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Introduction
Autonomous software agents are increasingly used

Testing to build confidence in their operations is 
crucial !
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Introduction
Agent autonomy makes testing harder

• Agents make decisions for themselves based on their goals, 
intentions, and beliefs

• Can behave differently in response to the same input
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Introduction
Agent autonomy makes testing harder

• Agents make decisions for themselves based on their goals, 
intentions, and beliefs

• Can behave differently in response to the same input

Autonomous agents operate in an open environment 
with high variety of situations

Testing requires: 
• adequate output evaluations 
• techniques that produce wide range of contexts & can 
search for the most demanding test cases
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Background

• Testing is to find faults

• We focus on agent level

• We evaluate the exhibited performance of 
autonomous agents, not the underlying 
autonomy mechanism
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Our approach (1)
Use stakeholder’ requirements related to quality (e.g. 
efficiency) to judge autonomous agents.
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Our approach (1)
Use stakeholder’ requirements related to quality (e.g. 
efficiency) to judge autonomous agents.
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Our approach (2)
Use quality functions in fitness measures to drive 

the evolutionary generation

• Fitness of a test case tells how good the test case 
is

• Evolutionary testing searches for test cases 
having the best fitness values.

Fitness example: distance to be crashed
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Our approach (3)
Use statistical methods to measure test case 

fitness
• Test outputs of a test case can be different 

• A test case execution is repeated a number of 
times (or in parallel)

• Statistical output data are used to calculate the 
fitness
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Experiments

Autonomous cleaning agent

‣ explore locations of important 
objects

‣ look for waste and bring them to 
the closest bin

‣ maintain battery charge

‣ avoid obstacles by changing course 
when necessary

‣ find the shortest path to reach a 
specific location

‣ stop when no movement is 
possible or running out of battery 
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Fitness measurement
Same input environment, different outputs
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Fitness measurement
Same input environment, different outputs

Cumulative box-plots of the distance of executions converge
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Fitness measurement
Fitness

6.3. REQUIREMENT-BASED CHAPTER 6. RESULTS
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(a) Cumulative box-plots for TC1
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(b) Cumulative box-plots for TC2

Figure 6.9: Cumulative box-plots for two test cases

Then, the fitness function is defined as follows:

f =






min(D) + w1 ∗ quartile1(D) + w3 ∗ quartile3(D)

if min(D) > ε,

min(D)− ε if min(D) ≤ ε,

+∞ if the agent cannot move and suspend safely.
124

ε
min

quartile 3 (75%)

quartile 1 (25%)

Search objective: bringing the box down to the threshold ε
,i.e. leading the agent to hit obstacles
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Result & discussion
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• evolutionary testing found better test cases than 
random testing
• and is more effective in detecting faults
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Conclusion
• Autonomous agent testing is hard

• Non-deterministic outputs

• Variability of the world setting

• Evolutionary testing

• Use quality requirements as evaluation criteria

• Use them to guide the evolutionary generation of 
test input

• Is more effective compared to random testing

• Is cost-effective, requires almost no additional cost
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