
Evolutionary Testing of Autonomous
Software Agents

Simon Miles, Mark Harman, and Michael Luck
Department of Computer Science
Kingʼs College London
Strand, London WC2R 2LS, UK

Cu D. Nguyen, Anna Perini, and Paolo Tonella
Fondazione Bruno Kessler
Via Sommarive, 18 38050 Trento, Italy

AAMAS, Budapest 2009
1

Outline

• Introduction

• Approaches

• Experiment and result discussion

• Conclusion

2

Introduction
Autonomous software agents are increasingly used

Testing to build confidence in their operations is
crucial !

3

Introduction
Agent autonomy makes testing harder

• Agents make decisions for themselves based on their goals,
intentions, and beliefs

• Can behave differently in response to the same input

4

Introduction
Agent autonomy makes testing harder

• Agents make decisions for themselves based on their goals,
intentions, and beliefs

• Can behave differently in response to the same input

Autonomous agents operate in an open environment
with high variety of situations4

Introduction
Agent autonomy makes testing harder

• Agents make decisions for themselves based on their goals,
intentions, and beliefs

• Can behave differently in response to the same input

Autonomous agents operate in an open environment
with high variety of situations

Testing requires:
• adequate output evaluations
• techniques that produce wide range of contexts & can
search for the most demanding test cases

4

Background

• Testing is to find faults

• We focus on agent level

• We evaluate the exhibited performance of
autonomous agents, not the underlying
autonomy mechanism

5

Our approach (1)
Use stakeholder’ requirements related to quality (e.g.
efficiency) to judge autonomous agents.

Cleaner
Agent

Stakeholder

Robustness

Keep the airport
clean

Efficiency

Legends
Goal

Actor
softgoal

dependence6

Our approach (1)
Use stakeholder’ requirements related to quality (e.g.
efficiency) to judge autonomous agents.

timeCleaner
Agent

Stakeholder

Robustness

Keep the airport
clean

Efficiency

Legends
Goal

Actor
softgoal

dependence

Assess the agents
 under test

Drive the evolutionary
generation

ε

time

d > ε

Represent these requirements as quality functions

6

Our approach (2)
Use quality functions in fitness measures to drive

the evolutionary generation

• Fitness of a test case tells how good the test case
is

• Evolutionary testing searches for test cases
having the best fitness values.

Fitness example: distance to be crashed

7

Our approach (2)
Use quality functions in fitness measures to drive

the evolutionary generation

• Fitness of a test case tells how good the test case
is

• Evolutionary testing searches for test cases
having the best fitness values.

ε

time

d > ε

Fitness example: distance to be crashed

7

Our approach (3)
Use statistical methods to measure test case

fitness
• Test outputs of a test case can be different

• A test case execution is repeated a number of
times (or in parallel)

• Statistical output data are used to calculate the
fitness

8

Evolutionary procedure

Test execution
& Monitoring

Evaluation

Generation &
Evolution

final results

Agent

initial test cases
(random, or existing)

inputs

outputs

9

Experiments

Autonomous cleaning agent

‣ explore locations of important
objects

‣ look for waste and bring them to
the closest bin

‣ maintain battery charge

‣ avoid obstacles by changing course
when necessary

‣ find the shortest path to reach a
specific location

‣ stop when no movement is
possible or running out of battery

10

Experiments

Autonomous cleaning agent

‣ explore locations of important
objects

‣ look for waste and bring them to
the closest bin

‣ maintain battery charge

‣ avoid obstacles by changing course
when necessary

‣ find the shortest path to reach a
specific location

‣ stop when no movement is
possible or running out of battery

10

Fitness measurement
Same input environment, different outputs

11

Fitness measurement
Same input environment, different outputs

Cumulative box-plots of the distance of executions converge

max

min

quartile 3 (75%)

quartile 1 (25%)

cu
m

ul
at

iv
e

!"#$%

!"#"&%

"%

"#"&%

"#$%

"#$&%

"#'%

"#'&%

"#(%

"#(&%

$% '% (%)% &% *% +% ,% -% $"% $$% $'% $(% $)% $&% $*% $+% $,% $-% '"% '$% ''% '(% ')% '&% '*% '+% ',% '-% ("% ($% ('% ((% ()% (&% (*% (+% (,% (-%)"%)$%)'%)(%))%)&%)*%)+%),%)-% &"%

.$%

/01%

/23041%

/45%

.(%

Number of executions

Convergence of cumulative boxplot

11

Fitness measurement
Fitness

6.3. REQUIREMENT-BASED CHAPTER 6. RESULTS

!"#$%

!"#"&%

"%

"#"&%

"#$%

"#$&%

"#'%

"#'&%

"#(%

"#(&%

$% '% (%)% &% *% +% ,% -% $"% $$% $'% $(% $)% $&% $*% $+% $,% $-% '"% '$% ''% '(% ')% '&% '*% '+% ',% '-% ("% ($% ('% ((% ()% (&% (*% (+% (,% (-%)"%)$%)'%)(%))%)&%)*%)+%),%)-% &"%

.$%

/01%

/23041%

/45%

.(%

(a) Cumulative box-plots for TC1

!"#$%

!"#"&%

"%

"#"&%

"#$%

"#$&%

"#'%

"#'&%

"#(%

"#(&%

$% '% (%)% &% *% +% ,% -% $"% $$% $'% $(% $)% $&% $*% $+% $,% $-% '"% '$% ''% '(% ')% '&% '*% '+% ',% '-% ("% ($% ('% ((% ()% (&% (*% (+% (,% (-%)"%)$%)'%)(%))%)&%)*%)+%),%)-% &"%

.$%

/01%

/23041%

/45%

.(%

(b) Cumulative box-plots for TC2

Figure 6.9: Cumulative box-plots for two test cases

Then, the fitness function is defined as follows:

f =






min(D) + w1 ∗ quartile1(D) + w3 ∗ quartile3(D)

if min(D) > ε,

min(D)− ε if min(D) ≤ ε,

+∞ if the agent cannot move and suspend safely.
124

ε
min

quartile 3 (75%)

quartile 1 (25%)

Search objective: bringing the box down to the threshold ε
,i.e. leading the agent to hit obstacles

12

Result & discussion

 10 20 30 40 50 60 70 80 90 100 110

0.11

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Generation

S
a
fe

ty
 F

it
n
e
s
s

evolutionary testing

13

Result & discussion

 10 20 30 40 50 60 70 80 90 100 110

0.11

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Generation

S
a
fe

ty
 F

it
n
e
s
s

evolutionary testing

13

Result & discussion

 10 20 30 40 50 60 70 80 90 100 110

0.11

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Generation

S
a
fe

ty
 F

it
n
e
s
s

evolutionary testing

 10 20 30 40 50 60 70 80 90 100 110

0.11

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time

a
v
e
ra

g
e
 o

f
fi

tn
e
s
s

random testing

• evolutionary testing found better test cases than
random testing
• and is more effective in detecting faults

13

Conclusion
• Autonomous agent testing is hard

• Non-deterministic outputs

• Variability of the world setting

• Evolutionary testing

• Use quality requirements as evaluation criteria

• Use them to guide the evolutionary generation of
test input

• Is more effective compared to random testing

• Is cost-effective, requires almost no additional cost

14

