ (B,g(C,E,AD.0)) — (B,g(C, E, AU, deliberate(g, B)))
P 4 il [deliberate]
- = @) dryCleaning performed with success
7 disp(G, DC) — G U {DC} (B,G U {DC}) — (B',G)

(B, disp(G, DC)) — (B, G) B’ = success(DC)
(B, g(C, E, AU, {DC,WC})) — (B', g(C, E, AS, {WC}))
= (5) still some dirt spots on the floor! only (s, RETrY) is satisfied.
'#0 {c, RETRY) € C BEc

Xg (B,g(C,E,AS,T)) — (B, g(C,E, AU,T)) [Retry]
= (6) wetCl. is pursued and fails, but condition “floor clean” is now true.
\'\ -3(d,FaiL) e C(BEd) (¢,SucCEED) € E Bfc

(B,g(C,E,AU,0)) — (B,g(C, E, AS,0))

&« 7 [cond-succeedE] _ _
" "7(g(C,E,AS,0) € G (¢, DROPSUCCESS) € E BEg @ Finally the goal is dropped

(B,G) — (B U success(g),G \ {9(C, E, AS,)}) and its success is annotated

[drop-successE] In the belief base.
Morandini, Penserini, Perini — AAMAS‘09 11

—

Conclusions & Future Work

We formalised the run-time behaviour of non-leaf goals, defining the
interplay between goal decompositions and goal types.

The proposed ‘abstract architecture’ can be used to define various goal
types and achievement/failure handling behaviours.

Maintain high-level design information and traceability of the
requirements

shift decisions (evaluation of alternatives) from design to run-time to
gain in autonomy, for the development of adaptive and fault-tolerant
systems

The operational semantics can be a starting point:

= to formalise a mapping from goal models to software agents,
= to implement a middle layer for goal models in AOP frameworks,
= for validation and simulation of goal models at design time.

Goal models at run-time also provide a basis for run-time goal
acquisition and goal model modification.

Morandini, Penserini, Perini — AAMAS‘09

&

£

A -2 2
;;,»f.?u"'-'

A
S N

e

RICERCA SCIENTIFICA
E TECNOLOGICA
=3¢
L NIVERSITA DEGLI STUDI
FONDAZIONE

Universiteit Utrecht
DI TRENTO

Thank you!

Questions and suggestions are welcome!

’Q Universiteit Utrecht

ey RICERCA SCIENTIFICA
E TECNOLOGICA
D

Further readings & references

¥ = [BrescianiO4] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos:
= An Agent-Oriented Software Development Methodology. Autonomous Agents and Multi-
& Agent Systems, 8(3):203-236, July 2004.
P = [Penserini07] L. Penserini, A. Perini, A. Susi, and J. Mylopoulos. High variability design for
L software agents: Extending Tropos. ACM Transactions on Autonomous and Adaptive
/?@‘ Systems (TAAS), 2(4), 2007.
. Y = [PenseriniAAMASQ7] L. Penserini, A. Perini, A. Susi, M. Morandini, and J. Mylopoulos, A
design framework for generating BDI agents from goal models. AAMAS’07, Honolulu, 2007.
= [Morandini ASEO8] M. Morandini, L. Penserini, and A. Perini. Automated mapping from goal
models to self-adaptive systems. ASE’08, L’Aquila, Italy, September 2008.
= [SEAMSO08] M. Morandini, L. Penserini, and A. Perini. Towards Goal-Oriented Development
of Self-Adaptive Systems. SEAMS at ICSEOQ8, Leipzig, Germany, May 2008.
= [Riemsdijk08] B. van Riemsdijk, M. Dastani and M. Winikoff. Goals in Agent Systems: An
Unifying Framework. AAMAS’08, Estoril, Portugal, May 2008.
= [DastaniO6] M. Dastani et al., Goal types in agent programming. AAMASO06, 2006.
= [Pokahr05] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A bdi reasoning engine. In
Multi-Agent Programming, pages 149-174, 2005. Book chapter.
: = [Yu95] E. Yu. Modelling Strategic Relationships for Process Reengineering. PhD thesis,
K University of Toronto, Department of Computer Science, University of Toronto, 1995.

Morandini, Penserini, Perini — AAMAS‘09 14

adopt
- suspended

reactivate

activate
active_delib

deliberate
M

active failed drop-failure

(subg))
fail

active undef.

retry
(subg.) N
SNsucceed

drop-success

Morandini, Penserini, Perini

— AAMAS‘09

subg-achieve | f I active succeeded
A

= Some transitions guided by transition actions (Succeed, Fail, Retry,...)
linked to a condition c, evaluated on the agent’s belief B.

£ g Example transition rules for OR-decomposition
« in state AU: try to achieve a subgoal, |1cL (B.adopt(Gye) = (B.G) C B & failure(7D
7 . i .. (B.g(C.E, AU, I)} — (B',g(C,E,AU.T\ [%:]))
if it fails, remain in AU. [OR:subg-urhizva)
* in state AU, try to achieve a subgoal, <l (B adopt(G.y:)) — (B'.G)
e (B,g(C,E,AU,T)) — (B',g(C,E,AS.T \ {v:})
if it succeeds, go to AS j) g (OB sub suicesl
» in AU or AF, if success condition c I— rze —> #L
. o orLo —d(d, FPAIL ‘o a c, DUCCEED J C
is true and failure condition d false, (B.9(C.B.X.T) S (B 9(C BAS.T))
) go to AS X € {AU,AF} [cond-succeedC]
% » in AU, if no more subgoals to achieve ~3(c, SUCCEED) € E.(BF ¢)
: and success condition true, go to AR, [(B:9(C. B, AUQ) — (B.g(C. B, AR0)) [OR:subg-foil]

15

