
Agent-Oriented Software Development

John Mylopoulos1 Manuel Kolp2 Paolo Giorgini3

1 Department of Computer Science - University of Toronto, 6 King’s College Road
M5S 3H5, Toronto, Canada, tel.: 1-416-978 5180, jm@cs.toronto.edu

2IAG - Information Systems Research Unit - University of Louvain, 1 Place des Doyens, B-
1348 Louvain-La-Neuve, Belgium, tel.: 32-10 47 83 95, kolp@isys.ucl.ac.be

3 Department of Mathematics - University of Trento, 4 via Sommarive, I-38100, Trento,
Italy, tel.: 39-0461-88 2052, pgiorgini@science.unitn.it

Abstract. The Tropos project is developing concepts, tools and techniques for
building agent-oriented software. This paper presents a quick overview of the
project and then focuses on a specific problem: the identification of
architectural styles for multi-agent systems (MAS). The proposed styles have
been adopted from the literature on organization theory and strategic alliances.
The styles are represented in i*, a framework designed to model social and
intentional concepts. Each proposed style is evaluated with respect to a set of
agent software qualities, such as predictability, adaptability and availability.
The use of the styles is illustrated and contrasted with a software architecture
for mobile robot reported in the literature.

1 Introduction

The explosive growth of application areas such as electronic commerce, enterprise
resource planning and mobile computing has profoundly and irreversibly changed our
views on software and Software Engineering. Software must now be based on open
architectures that continuously change and evolve to accommodate new components
and meet new requirements. Software must also operate on different platforms,
without recompilation, and with minimal assumptions about its operating environment
and its users. As well, software must be robust and autonomous, capable of serving a
naïve user with a minimum of overhead and interference. These new requirements, in
turn, call for new concepts, tools and techniques for engineering and managing
software.

For these reasons -- and more -- agent-oriented software development is gaining
popularity over traditional software development techniques, including structured and
object-oriented ones. After all, agent-based architectures (known as multi-agent
systems in the Agent research community) do provide for an open, evolving
architecture which can change at run-time to exploit the services of new agents, or
replace under-performing ones. In addition, software agents can, in principle, cope
with unforeseen circumstances because they include in their architecture goals, along
with a planning capability for meeting them. Finally, agent technologies have matured

to the point where protocols for communication and negotiation have been
standardized [7].

We are developing a software development methodology for agent-based software
systems. The methodology adopts ideas from multi-agent system technologies, mostly
to define the implementation phase of our methodology [4]. We are also adopting
ideas from Requirements Engineering, where agents and goals have been used heavily
for early requirements analysis [5, 26]. In particular, we adopt Eric Yu’s i* model
which offers actors (agents, roles, or positions), goals, and actor dependencies as
primitive concepts for modelling an application during early requirements analysis.
The key assumption which distinguishes our work from others in Requirements
Engineering is that actors and goals are used as fundamental concepts for modelling
and analysis during all phases of software development, not just early requirements1.

Our methodology, named Tropos, is intended to support five phases of software
development:

Early requirements, concerned with the understanding of a problem by studying
an existing organizational setting; the output of this phase is an organizational model
which includes relevant actors and their respective dependencies;

Late requirements, where the system-to-be is described within its operational
environment, along with relevant functions and qualities; this description models the
system as a (small) number of actors which have a number of dependencies with
actors in their environment; these dependencies define the system’s functional and
non-functional requirements;

Architectural design, where the system’s global architecture is defined in terms of
subsystems, interconnected through data and control flows; within our framework,
subsystems are represented as actors and data/control interconnections are represented
as (system) actor dependencies.

Detailed design, where each architectural component is defined in further detail in
terms of inputs, outputs, control, and other relevant information; our framework
adopts elements of AUML [19] to complement the features of i*;

Implementation, where the actual implementation of the system is carried out,
consistently with the detailed design; we use a commercial agent programming
platform, based on the BDI (Beliefs-Desires-Intentions) agent architecture for this
phase.

The motivations behind the Tropos project are presented in [2] and [12], including

an early glimpse of how the methodology would work for particular case studies.
In this paper, we focus on a specific problem related to the Tropos methodology:

the identification of architectural styles for Tropos models. System architectures
describe a software system at a macroscopic level in terms of a manageable number of
subsystems/components/modules inter-related through data and control dependencies.
The design of software architectures has been the focus of considerable research for
the past decade which has resulted in a collection of well-understood architectural
styles and a methodology for evaluating their effectiveness with respect to particular

1 Analogously to the use of concepts such as object, class, inheritance and method in object-

oriented software development.

software qualities. Examples of styles are pipes-and-filters, event-based, layered and
the like [11]. Examples of software qualities include maintainability, modifiability,
portability, etc. [1]. Multi-Agent System (MAS) architectures can be considered as
organizations (see e.g., [6, 8, 16]) composed of autonomous and proactive agents that
interact and cooperate with one another in order to achieve common or private goals.
Since the fundamental concepts of multi-agent systems are intentional and social,
rather than implementation-oriented, we turn to theories which study social and
intentional structures for motivation and insights. But, what kind of social theory
should we turn to? There are theories that study group psychology, communities and
social networks. Such theories study social and intentional structure as an emergent
property of a social context. Instead, we are interested in organizational structures that
emerge from a design process. For this, we turn to organizational theory and strategic
alliances for guidance. The purpose of this paper is to present a set of architectural
styles for multi-agent systems motivated by these theories. The styles are modeled
using the strategic dependency model of i* [26]. To illustrate these styles, we use a
case study comparing organizational with conventional software architectural styles
for mobile robot control software.

Section 2 presents our organization-inspired architectural styles described in terms
of the strategic dependency model from i* and specified in Telos. Section 3
introduces a set of desirable software quality attributes for comparing them. Section 4
overviews a mobile robot example while Section 5 discusses related work. Finally,
Section 6 summarizes the contributions of the paper and points to further research.

2 Organizational Structures

Organizational theory (such as [14, 18]) and strategic alliances (e.g., [13, 25]) study
alternatives for (business) organizations. These alternatives are used to model the
coordination of business stakeholders -- individuals, physical or social systems -- to
achieve common goals. Using them, we view a software system as a social
organization of coordinated autonomous components (or agents) that interact in order
to achieve specific, possibly common goals. We adopt (some of) the styles defined in
organizational theory and strategic alliances to design the architecture of the system,
model them with i*, and specify them in Telos [17].

In i*, a strategic dependency model is a graph, in which each node represents an
actor, and each link between two actors indicates that one actor depends on another
for something in order that the former may attain some goal. We call the depending
actor the depender and the actor who is depended upon the dependee. The object
around which the dependency centers is called the dependum. By depending on
another actor for a dependum, an actor is able to achieve goals that it is otherwise
unable to achieve, or not as easily or as well. At the same time, the depender becomes
vulnerable. If the dependee fails to deliver the dependum, the depender would be
adversely affected in its ability to achieve its goals.

The model distinguishes among four types of dependencies -- goal-, task-,
resource-, and softgoal-dependency -- based on the type of freedom that is allowed in
the relationship between depender and dependee. Softgoals are distinguished from

goals because they do not have a formal definition, and are amenable to a different
(more qualitative) kind of analysis [3].

For instance, in the structure-in-5 style (Figure 1), the coordination, middle
agency and support actors depend on the apex for strategic management purposes.
Since the goal Strategic Management is not well-defined, it is represented as a
softgoal (cloudy shape). The middle agency actor depends on both the coordination
and support actors respectively through goal dependencies Control and Logistics
represented as oval-shaped icons. The operational core actor is related to the
coordination and support actors respectively through the Standardize task dependency
and the Non-operational service resource dependency.

In the sequel we briefly discuss ten common organizational styles.
The structure-in-5 (Figure 1) style consists of the typical strategic and logistic

components generally found in many organizations. At the base level one finds the
operational core where the basic tasks and operations -- the input, processing, output
and direct support procedures associated with running the system -- are carried out. At
the top of the organization lies the apex composed of strategic executive actors.

Apex

Standardize

Coordination

Strategic
Management

Agency
Middle

Supervise

Operational
Core

Service
Non-operational

Logistics SupportControl

Fig. 1. Structure-in-5

Below it sit the control/standardization, management components and logistics,
respectively coordination, middle agency and support. The coordination component
carries out the tasks of standardizing the behavior of other components, in addition to
applying analytical procedures to help the system adapt to its environment. Actors
joining the apex to the operational core make up the middle agency. The support
component assists the operational core for non-operational services that are outside
the basic flow of operational tasks and procedures.

Figure 2 specifies the structure-in-5 style in Telos. Telos is a language intended for
modeling requirements, design, implementation and design decisions for software
systems [17]. It provides features to describe metaconcepts that can be used to
represent the knowledge relevant to a variety of worlds – subject, usage, system,

development worlds - related to a software system. Our styles are formulated as Telos
metaclasses, primarily based on the aggregation semantics for Telos presented in [15].

The structure-in-5 style is then a metaclass - StructureIn5MetaClass -
aggregation of five (part) metaclasses: ApexMetaClass, CoordinationMetaClass,
MiddleAgencyMetaClass, SupportMetaClass and OperationalCoreMetaClass, one
for each actor composing the structure-in 5 style depicted in Figure 1. Each of these
five components exclusively belongs (exclusivePart) to the composite
(StructureIn5MetaClass) and their existence depend (dependentPart) on the existence
of the composite. A structure-in-5 specific to an application domain will be defined as
a Telos class, instance of StructureIn5MetaClass (See Section 4). Similarly each
structure-in-5 component specific to a particular application domain will be defined as
a class, instance of one of the five StructureIn5Metaclass components.

TELL CLASS StructureIn5MetaClass

IN Class WITH /*Class is here used as a MetaMetaClass*/
attribute

 name: String
part, exclusivePart, dependentPart

 ApexMetaClass: Class
CoordinationMetaClass: Class

 MiddleAgencyMetaClass: Class
SupportMetaClass: Class

 OperationalCoreMetaClass: Class
END StructureIn5MetaClass

Fig. 2. Structure-in-5 in Telos

Figure 3 formulates in Telos one of these five structure-in-5 components: the
coordination actor. Dependencies are described following Telos specifications for i*
models [26].

TELL CLASS CoordinationMetaclass
 IN Class WITH /*Class is here used as a MetaMetaClass*/
attribute name: String
taskDepended
 s:StandardizeTask
 WITH depender OperationalCoreMetaClass: Class
goalDepended

 c:ControlGoal
 WITH depender MiddleAgencyMetaClass: Class

 softgoalDepender
 s:StrategicManagementSoftGoal

 WITH dependee ApexMetaClass: Class
END CoordinationMetaclass
Fig. 3. Structure-in-5 coordination actor in Telos

The coordination actor is a metaclass, CoordinationMetaclass. According to
Figure 1, the coordination actor is the dependee of a task dependency StandardizeTask
and a goal dependency ControlGoal, and the depender of a softgoal dependency
StrategicManagementSoftGoal.

The flat structure has no fixed structure and no control of one actor over another
is assumed. The main advantage of this architecture is that it supports autonomy,
distribution and continuous evolution of an actor architecture. However, the key
drawback is that it requires an increased amount of reasoning and communication by
each participating actor.

The pyramid style is the well-known hierarchical authority structure exercised
within organizational boundaries. Actors at the lower levels depend on actors of the
higher levels. The crucial mechanism is direct supervision from the apex. Managers
and supervisors are then only intermediate actors routing strategic decisions and
authority from the apex to the operating level. They can coordinate behaviors or take
decisions by their own but only at a local level. This style can be applied when
deploying simple distributed systems.

Moreover, this style encourages dynamicity since coordination and decision
mechanisms are direct, not complex and immediately identifiable. Evolvability and
modifiability can thus be implemented in terms of this style at low costs. However, it
is not suitable for huge distributed systems like multi-agent systems requiring many
kinds of agents. Even tough, it can be used by these systems to manage and resolve
crisis situations. For instance, a complex multi-agent system faced with a non-
authorized intrusion from external and non trustable agents could dynamically, for a
short or long time, decide to migrate itself into a pyramid organization to be able to
resolve the security problem in a more efficient way.

Delegation
Authority

Partner_1
Principal

Principal
Partner_n

Ressource
Exchange

Principal
Partner_2

Partner_1
Secondary Secondary

Partner_n

Knowledge
Sharing

Management
Joint

Support

Coordination
Added
Value

Contractual
Agreement

Supplying
Services

Fig. 4. Joint Venture

The joint venture style (Figure 4) involves agreement between two or more
principal partners to obtain the benefits of larger scale, partial investment and lower
maintenance costs. Through the delegation of authority to a specific joint management
actor that coordinates tasks and operations and manages sharing of knowledge and
resources they pursue joint objectives and common purpose.

Each principal partner can manage and control itself on a local dimension and
interact directly with other principal partners to exchange, provide and receive

services, data and knowledge. However, the strategic operation and coordination of
such a system and its partner actors on a global dimension are only ensured by the
joint management actor. Outside the joint venture, secondary partners supply services
or support tasks for the organization core.

The takeover style involves the total delegation of authority and management
from two or more partners to a single collective takeover actor. It is similar in many
ways to the joint venture style. The major and crucial difference is that while in a joint
venture identities and autonomies of the separate units are preserved, the takeover
absorbs these critical units in the sense that no direct relationships, dependencies or
communications are tolerated except those involving the takeover.

The arm’s-length style implies agreements between independent and competitive
but partner actors. Partners keep their autonomy and independence but act and put
their resources and knowledge together to accomplish precise common goals. No
authority is delegated or lost from a collaborator to another.

The bidding style (Figure 5) involves competitivity mechanisms and actors
behave as if they were taking part in an auction. The auctioneer actor runs the show,
advertises the auction issued by the auction issuer, receives bids from bidder actors
and ensure communication and feedback with the auction issuer.

The auctioneer might be a system actor that merely organizes and operates the
auction and its mechanisms. It can also be one of the bidders (for example selling an
item which all other bidders are interested in buying). The auction issuer is
responsible for issuing the bidding.

Start Bid
at the lowest

price

Run
Auction

Bidder_1 Bidder_2

Bid Higher No Higher
Bid

Bidder_n

Auctioneer

Issuer

Best

Bid
PossibleService/

Product

Fig. 5. Bidding

The hierarchical contracting style (Figure 6) identifies coordinating mechanisms
that combine arm’s-length agreement features with aspects associated with pyramidal
authority. Coordination mechanisms developed to manage arm’s-length (independent)
characteristics involve a variety of negotiators, mediators and observers at different
levels handling conditional clauses to monitor and manage possible contingencies,
negotiate and resolve conflicts and finally deliberate and take decisions. Hierarchical
relationships, from the executive apex to the arm’s-length contractors (top to bottom)

restrict autonomy and underlie a cooperative venture between the contracting parties.
Such dual and admittedly complex contracting arrangements can be used to manage
conditions of complexity and uncertainty deployed in high-cost-high-gain (high-risk)
applications.

Controller

Negociator Deliberator

Routing Brokering

Observer

Executive

Mediator

Conflict
Solving

Contractor_1 Contractor_2 Contractor_3 Contractor_n

Authority
Strategic
Decisions

Coordinate

Monitoring Matching

Raw
Data

Fig. 6. Hierarchical Contracting

The co-optation style (Figure 7) involves the incorporation of representatives of
external systems into the decision-making or advisory structure and behavior of an
initiating organization.

Knowledge
Sharing

Support

Cooptated_1

Contractor_1 Contractor_n

Services
Foreign

Provides
Assets Cooptated_2 Cooptated_n

Ressource
External

Fig. 7. Cooptation

By co-opting representatives of external systems, organizations are, in effect,
trading confidentiality and authority for resource, knowledge assets and support. The
initiating system, and its local contractors, has to come to terms with what is doing on

its behalf; and each co-optated actor has to reconcile and adjust his own views with
the policy of the system he has to communicate.

The vertical integration style merges, backward or forward, one or more system
actors engaged in related tasks but at different stages of a production process. A
merger synchronizes and controls interactions between each of the participants that
can be considered intermediate workshops. Vertical integrations take place between
exchange partners, actors symbiotically related. Figure 8 presents a vertical
integration style for the domain of goods distribution. Provider is expected to supply
quality products, Wholesaler is responsible for ensuring their massive exposure, while
Retailer takes care of the direct delivery to the Consumers.

Wholesaler

Provider

Consumer

Organizer

Products

Market
Evaluation

Supply

Retailer

Acquire

Detect
Products

Products

Products Products

Products
Deliver

Massive
Supply

Directives

Direct Access

Quality Wide Access
to Market

to Consumer

Interest in

Fig. 8. Vertical Integration

3 Evaluating Architecture

The organizational styles defined in Section 2 can be evaluated and compared using
the following software quality attributes identified for multi-agent architectures:

 1 - Predictability [24]. Agents have a high degree of autonomy in the way that they
undertake action and communication in their domains. It can be then difficult to

predict individual characteristics as part of determining the behavior of a distributed
and open system at large.
2 - Security. Agents are often able to identify their own data sources and they may
undertake additional actions based on these sources [24]. Protocols and strategies for
verifying authenticity for these data sources by individual agents are an important
concern in the evaluation of overall system quality since, in addition to possibly
misleading information acquired by agents, there is the danger of hostile external
entities spoofing the system to acquire information accorded to trusted domain agents.
3 - Adaptability. Agents may be required to adapt to modifications in their
environment. They may include changes to the component’s communication protocol
or possibly the dynamic introduction of a new kind of agent previously unknown or
the manipulations of existing agents.
Coordinability. Agents are not particularly useful unless they are able to coordinate
with other agents. This can be realized in two ways:

4 - Cooperativity. They must be able to coordinate with other entities to achieve a
common purpose.

5 - Competitivity. The success of one agent implies the failure of others.
6 - Availability. Components that offer services to other agents must implicitly or
explicitly guard against the interruption of offered services. Availability must actually
be considered a sub-attribute of security [3]. Nevertheless, we deal with it as a top-
level quality attribute due to its increasing importance in multi-agent system design.
7 - Integrity. A failure of one agent does not necessarily imply a failure of the whole
system. The system then needs to check the completeness and the accuracy of data,
information and knowledge transactions and flows. To prevent system failure,
different agents can have similar or replicated capabilities and refer to more than one
agent for a specific behavior.

 1 2 3 4 5 6 7 8 9

Flat -- -- - + + ++ -
Struct-5 + + + - + ++ ++ ++

Pyramid ++ ++ + ++ - + -- -
Joint-Vent + + ++ + - ++ + ++

Bid -- -- ++ - ++ - -- ++
Takeover ++ ++ - ++ -- + + +

Arm’s-Lgth - -- + - ++ -- ++ +
Hierch Ctr + + + + + +
Vert Integr + + - + - + -- -- --

Coopt - - ++ ++ + -- - --

Table 1. Correlation Catalogue

8 - Modularity [23] increases efficiency of task execution, reduces communication
overhead and usually enables high flexibility. On the other hand, it implies constraints
on inter-module communication.

9 - Aggregability. Some agents are parts of other components. They surrender to the
control of the composite entity. This control results in efficient tasks execution and
low communication overhead, however prevents the system to benefit from
flexibility.

Table 1 summarizes the correlation catalogue for the organizational patterns and
top-level quality attributes we have considered. Following notations used by the NFR
(non functional requirements) framework [3], +, ++, -, --, respectively model
partial/positive, sufficient/positive, partial/negative and sufficient/negative
contributions.

4 Example

To motivate our organizational styles, we consider an application domain where
distributed and open architectures are increasingly important: mobile robots.

The mobile robot example presented in [22] studies notably the layered
architecture (Figure 9) implemented in the Terregator and Neptune office delivery
robots [20].

Supervisor

Global Planning

Control

Navigation

Real-World Modeling

Sensor Integration

Sensor Interpretation

Robot Control

Environment

Fig. 9. Classical Mobile Robot Layered Architecture

According to [22] at the lowest level, reside the robot control routines (motors,
joints,...). Levels 2 and 3 deal with the input from the real world. They perform sensor
interpretation (the analysis of the data from one sensor) and sensor integration (the
combined analysis of different sensor inputs). Level 4 is concerned with maintaining
the robot's model of the world. Level 5 manages the navigation of the robot. The next
two levels, 6 and 7, schedule and plan the robot's actions. Dealing with problems and

replanning is also part of the level-7 responsibilities. The top level provides the user
interface and overall supervisory functions.

The following software quality attributes are relevant for the robot's architecture
[22]: Cooperativity, Predictability, Adaptability, Integrity. Let consider, for instance,
Cooperativity and Predictability.

Cooperativity: the robot has to coordinate the actions it undertakes to achieve its
designated objective with the reactions forced on it by the environment (e.g., avoid an
obstacle). The idealized layered architecture (Figure 9) implemented on some mobile
robots does not really fit the actual data and control-flow patterns. The layered
architecture style suggests that services and requests are passed between adjacent
layers. However, data and information exchange is actually not always straight-
forward. Commands and transactions may often need to skip intermediate layers to
establish direct communication. A structure-in-5 proposes a more distributed
architecture allowing more direct interactions between component.

Another recognized problem is that the layers do not separate the data hierarchy
(sensor control, interpreted results, world model) from the control hierarchy (motor
control, navigation, scheduling, planning and user-level control). Again the structure-
in-5 could better differentiate the data hierarchy - implemented by the operational
core, and support components - from the control structure – implemented by the
operational core, middle agency and strategic apex as will be described in Figure 10.

Planning/
Scheduling

Coordination

Control
Routines

User-level
Control

Navigation

Feedback

Real world
Sensor

World

World Inputs
Handle Real

Real World
Interpretor

DirectPilot

Real-time
Navigation

Adjustments

Human
Control

Model

Synchronize

Assignation
Mission

Mission
Configuration

Parameters

Fig. 10. A Structure-in-5 Mobile Robot Architecture

Adaptability: application development for mobile robots frequently requires

customization, experimentation and dynamic reconfiguration. Moreover, changes in
tasks may require regular modification. In the layered architecture, the
interdependencies between layers prevent the addition of new components or deletion
of existing ones. The structure-in-5 style separates independently each typical
component of an organizational structure but a joint venture isolating components and

allowing autonomous and dynamic manipulation should be a better candidate. Partner
components, except the joint manager, can be added or deleted in a more flexible way.

Figure 10 depicts a mobile robot architecture following the structure-in-5 style from
Figure 1. The control routines component is the operational core managing the robot
motors, joints, etc. Planning/Scheduling is the coordination component scheduling
and planning the robot’s actions. The real world interpreter is the support component
composed of two sub-components: Real world sensor accepts the raw input from
multiple sensors and integrates it into a coherent interpretation while World Model is
concerned with maintaining the robot’s model of the world and monitoring the
environment for landmarks. Navigation is the middle agency component, the central
intermediate module managing the navigation of the robot. Finally, the user-level
control is the human-oriented strategic apex providing the user interface and overall
supervisory functions.

Figure 11 formulates the media robot structure-in-5 in Telos. MobileRobotClass is a
Telos class, instance of the StructureIn5Metaclass specified in Figure 2. This
aggregation is composed of five exclusive and dependent parts ControlRoutinesClass,
RealWorldInterpreterClass, NavigationClass, PlanningClass and UserLevelControl-
Class, each of them is instance of one metaclass, component of StructureIn-
5MetaClass.

TELL CLASS MobileRobotClass

IN StructureIn5MetaClass WITH
attribute

 name: String
part, exclusivePart, dependentPart

 ControlRoutinesClass: OperationalCoreMetaClass
 RealWorldInterpreter: SupportMetaClass
 NavigationClass: MiddleAgencyMetaClass
 PlanningClass: CoordinationMetaClass
 UserLevelControl: ApexMetaClass

END MobileRobotClass

Fig. 11. Mobile Robot Structure-in-5 Architecture in Telos

5 Related Work

Other research work on multi-agent systems offers contributions on using
organization concepts such as agent (or agency), group, role, goals, tasks,
relationships (or dependencies) to model and design system architectures.

For instance, Aalaadin [6] presents a model based on two level of abstraction. The
concrete level includes concepts such as agent, group and role which are used to
describe the actual multi-agent system. The methodological level defines all possible
roles, valid interactions, and structures of groups and organizations. The model
describes an organization in terms of its structure, and independently of the way its
agents actually behave. Different types of organizational behavioral requirement

patterns have been defined and formalized using concepts such as groups and roles
within groups and (inter-group and intra-group) role interactions.

In our work the concepts Aalaadin uses in the concrete level are contained in the
concept of actor. An actor can be a single or a composite agent, a position covered by
an agent, and a role covered by one or more agents. Unlike ours, Aalaadin’s proposal
does not include goals in the description of an organization. Moreover, in Aalaadin’s
work these descriptions include details (e.g., interaction languages and protocols)
which we deal with at a later stage of design, typically called detailed design.

On a different point of comparison, Aalaadin uses rules, structures and patterns to
capture respectively how the organization is expected to work, which kind of structure
fits given requirements, and whether reuse of patterns is possible. In our framework,
some rules are captured by social dependencies in terms of which one defines the
obligations of actors towards other actors. Moreover, other rules can be captured
during detailed design instead of earlier phases, i.e., early and late requirements, or
architectural design (see [1]).

5 Conclusions

Designers rely on styles, patterns, or idioms, to describe the architectures of their
choice. We propose that MAS can be conceived as organizations of agents that
interact to achieve common goals. This paper proposes a catalogue of architectural
styles designing MAS architectures as organizational architectures, i.e, at a macro-
and micro-level. The proposed styles adopt concepts from organization theory and
strategic alliances literature. The paper also includes an evaluation of software
qualities that are relevant to these styles. A standard case study (the mobile robot case
control) illustrates and compares them with respect to conventional architecture.

Future research directions include formalizing precisely the organizational
structures that have been identified, as well as the sense in which a particular model is
an instance of such a style and pattern. We also propose to relate them to social or
agent patterns (e.g, the broker, matchmaker, embassy, facilitator, …) and lower-level
architectural components [21] involving (software) components, ports, connectors,
interfaces, libraries and configurations [9]. We are still working on contrasting our
structures to conventional styles [22] and patterns [10] proposed in the software
engineering literature. To this end, as mentioned in the paper, we are defining
algorithms to propagate evidences of satisfaction and denial of each conventional or
social structure with respect to a set of non-functional requirements.

References

[1] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, Reading, Addison-
Wesley, 1998.

[2] J. Castro, M. Kolp, and J. Mylopoulos. “A Requirements-Driven Development
Methodology”, In Proc. of the 13th Int. Conf. on Advanced Information Systems
Engineering (CAiSE’01), Interlaken, Switzerland, June 2001, pp. 108-123.

[3] L. K. Chung, B. A. Nixon, E. Yu and J. Mylopoulos. Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

[4] Coburn, M., Jack Intelligent Agents: User Guide version 2.0, AOS Pty Ltd, 2000.
[5] A. Dardenne, A. van Lamsweerde, and S. Fickas. “Goal–directed Requirements

Acquisition”, Science of Computer Programming, 20, 1993, pp. 3-50.
[6] J. Ferber and O. Gutknecht.“A meta-model for the analysis and design of organizations in

multi-agent systems”. In Proc. of the 3rd Int. Conf. on Multi-Agent Systems, June, 1998.
[7] The Foundation for Intelligent Physical Agents, http://www.fipa.org, 2001.
[8] M.S. Fox. “An organizational view of distributed systems”. In IEEE Transactions on

Systems, Man, and Cybernetics, 11(1):70-80, January 1981.
[9] A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos. “Information systems as social

structures”. In Proc. of the 2nd Int. Conf. on Formal Ontologies for Information Systems
(FOIS’01), Ogunquit, USA, October 2001.

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley, 1995.

[11] D. Garlan and M. Shaw. “An Introduction to Software Architectures”, in Advances in
Software Engineering and Knowledge Engineering, volume I, World Scientific, 1993.

[12] P. Giorgini, A. Perini, J. Mylopoulos, F. Giunchiglia and P. Bresciani. “Agent-Oriented
Software Development: A Case Study”. In Proc. of the 13th Int. Conference on Software
Engineering & Knowledge Engineering (SEKE01), Buenos Aires, Argentina, June 2001.

[13] B. Gomes-Casseres. The alliance revolution : the new shape of business rivalry,
Cambridge, Mass., Harvard University Press, 1996.

[14] H. Mintzberg. Structure in fives : designing effective organizations, Englewood Cliffs,
N.J., Prentice-Hall, 1992.

[15] R. Motschnig-Pitrik. “The Semantics of PartsVersus Aggregates in Data/Knowledge
Modeling”, In Proc. of the 5th Int. Conference on Advanced Information Systems
Engineering (CAiSE’93), Paris, June 1993, pp 352-372.

[16] T.W. Malone. “Organizing Information Processing Systems: Parallels Between Human
Organizations and Computer Systems”. In W. Zachry, S. Robertson and J. Black, eds.
Cognition, Cooperation and Computation, Ablex, 1988.

[17] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis. “Telos: Representing Knowledge
About Information Systems” in ACM Trans. Info. Sys., 8 (4), Oct. 1990, pp. 325 – 362.

[18] W. Richard Scott. Organizations : rational, natural, and open systems, Prentice Hall, 1998
[19] Odell, J., Van Dyke Parunak, H. and Bauer, B., “Extending UML for Agents”,

Proceedings of the Agent-Oriented Information System Workshop at the 17th National
Conference on Artificial Intelligence, pp. 3-17, Austin, USA, July 2000.

[20] R. Simmons, R. Goodwin, K. Haigh, S. Koenig, and J. O'Sullivan. “A modular architecture
for office delivery robots”. In Proc. Of the 1st Int. Conf. on Autonomous Agents (Agents
’97), Marina del Rey. CA, Feb 1997, pp.245 - 252.

[21] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and G. Zelesnik. “Abstractions for
software architecture and tools to support them.” In IEEE Transactions on Software
Engineering, 21(4), pp. 314 - 335, 1995.

[22] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging Discipline,
Upper Saddle River, N.J., Prentice Hall, 1996.

[23] O. Shehory. Architectural Properties of Multi-Agent Systems, Technical report CMU-RI-
TR-98-28, Carnegie Mellon University, 1998.

[24] S. G. Woods and M. Barbacci. Architectural Evaluation of Collaborative Agent-Based
Systems. Technical Report, CMU/SEI-99-TR-025, Carnegie Mellon University, USA, 1999.

[25] M.Y. Yoshino and U. Srinivasa Rangan. Strategic alliances: an entrepreneurial approach
to globalization, Boston, Mass., Harvard Business School Press, 1995.

[26] E. Yu. Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada, 1995.

