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Abstract. The Tropos project is developing concepts, tools and techniques for 
building agent-oriented software. This paper presents a quick overview of the 
project and then focuses on a specific problem: the identification of 
architectural styles for multi-agent systems  (MAS). The proposed styles have 
been adopted from the literature on organization theory and strategic alliances. 
The styles are represented in i*, a framework designed to model social and 
intentional concepts. Each proposed style is evaluated with respect to a set of 
agent software qualities, such as predictability, adaptability and availability. 
The use of the styles is illustrated and contrasted with a software architecture 
for mobile robot reported in the literature.  

1   Introduction 

The explosive growth of application areas such as electronic commerce, enterprise 
resource planning and mobile computing has profoundly and irreversibly changed our 
views on software and Software Engineering. Software must now be based on open 
architectures that continuously change and evolve to accommodate new components 
and meet new requirements. Software must also operate on different platforms, 
without recompilation, and with minimal assumptions about its operating environment 
and its users. As well, software must be robust and autonomous, capable of serving a 
naïve user with a minimum of overhead and interference. These new requirements, in 
turn, call for new concepts, tools and techniques for engineering and managing 
software. 

For these reasons -- and more -- agent-oriented software development is gaining 
popularity over traditional software development techniques, including structured and 
object-oriented ones.  After all, agent-based architectures (known as multi-agent 
systems in the Agent research community) do provide for an open, evolving 
architecture which can change at run-time to exploit the services of new agents, or 
replace under-performing ones. In addition, software agents can, in principle, cope 
with unforeseen circumstances because they include in their architecture goals, along 
with a planning capability for meeting them. Finally, agent technologies have matured 



to the point where protocols for communication and negotiation have been 
standardized [7]. 
 

We are developing a software development methodology for agent-based software 
systems. The methodology adopts ideas from multi-agent system technologies, mostly 
to define the implementation phase of our methodology [4]. We are also adopting 
ideas from Requirements Engineering, where agents and goals have been used heavily 
for early requirements analysis [5, 26].  In particular, we adopt Eric Yu’s i* model 
which offers actors (agents, roles, or positions), goals, and actor dependencies as 
primitive concepts for modelling an application during early requirements analysis.  
The key assumption which distinguishes our work from others in Requirements 
Engineering is that actors and goals are used as fundamental concepts for modelling 
and analysis during all phases of software development, not just early requirements1.  

Our methodology, named Tropos, is intended to support five phases of software 
development: 

Early requirements, concerned with the understanding of a problem by studying 
an existing organizational setting; the output of this phase is an organizational model 
which includes relevant actors and their respective dependencies; 

Late requirements, where the system-to-be is described within its operational 
environment, along with relevant functions and qualities;  this description models the 
system as a (small) number of actors which have a number of dependencies with 
actors in their environment; these dependencies define the system’s functional and 
non-functional requirements; 

Architectural design, where the system’s global architecture is defined in terms of 
subsystems, interconnected through data and control flows; within our framework, 
subsystems are represented as actors and data/control interconnections are represented 
as (system) actor dependencies. 

Detailed design, where each architectural component is defined in further detail in 
terms of inputs, outputs, control, and other relevant information; our framework  
adopts elements of AUML [19] to complement the features of i*; 

Implementation, where the actual implementation of the system is carried out, 
consistently with the detailed design; we use a commercial agent programming 
platform, based on the BDI (Beliefs-Desires-Intentions) agent architecture for this 
phase. 

 
The motivations behind the Tropos project are presented in [2] and [12], including 

an early glimpse of how the methodology would work for particular case studies. 
In this paper, we focus on a specific problem related to the Tropos methodology: 

the identification of architectural styles for Tropos models. System architectures 
describe a software system at a macroscopic level in terms of a manageable number of 
subsystems/components/modules inter-related through data and control dependencies. 
The design of software architectures has been the focus of considerable research for 
the past decade which has resulted in a collection of well-understood architectural 
styles and a methodology for evaluating their effectiveness with respect to particular 

                                                            
1 Analogously to the use of concepts such as object, class, inheritance and method in object-

oriented software development. 



software qualities. Examples of styles are pipes-and-filters, event-based, layered and 
the like [11]. Examples of software qualities include maintainability, modifiability, 
portability, etc. [1]. Multi-Agent System (MAS) architectures can be considered as 
organizations (see e.g., [6, 8, 16]) composed of autonomous and proactive agents that 
interact and cooperate with one another in order to achieve common  or private goals. 
Since the fundamental concepts of multi-agent systems are intentional and social, 
rather than implementation-oriented, we turn to theories which study social and 
intentional structures for motivation and insights. But, what kind of social theory 
should we turn to? There are theories that study group psychology, communities and 
social networks. Such theories study social and intentional structure as an emergent 
property of a social context. Instead, we are interested in organizational structures that 
emerge from a design process. For this, we turn to organizational theory and strategic 
alliances for guidance. The purpose of this paper is to present a set of architectural 
styles for multi-agent systems motivated by these theories. The styles are modeled 
using the strategic dependency model of i* [26]. To illustrate these styles, we use a 
case study comparing organizational with conventional software architectural styles 
for mobile robot control software. 

Section 2 presents our organization-inspired architectural styles described in terms 
of the strategic dependency model from i* and specified in Telos. Section 3 
introduces a set of desirable software quality attributes for comparing them. Section 4 
overviews a mobile robot example while Section 5 discusses related work. Finally, 
Section 6 summarizes the contributions of the paper and points to further research. 

2   Organizational Structures 

Organizational theory (such as [14, 18]) and strategic alliances (e.g., [13, 25]) study 
alternatives for (business) organizations. These alternatives are used to model the 
coordination of business stakeholders -- individuals, physical or social systems -- to 
achieve common goals. Using them, we view a software system as a social 
organization of coordinated autonomous components (or agents) that interact in order 
to achieve specific, possibly common goals. We adopt (some of) the styles defined in 
organizational theory and strategic alliances to design the architecture of the system, 
model them with i*, and specify them in Telos [17]. 

In i*, a strategic dependency model is a graph, in which each node represents an 
actor, and each link between two actors indicates that one actor depends on another 
for something in order that the former may attain some goal.  We call the depending 
actor the depender and the actor who is depended upon the dependee.  The object 
around which the dependency centers is called the dependum. By depending on 
another actor for a dependum, an actor is able to achieve goals that it is otherwise 
unable to achieve, or not as easily or as well. At the same time, the depender becomes 
vulnerable. If the dependee fails to deliver the dependum, the depender would be 
adversely affected in its ability to achieve its goals. 

The model distinguishes among four types of dependencies -- goal-, task-, 
resource-, and softgoal-dependency -- based on the type of freedom that is allowed in 
the relationship between depender and dependee. Softgoals are distinguished from 



goals because they do not have a formal definition, and are amenable to a different 
(more qualitative) kind of analysis [3]. 

For instance, in the structure-in-5 style (Figure 1),  the coordination, middle 
agency and support actors depend on the apex for strategic management purposes. 
Since the goal Strategic Management is not well-defined, it is represented as a 
softgoal (cloudy shape). The middle agency actor depends on both the coordination 
and support actors respectively through goal dependencies Control and Logistics 
represented as oval-shaped icons. The operational core actor is related to the 
coordination and support actors respectively through the Standardize task dependency 
and the Non-operational service resource dependency.   

In the sequel we briefly discuss ten common organizational styles. 
The structure-in-5 (Figure 1) style consists of the typical strategic and logistic 

components generally found in many organizations. At the base level one finds the 
operational core where the basic tasks and operations -- the input, processing, output 
and direct support procedures associated with running the system -- are carried out. At 
the top of the organization lies the apex composed of strategic executive actors. 
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Fig. 1. Structure-in-5 

Below it sit the control/standardization, management components and logistics, 
respectively coordination,  middle agency and  support. The coordination component 
carries out the tasks of standardizing the behavior of other components, in addition to 
applying analytical procedures to help the system adapt to its environment. Actors 
joining the apex to the operational core make up the middle agency. The support 
component assists the operational core for non-operational services that are outside 
the basic flow of operational tasks and procedures. 

Figure 2 specifies the structure-in-5 style in Telos. Telos is a language intended for 
modeling requirements, design, implementation and design decisions for software 
systems [17]. It provides features to describe metaconcepts that can be used to 
represent the knowledge relevant to a variety of worlds – subject, usage, system, 



development worlds -  related to a software system. Our styles are formulated as Telos 
metaclasses, primarily based on the aggregation semantics for Telos presented in [15]. 

The structure-in-5 style is then a metaclass -  StructureIn5MetaClass -  
aggregation of five (part) metaclasses: ApexMetaClass, CoordinationMetaClass, 
MiddleAgencyMetaClass, SupportMetaClass and  OperationalCoreMetaClass, one 
for each actor composing the structure-in 5 style depicted in Figure 1. Each of these 
five components exclusively belongs (exclusivePart) to the composite 
(StructureIn5MetaClass) and their existence depend (dependentPart) on the existence 
of the composite. A structure-in-5 specific to an application domain will be defined as 
a Telos class, instance of StructureIn5MetaClass (See Section 4). Similarly each 
structure-in-5 component specific to a particular application domain will be defined as 
a class, instance of one of the five StructureIn5Metaclass components. 

 
TELL CLASS StructureIn5MetaClass 

IN Class WITH /*Class is here used as a MetaMetaClass*/  
attribute 

  name: String 
part, exclusivePart, dependentPart 

  ApexMetaClass: Class      
CoordinationMetaClass: Class 

  MiddleAgencyMetaClass: Class    
SupportMetaClass: Class 

  OperationalCoreMetaClass: Class 
END StructureIn5MetaClass 

Fig. 2. Structure-in-5 in Telos 

Figure 3 formulates in Telos one of these five structure-in-5 components: the 
coordination actor. Dependencies are described following Telos specifications for i* 
models [26].  

 
TELL CLASS CoordinationMetaclass 
 IN Class WITH /*Class is here used as a MetaMetaClass*/ 
attribute  name: String 
taskDepended 
 s:StandardizeTask  
  WITH depender OperationalCoreMetaClass: Class 
goalDepended 

 c:ControlGoal  
  WITH depender  MiddleAgencyMetaClass: Class 

    softgoalDepender 
 s:StrategicManagementSoftGoal  

  WITH dependee ApexMetaClass: Class 
END CoordinationMetaclass 
Fig. 3. Structure-in-5 coordination actor in Telos 

The coordination actor is a metaclass, CoordinationMetaclass. According to 
Figure 1, the coordination actor is the dependee of a task dependency StandardizeTask 
and a goal dependency ControlGoal, and the depender of a softgoal dependency 
StrategicManagementSoftGoal. 



The flat structure has no fixed structure and no control of one actor over another 
is assumed. The main advantage of this architecture is that it supports autonomy, 
distribution and continuous evolution of an actor architecture. However, the key 
drawback is that it requires an increased amount of reasoning and communication by 
each participating actor. 

The pyramid style is the well-known hierarchical authority structure exercised 
within organizational boundaries. Actors at the lower levels depend on actors of the 
higher levels. The crucial mechanism is direct supervision from the apex. Managers 
and supervisors are then only intermediate actors routing strategic decisions and 
authority from the apex to the operating level. They can coordinate behaviors or take 
decisions by their own but only at a local level. This style can be applied when 
deploying simple distributed systems.  

Moreover, this style encourages dynamicity since coordination and decision 
mechanisms are direct, not complex and immediately identifiable. Evolvability and 
modifiability can thus be implemented in terms of this style at low costs. However, it 
is not suitable for huge distributed systems like multi-agent systems requiring many 
kinds of agents. Even tough, it can be used by these systems to manage and resolve 
crisis situations. For instance, a complex multi-agent system faced with a non-
authorized intrusion from external and non trustable agents could dynamically, for a 
short or long time, decide to migrate itself into a pyramid organization to be able to 
resolve the security problem in a more efficient way. 
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Fig. 4. Joint Venture 

The joint venture style (Figure 4) involves agreement between two or more 
principal partners to obtain the benefits of larger scale, partial investment and lower 
maintenance costs. Through the delegation of authority to a specific joint management 
actor that coordinates tasks and operations and manages sharing of knowledge and 
resources they pursue joint objectives and common purpose.  

Each principal partner can manage and control itself on a local dimension and 
interact directly with other principal partners to exchange, provide and receive 



services, data and knowledge. However, the strategic operation and coordination of 
such a system and its partner actors on a global dimension are only ensured by the 
joint management actor. Outside the joint venture, secondary partners supply services 
or support tasks for the organization core. 

The takeover style involves the total delegation of authority and management 
from two or more partners to a single collective takeover actor. It is similar in many 
ways to the joint venture style. The major and crucial difference is that while in a joint 
venture identities and autonomies of the separate units are preserved, the takeover 
absorbs these critical units in the sense that no direct relationships, dependencies or 
communications are tolerated except those involving the takeover. 

The arm’s-length style implies agreements between independent and competitive 
but partner actors. Partners keep their autonomy and independence but act and put 
their resources and knowledge together to accomplish precise common goals. No 
authority is delegated or lost from a collaborator to another. 

The bidding style (Figure 5) involves competitivity mechanisms and actors 
behave as if they were taking part in an auction. The auctioneer actor runs the show, 
advertises the auction issued by the auction issuer, receives bids from bidder actors 
and ensure communication and feedback with the auction issuer. 

The auctioneer might be a system actor that merely organizes and operates the 
auction and its mechanisms. It can also be one of the bidders (for example selling an 
item which all other bidders are interested in buying). The auction issuer is 
responsible for issuing the bidding.  
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Fig. 5. Bidding 

The hierarchical contracting style (Figure 6) identifies coordinating mechanisms 
that combine arm’s-length agreement features with aspects associated with pyramidal 
authority. Coordination mechanisms developed to manage arm’s-length (independent) 
characteristics involve a variety of negotiators, mediators and observers at different 
levels handling conditional clauses to monitor and manage possible contingencies, 
negotiate and resolve conflicts and finally deliberate and take decisions. Hierarchical 
relationships, from the executive apex to the arm’s-length contractors (top to bottom) 



restrict autonomy and underlie a cooperative venture between the contracting parties. 
Such dual and admittedly complex contracting arrangements can be used to manage 
conditions of complexity and uncertainty deployed in high-cost-high-gain (high-risk) 
applications. 
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Fig. 6. Hierarchical Contracting 

The co-optation style (Figure 7) involves the incorporation of representatives of 
external systems into the decision-making or advisory structure and behavior of an 
initiating organization. 
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Fig. 7. Cooptation  

By co-opting representatives of external systems, organizations are, in effect, 
trading confidentiality and authority for resource, knowledge assets and support. The 
initiating system, and its local contractors, has to come to terms with what is doing on 



its behalf; and each co-optated actor has to reconcile and adjust his own views with 
the policy of the system he has to communicate. 

The vertical integration style merges, backward or forward, one or more system 
actors engaged in related tasks but at different stages of a production process. A 
merger synchronizes and controls interactions between each of the participants that 
can be considered intermediate workshops. Vertical integrations take place between 
exchange partners, actors symbiotically related. Figure 8 presents a vertical 
integration style for the domain of goods distribution. Provider is expected to supply 
quality products, Wholesaler is responsible for ensuring their massive exposure, while 
Retailer takes care of the direct delivery to the Consumers. 
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Fig. 8. Vertical Integration 

3   Evaluating Architecture 

The organizational styles defined in Section 2 can be evaluated and compared using 
the following software quality attributes identified for multi-agent architectures: 

 
 1 - Predictability [24]. Agents have a high degree of autonomy in the way that they 
undertake action and communication in their domains. It can be then difficult to 



predict individual characteristics as part of determining the behavior of a distributed 
and open system at large. 
2 - Security. Agents are often able to identify their own data sources and they may 
undertake additional actions based on these sources [24]. Protocols and strategies for 
verifying authenticity for these data sources by individual agents are an important 
concern in the evaluation of overall system quality since, in addition to possibly 
misleading information acquired by agents, there is the danger of hostile external 
entities spoofing the system to acquire information accorded to trusted domain agents.  
3 - Adaptability. Agents may be required to adapt to modifications in their 
environment. They may include changes to the component’s communication protocol 
or possibly the dynamic introduction of a new kind of agent previously unknown or 
the manipulations of existing agents.  
Coordinability. Agents are not particularly useful unless they are able to coordinate 
with other agents. This can be realized in two ways:  

4 - Cooperativity. They must be able to coordinate with other entities to achieve a 
common purpose. 

5  - Competitivity. The success of one agent implies the failure of others. 
6 - Availability. Components that offer services to other agents must implicitly or 
explicitly guard against the interruption of offered services. Availability must actually 
be considered a sub-attribute of security [3]. Nevertheless, we deal with it as a top-
level quality attribute due to its increasing importance in multi-agent system design. 
7 - Integrity. A failure of one agent does not necessarily imply a failure of the whole 
system. The system then needs to check the completeness and the accuracy of data, 
information and knowledge transactions and flows. To prevent system failure, 
different agents can have similar or replicated capabilities and refer to more than one 
agent for a specific behavior.  

 
 1 2 3 4 5 6 7 8 9 

Flat -- -- -   + + ++ - 
Struct-5 + +  + - + ++ ++ ++ 

Pyramid ++ ++ + ++ - + -- -  
Joint-Vent + + ++ + - ++  + ++ 

Bid -- -- ++ - ++ - -- ++  
Takeover ++ ++ - ++ -- +  + + 

Arm’s-Lgth - -- + - ++ -- ++ +  
Hierch Ctr   + + + +  + + 
Vert Integr + + - + - + -- -- -- 

Coopt - - ++ ++ + -- - --  

Table 1. Correlation Catalogue 

8 - Modularity [23] increases efficiency of task execution, reduces communication 
overhead and usually enables high flexibility. On the other hand, it implies constraints 
on inter-module communication.  



9 - Aggregability. Some agents are parts of other components. They surrender to the 
control of the composite entity. This control results in efficient tasks execution and 
low communication overhead, however prevents the system to benefit from 
flexibility. 

Table 1 summarizes the correlation catalogue for the  organizational patterns and 
top-level quality attributes we have considered. Following notations used by the NFR 
(non functional requirements) framework [3], +, ++, -, --, respectively model 
partial/positive, sufficient/positive, partial/negative and sufficient/negative  
contributions. 

4   Example 

To motivate our organizational styles, we consider an application domain where 
distributed and open architectures are increasingly important: mobile robots.  

The mobile robot example presented in [22] studies notably the layered 
architecture (Figure 9) implemented in the Terregator and Neptune office delivery 
robots [20].  
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Fig. 9. Classical Mobile Robot Layered Architecture 

According to [22] at the lowest level, reside the robot control routines (motors, 
joints,...). Levels 2 and 3 deal with the input from the real world. They perform sensor 
interpretation (the analysis of the data from one sensor) and sensor integration (the 
combined analysis of different sensor inputs). Level 4 is concerned with maintaining 
the robot's model of the world. Level 5 manages the navigation of the robot. The next 
two levels, 6 and 7, schedule and plan the robot's actions. Dealing with problems and 



replanning is also part of the level-7 responsibilities. The top level provides the user 
interface and overall supervisory functions. 

The following software quality attributes are relevant for the robot's architecture 
[22]: Cooperativity, Predictability, Adaptability, Integrity. Let consider, for instance, 
Cooperativity and Predictability.  

Cooperativity: the robot has to coordinate the actions it  undertakes to achieve its 
designated objective with the reactions forced on it by the environment (e.g., avoid an 
obstacle). The idealized layered architecture (Figure 9) implemented on some mobile 
robots does not really fit the actual data and control-flow patterns. The layered 
architecture style suggests that services and requests are passed between adjacent 
layers. However, data and information exchange is actually not always straight-
forward. Commands and transactions may often need to skip intermediate layers to 
establish direct communication. A structure-in-5 proposes a more distributed 
architecture allowing more direct interactions between component.   

Another recognized problem is that the layers do not separate the data hierarchy 
(sensor control, interpreted results, world model) from the control hierarchy (motor 
control, navigation, scheduling, planning and user-level control). Again the structure-
in-5 could better differentiate the data hierarchy - implemented by the operational 
core, and support components - from the control structure – implemented by the 
operational core, middle agency and strategic apex as will be described in Figure 10. 
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Fig. 10. A Structure-in-5 Mobile Robot Architecture 

 
Adaptability: application development for mobile robots frequently requires 

customization, experimentation and dynamic reconfiguration. Moreover, changes in 
tasks may require regular modification. In the layered architecture, the 
interdependencies between layers prevent the addition of new components or deletion 
of existing ones. The structure-in-5 style separates independently each typical 
component of an organizational structure but a joint venture isolating components and 



allowing autonomous and dynamic manipulation should be a better candidate. Partner 
components, except the joint manager, can be added or deleted in a more flexible way. 

Figure 10 depicts a mobile robot architecture following the structure-in-5 style from 
Figure 1. The control routines component is the operational core managing the robot 
motors, joints, etc. Planning/Scheduling is the coordination component scheduling 
and planning the robot’s actions. The real world interpreter is the support component 
composed of two sub-components: Real world sensor accepts the raw input from 
multiple sensors and integrates it into a coherent interpretation while World Model is 
concerned with maintaining the robot’s model of the world and monitoring the 
environment for landmarks. Navigation is the middle agency component, the central 
intermediate module managing the navigation of the robot. Finally, the user-level 
control is the human-oriented strategic apex providing the user interface and overall 
supervisory functions. 

Figure 11 formulates the media robot structure-in-5 in Telos.  MobileRobotClass is a 
Telos class, instance of the StructureIn5Metaclass specified in Figure 2. This 
aggregation is composed of five exclusive and dependent parts ControlRoutinesClass, 
RealWorldInterpreterClass, NavigationClass, PlanningClass and UserLevelControl-
Class, each of them is instance of one metaclass, component of StructureIn-
5MetaClass.  

 
TELL CLASS MobileRobotClass 

IN StructureIn5MetaClass WITH 
attribute 

   name: String 
part, exclusivePart, dependentPart 

  ControlRoutinesClass: OperationalCoreMetaClass 
  RealWorldInterpreter: SupportMetaClass 
  NavigationClass: MiddleAgencyMetaClass 
  PlanningClass: CoordinationMetaClass 
  UserLevelControl: ApexMetaClass 

END MobileRobotClass 

Fig. 11. Mobile Robot  Structure-in-5 Architecture in Telos 

5   Related Work 

Other research work on multi-agent systems offers contributions on using 
organization concepts such as agent (or agency), group, role, goals, tasks, 
relationships (or dependencies) to model and design system architectures.  

For instance, Aalaadin [6] presents a model based on two level of abstraction. The 
concrete level includes concepts such as agent, group and role which are used to 
describe the actual multi-agent system. The methodological level defines all possible 
roles, valid interactions, and structures of groups and organizations. The model 
describes an organization in terms of its structure, and independently of the way its 
agents actually behave. Different types of organizational behavioral requirement 



patterns have been defined and formalized using concepts such as groups and roles 
within groups and (inter-group and intra-group) role interactions. 

In our work the concepts Aalaadin uses in the concrete level are contained in the 
concept of actor. An actor can be a single or a composite agent, a position covered by 
an agent, and a role covered by one or more agents.  Unlike ours, Aalaadin’s proposal 
does not include goals in the description of an organization. Moreover, in Aalaadin’s 
work these descriptions include details (e.g., interaction languages and protocols) 
which we deal with at a later stage of design, typically called detailed design. 

On a different point of comparison, Aalaadin uses rules, structures and patterns to 
capture respectively how the organization is expected to work, which kind of structure 
fits given requirements, and whether reuse of patterns is possible. In our framework, 
some rules are captured by social dependencies in terms of which one defines the 
obligations of actors towards other actors. Moreover, other rules can be captured 
during detailed design instead of earlier phases, i.e., early and late requirements, or 
architectural design (see [1]).  

5 Conclusions 

Designers rely on styles, patterns, or idioms, to describe the architectures of their 
choice. We propose that MAS can be conceived as organizations of agents that 
interact to achieve common goals. This paper proposes a catalogue of architectural 
styles designing MAS architectures as organizational architectures, i.e, at a macro- 
and micro-level. The proposed styles adopt concepts from organization theory and 
strategic alliances literature. The paper also includes an evaluation of software 
qualities that are relevant to these styles. A standard case study (the mobile robot case 
control) illustrates and compares them with respect to conventional architecture. 

Future research directions include formalizing precisely the organizational 
structures that have been identified, as well as the sense in which a particular model is 
an instance of such a style and pattern. We also propose to relate them to social or 
agent patterns (e.g, the broker, matchmaker, embassy, facilitator, …) and lower-level 
architectural components [21] involving (software) components, ports, connectors, 
interfaces, libraries and configurations [9]. We are still working on contrasting our 
structures to conventional styles [22] and patterns [10] proposed in the software 
engineering literature. To this end, as mentioned in the paper, we are defining 
algorithms to propagate evidences of satisfaction and denial of each conventional or 
social structure with respect to a set of non-functional requirements.  
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