
Model Checking

Early Requirements Specifications

in Tropos

Ariel Fuxman and John Mylopoulos (Univ. of Toronto)

Marco Pistore and Paolo Traverso (IRST, Italy)

RE’01 — Toronto, 30 August 2001



Motivations

• Early Requirements Specification is an important phase in software

development

• Formal Methods provide very powerful specification and early-debugging

techniques in the later phases of software development

• Formal Methods are difficult to apply in Early Requirements:

– the typical approach of Formal Methods (validate an implementation

against the requirements) does not apply;

– Formal Methods require a detailed description of the behavior of the

system;

– the concepts of Formal Methods are not appropriate for Early

Requirements.

⇒ Our aim is to provide a framework for the effective application

of Formal Methods in the Early Requirements phase.



Formal Methods in Early Requirements

Formal Methods in Early Requirements cannot be used to prove the

correctness of the specification.

However they can:

• show misunderstanding and omissions in the requirements specification

that might not be evident in an informal setting

• assist the elicitation of the requirements by helping the interactions with

the stakeholders

• add expressive power to the requirements specification formalism



The approach

The approach we are proposing builds on:

• i*, a framework for modeling social settings, based on the notions of

actors, goals, dependencies...

• KAOS, a goal-oriented requirements framework that provides a rich

temporal specification language

• NuSMV, a (symbolic) model checker initially developed for the verification

of hardware systems



The approach

We have achieved the following results:

• definition of Formal Tropos, that integrates the primitive concepts of i*

with a temporal specification language inspired by KAOS

• extension of existing model checking verification techniques in order to

allow for the mechanized analysis of Formal Tropos specifications

• implementation of a prototype tool, called T-Tool, that supports the given

approach, and that uses NuSMV as verification engine

The original contributions:

• w.r.t. i*, a formal specification language, the possibility of applying formal

methods techniques

• w.r.t. KAOS, a different ontology based on i*, different formal techniques

(model checking rather than theorem proving)

• w.r.t. NuSMV, a new application domain, and a different specification

language



Insurance Company case study in i*

Appraiser

KeepJobAppraise

Premium

Attract Cust

KeepClient

BodyShop

Customer CoverDamages
InsuranceCo

RepairCar

BeInsured

Damages



The diagram does not show that...

Appraiser

KeepJobAppraise

Premium

Attract Cust

KeepClient

BodyShop

Customer CoverDamages
InsuranceCo

RepairCar

BeInsured

Damages

• there are different instances of actors, goals, dependencies, and relations

among these instances

• strategic dependencies have a temporal evolution (they arise, they are

fulfilled...)



A textual notation for i*

Actor InsuranceCo

Actor BodyShop

Actor Customer

Goal BeInsured

Dependency CoverDamages

Type goal

Depender Customer

Dependee InsuranceCo

Dependency RepairCar

Type goal

Depender Customer

Dependee BodyShop



Adding the “class” layer

Entity Car

Attribute runsOK: boolean

Entity Damage

Attribute constant car: Car

Actor InsuranceCo

Actor BodyShop

Actor Customer

Goal BeInsured

Dependency CoverDamages

(Type/Depender/Dependee)

Attribute constant dam: Damage

Dependency RepairCar

(Type/Depender/Dependee)

Attribute constant dam: Damage



Modeling the temporal aspects

Formal Tropos places special emphasis in modeling the “strategic” aspects of

the evolution of the dependencies.

The focus is on the two central moments in the life of dependencies and

entities: creation and fulfillment.

Formal Tropos allows the designer:

• to specify different modalities for the fulfillment of the dependencies (e.g.:

is it a maintain or an achieve goal?)

• to specify temporal constraints on the creation and fulfillment of

dependencies and goals.



Goal modalities...

Actor Customer

Goal BeInsured

Mode maintain

Dependency CoverDamages

Type goal

Mode achieve

Depender Customer

Dependee InsuranceCo

Dependency RepairCar

Type goal

Mode achieve

Depender Customer

Dependee BodyShop



... and behavioral properties

Dependency CoverDamages

Type goal

Mode achieve

Depender Customer

Dependee InsuranceCo

Attribute constant dam: Damage

Creation condition ¬dam.car.runsOK

Dependency RepairCar

Type goal

Mode achieve

Depender Customer

Dependee BodyShop

Attribute constant dam: Damage

Creation condition ¬dam.car.runsOK

Fulfillment condition dam.car.runsOK



Constraint properties

Constraint properties determine the possible evolutions of the objects in the

specification.

Three kinds of properties:

• creation properties

• invariants

• fulfillment properties

Creation and fulfillment properties may express:

• necessary conditions (for creation, fulfillment. . . )

• sufficient conditions, or triggers

• necessary and sufficient conditions, or definitions



Temporal formulas

Properties are specified with formulas given in a first-order linear-time

temporal logic.

• Special predicates “JustCreated(obj)”, “Fulfilled(dep)” identify particular

moments in the life of the objects

• Past and future temporal operators can be used in the formulas:

– �φ (always in the future), ♦φ (eventually) ...

– �φ (always in the past), �φ (sometimes in the past) ...

We aim to minimize the use of temporal operators. For instance,

• maintain hides a �.

• achieve hides a ♦.



Formal analysis

Formal Tropos allows for the following kinds of formal analysis:

• consistency check: “the specification admits valid scenarios”

• assertion validation: “all scenarios for the system respect certain

assertion properties”

• possibility check: “there is some scenario for the system that respects

certain possibility properties”

• animation: allows the user to interactively explore valid scenarios for the

system

– gives immediate feedback on the effects of the constraints

– makes it possible to catch trivial errors

– is an effective way of communicating with the stakeholder



Assertion validation

An assertion:

• describes expected conditions for all the valid scenarios;

• is used to guarantee that the specification does not allow for unwanted

scenarios.

Assertions are specified in Formal Tropos with the same syntax as constraints,

but they have a different semantics.

Example: “the requirements should guarantee that the insurance company

does not cover damages for which there is no proof (e.g., an invoice) that the

car was repaired”

Dependency CoverDamages

Fulfillment assertion condition

dam.car.runsOK → ∃rep : RepairCar (rep.dam = dam ∧ Fulfilled(rep))



A counterexample...

Outcome: The tool returns a counterexample scenario:

t0 t1 t2 t3

true
false

fulfilled 
created 

fulfilled 
created 

fulfilled 
created coverDamages(dam2)

coverDamages(dam1)

repairCar(dam1)

car.runsOk

Possible fix: add to Dependency CoverDamages the following constraint:

Dependency CoverDamages

Fulfillment condition ∃rep : RepairCar(rep.dam = dam ∧ Fulfilled(rep))



Possibility check

A possibility:

• describes expected, valid scenarios of the specification;

• is used to guarantee that the specification does not rule out any wanted

execution of the system.

Example: “when cars are so damaged that they cannot be repaired, the

insurance company is still responsible for covering damages”

Dependency CoverDamages

Creation possibility condition

♦Fulfilled(cov) ∧ �¬cov.dam.car.runsOK



Possibility check

Outcome: The possibility check fails. There is no suitable example scenario.

Possible fix: modify the constraint for CoverDamages as follows:

Dependency CoverDamages

Fulfillment condition

∃rep : RepairCar(rep.dam = dam ∧ Fulfilled(rep))∨�¬dam.car.runsOK

Outcome: the possibility is satisfied by the following trace:

t0 t1

true
false

coverDamages

repairCar

car.runsOk

fulfilled 

fulfilled 
created 

created 



The technical details

Our approach consists of the following 3 steps:

1. The analyst writes a Formal Tropos specification.

2. T-Tool automatically translates the specification into an Intermediate

Language.

3. (An enhanced version of) NuSMV performs the formal analysis on the

Intermediate Language specification.

The Intermediate Language is:

• small core language with a clean semantics

• independent from the specificities of Formal Tropos (the Intermediate

Language may be applied to other requirements languages)

• independent from any particular analysis technique (model checking, LTL

satisfiability, theorem proving)

• (more details in the paper...)



Conclusions

We have defined:

• Formal Tropos, a formal language for specifying early requirements

• a methodology to extend the requirements with assertions on expected

behaviors of the system

• a prototype tool (based on NuSMV) to support the proposed approach

Outcomes: the approach is

• feasible: we obtained feedback from the formal analysis even when dealing

with just a few instances

• useful: we were able to identify ambiguities and problems in the informal

requirements

• heavy: it is difficult to write LTL specifications



Future work

• Extend the scope of the approach

– later development phases

– goal decomposition

– “agent-oriented” flavor

• Enhance the tool

– better interaction with the user

– improve the animation techniques

– develop specifically tailored verification algorithms

• “Real” case studies


