A Knowledge Level Software Engineering Methodology for
Agent Oriented Programming

Paolo Bresciani and
Anna Perini
ITC-Irst

Paolo Giorgini and

Fausto Giunchiglia
Department of Computer

John Mylopoulos
Department of Computer
Science

Via Sommarive, 18 Science University of Toronto
[-38050 Trento-Povo, Italy University of Trento M5S 3H5, Toronto, Ontario,
via Inama, 5 Canada

bresciani@irst.itc.it
perini@irst.itc.it

[-38100 Trento, Italy

jm@toronto.edu

pgiorgini@cs.unitn.it
fausto@cs.unitn.it

ABSTRACT

Our goal in this paper is to introduce and motivate a method-
ology, called Tropos, for building agent oriented software sys-
tems. Tropos is based on two key ideas. First, the notion of
agent and all the related mentalistic notions (for instance:
beliefs, goals, actions and plans) are used in all phases of
software development, from the early analysis down to the
actual implementation. Second, Tropos covers also the very
early phases of requirements analysis, thus allowing for a
deeper understanding of the environment where the software
must operate, and of the kind of interactions that should oc-
cur between software and human agents. The methodology
is illustrated with the help of a case study.

1. INTRODUCTION

Agent oriented programming (AOP, from now on) is most
often motivated by the need of open architectures that con-
tinuously change and evolve to accommodate new compo-
nents and meet new requirements. More and more, soft-
ware must operate on different platforms, without recompi-
lation, and with minimal assumptions about its operating
environment and its users. It must be robust, autonomous
and proactive. Examples of applications where AOP seems
most suited and which are most quoted in the literature are
electronic commerce, enterprise resource planning, air-traffic
control systems, personal digital assistants, or book travel
arrangements, and so on (see for instance [13]).

To qualify as an agent, a software or hardware system is
often required to have properties such as autonomy, social
ability, reactivity, proactivity. Other attributes which are
sometimes requested are mobility, veracity, rationality, and
so on. The key feature which makes it possible to implement

Permissionto male digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

Agents2001 '01 Montreal,Canada

Copyright 2001ACM 0-89791-88-6/97/05$5.00

systems with the above properties, is that, in this paradigm,
programming is done at a very abstract level, more precisely,
following Newell, at the knowledge level [10]. Thus, in AOP,
we talk of mental states, of beliefs instead of machine states,
of plans and actions instead of programs, of communication,
negotiation and social ability instead of interaction and I/O
functionalities, of goals, desires, and so on. Mental notions
provide, at least in part, the software with the extra flexi-
bility needed in order to deal with the complexity intrinsic
in the applications mentioned in the first paragraph. The
explicit representation and manipulation of goals and plans
allows, for instance, for a run-time “adjustment” of the sys-
tem behavior needed in order to cope with unforeseen cir-
cumstances, or for a more meaningful interaction with other
human and software agents."

We are defining a software development methodology, cal-
led Tropos, which should allow us to exploit all the flexibility
provided by AOP. In a nutshell, the two key and novel fea-
tures of Tropos are the following:

1. The notion of agent and all the related mentalistic no-
tions are used in all phases of software development,
from the first phases of early analysis down to the ac-
tual implementation. In particular our target imple-
mentation agent language and system is JACK [2].

2. A crucial role is given to the earlier analysis of require-
ments that precedes prescriptive requirements speci-
fication. We consider therefore much earlier phases
than the phases supported in, for instance, OOP soft-
ware engineering methodologies. One such example
are methodologies based on UML [1] where use case
analysis is proposed as an early activity, followed by
architectural design. As described in detail below, this
move is crucial in order to achieve our objectives.

Our goal in this paper is to introduce and motivate the

! AOP is often introduced as a specialization or as a “natural
development” of Object Oriented Programming (OOP), see
for instance [12, 8, 13]. In our opinion, the step from OOP to
AOP is more a paradigm shift than a simple specialization.
Also those features of AOP which can be found in OOP
languages, for instance, mobility and inheritance, take in
this context a different and more abstract meaning.

Tropos methodology, in all its phases. The presentation
is carried out with the help of a running example. The
example considered is a fragment of a substantial software
system (which, in its full implementation, is requiring var-
ious man years of work) developed for the government of
Trentino (Provincia Autonoma di Trento, or PAT). The sys-
tem (which we will call throughout the eCulture system) is a
web-based broker of cultural information and services for the
province of Trentino, including information obtained from
museums, exhibitions, and other cultural organizations and
events. It is the government’s intention that the system be
usable by a variety of users, including Trentinos and tourists
looking for things to do, or scholars and students looking for
material relevant to their studies.

The paper is structured as follows. Section 2 introduces
the five basic steps of the Tropos methodology, namely, early
requirement analysis, late requirements analysis, architec-
tural design, detailed design, and implementation, and dis-
cusses its main novel points respect to other relevant works
in AOP methodologies. The five Tropos phases are then
described, as applied in the context of the eCulture system
example, in Sections 3, 4, 5, 6 and 7. The conclusions are
presented in section 8.

This paper follows on two previous papers, [9] and [3],
which provide some motivations behind the Tropos project,
and an early glimpse of how the methodology works. With
respect to these earlier papers much more emphasis has been
put on the issue of developing knowledge level specifications.

2. THE TROPOSMETHODOLOGY :
AN OVERVIEW

Tropos is intended to support five phases of software de-
velopment:

o FEarly requirements, concerned with the understanding
of a problem by studying an existing organizational
setting; the output of this phase is an organizational
model which includes relevant actors and their respec-
tive dependencies. Actors, in the organizational set-
ting, are characterized by having goals that, in iso-
lation, they would be unable to achieve; the goals are
achievable in virtue of reciprocal means-end knowledge
and dependencies [17].

o Late requirements, where the system-to-be is described
within its operational environment, along with rele-
vant functions and qualities; this description models
the system as a (small) number of actors, which have
a number of social dependencies with other actors in
their environment;

o Architectural design, where the system’s global archi-
tecture is defined in terms of subsystems, intercon-
nected through data and control flows; in our frame-
work, subsystems are represented as actors while data
and control interconnections correspond to actor de-
pendencies; in this step we specify actor capabilities
and agents types (where agents are special kinds of
actors, see below); this phase ends up with the speci-
fication of the system’s agents;

o Detailed design, where each agent of the system archi-
tecture is defined in further detail in terms of internal

and external events, plans and beliefs and agent’s com-
munication protocols;

o Implementation, where the actual implementation of
the system is carried out, consistently with the detailed
design. We use JACK, an agent programming plat-
form, based on the BDI (Beliefs-Desires-Intentions)
agent architecture for this phase.

The idea of paying attention to the activities that precede
the specification of the initial, prescriptive requirements,
such as understanding how the intended system would meet
the organizational goals, is not new. It was first proposed
in the requirements engineering literature (see for instance
[5, 16]). In particular we adapt ideas from Eric Yu’s model
for requirements engineering, called % which offers actors,
goals and actor dependencies as primitive concepts [16].”
The main motivation underlying this earlier work was to de-
velop a richer conceptual framework for modeling processes
which involve multiple participants (both humans and com-
puters). The goal was to have a more systematic reengi-
neering of processes. One of the main advantages is that,
by doing this kind of analysis, one can also capture not only
the what or the how but also the why a piece of software is
developed. This in turn allows for a more refined analysis
of the system dependencies and, in particular, for a much
better and uniform treatment not only of the system’s func-
tional requirements but also of the non-functional require-
ments (the latter being usually very hard to deal with).

Neither Yu's work, nor, as far as we know, any of the
previous work in requirements analysis was developed with
AOP in mind. The application of these ideas to AOP, and
the decision to use mentalistic notions in all the phases of
analysis has important consequences. When writing agent
oriented specifications and programs one uses the same no-
tions and abstractions used to describe the behavior of the
human agents, and the processes involving them. The con-
ceptual gap from what the system must do, and why, and
what the users interacting with it must do, and why, is re-
duced to a minimum, thus providing (part of) the extra
flexibility needed to cope with the complexity intrinsic in
the applications mentioned in the introduction.

Indeed, the software engineering methodologies and speci-
fication languages developed in order to support OOP essen-
tially support only the phases from the architectural design
downwards. At that moment, any connection between the
intentions of the different system components (human and
software) cannot be explicitly specified. By using UML, for
instance, the software engineer can start with the use case
analysis (possibly refined by developing some activity dia-
grams) and then moves to the architectural design. Here he
can do static analysis using class diagrams, or dynamic anal-
ysis using, for instance, sequence or interaction diagrams.
The target is to get to the detail of the level of abstrac-
tion allowed by the actual classes, methods and attributes
used to implement the system. However, applying this ap-
proach and the related diagrams to AOP misses most of the
advantages coming for the fact that in AOP one writes pro-
grams at the knowledge level. It forces the programmer to
translate goals and the other mentalistic notions into soft-
ware level notions, for instance the classes, attributes and

24* has been applied in various application areas, including
requirements engineering [15], business process reengineer-
ing [19], and software modeling processes [18].

taxes well
spent

prowide

cultural
ervices

internet
nirastructurg
avallable

usable
eCulture
System

eCulture
Systemn
availahle

<:::) actor

gy

increase
internet use

!) goal
RN
Cj zoftgoal
P —_ AT
. 1d d
l_ji—B!_)—B\ /| goal dependence

depender dependum d;pendee

Figure 1: An actor diagram specifying the stake-
holders of the eCultural project and their main goal
dependencies.

methods of class diagrams. The consequent negative effect
is that the former notions must be reintroduced in the pro-
gramming phase, for instance by writing JACK code: the
programmer must program goals, beliefs, and plans, hav-
ing lost the connection with the original mentalistic notions
used in the early and late requirements. The work on AUML
[11], though relevant in that it provides a first mapping from
OOP to AOP specifications, is an example of work suffering
from this kind of problem.

In the following sections we will present the five Tropos
phases as applied in the context of the eCulture system ex-
ample.

3. EARLY REQUIREMENTS

During early requirements analysis, the requirements en-
gineer models and analyzes the intentions of stakeholders.
Following i* in Tropos, the stakeholders’ intentions are
modeled as goals which, through some form of a goal-oriented
analysis, eventually lead to the functional and non func-
tional requirements of the system-to-be. Early requirements
are assumed to involve social actors who depend on each
other for goals to be achieved, tasks to be performed, and
resources to be furnished. Tropos includes actor diagrams
for describing the network of social dependency relationships
among actors, as well as rationale diagrams for analyzing
and trying to fulfill goals through a means-ends analysis.
These primitives are formalized using intentional concepts
from AT, such as goal, belief, ability, and commitment.

An actor diagram is a graph, where each node represents
an actor, and a link between two actors indicates that one
actor depends, for some reason, on the other in order to at-
tain some goal. We call the depending actor the depender
and the actor who is depended upon the dependee. The

3In i* actor diagrams are called strategic dependency mod-
els, while rationale diagrams are called strategic rationale
models.

provide
interesting
systerms

educate
citizens]

internet
nirastructurd
availahle

Museum

| runas or
v cultural 15

by

Figure 2: A rational diagram for PAT. The rectangu-
lar box added to a dependency, models a resource
dependency.

object around which the dependency centers is called the
dependum (see, e.g., Figure 1). By depending on another
actor for a dependum, an actor is able to achieve goals that
it would otherwise be unable to achieve on its own, or not
as easily, or not as well. At the same time, the depender
becomes vulnerable. If the dependee fails to deliver the de-
pendum, the depender would be adversely affected in its
ability to achieve its goals.

In our eCulture example we can start by informally listing
(some of) the stakeholders:

e Provincia Autonoma di Trento (PAT), that is the gov-
ernment agency funding the project; their objectives
include improving public information services, increase
tourism through new information services, also encour-
aging Internet use within the province;

o Museums, that are major cultural information providers
for their respective collections; museums want govern-
ment funds to build/improve their cultural informa-
tion services, and are willing to interface their systems
with the eCulture system,;

e Visitors, who will want to access cultural information
before or during their visit to Trentino to make their
visit interesting and/or pleasant;

e (Trentino) Citizens, who want easily accessible infor-
mation, of any sort.

These stakehorders are made correspond to some actors in
an actor diagram. More precisely, notice that citizens and
visitors correspond to (human) agents while this is not the
case for the other two stakeholders. Museums and PAT
correspond, rather, to roles. An actor is an agent, a role
or a position, according to the fact that the actor is a well

identified (human or software) entity (agent), it is a function
(role) that can be played by an agent, or collects a set of roles
that are usually played by a single agent (position).

Figure 1 shows the actors involved in the eCulture project
and their respective goals. In particular, PAT is associated
with a single relevant goal: increase internet use, while
Visitor and Museum have associated softgoals, enjoy visit
and provide cultural services respectively. Softgoals are
distinguished from goals because they don’t have a formal
definition, and are amenable to a different (more qualita-
tive) kind of analysis (see [4] for a detailed description of
softgoals). Citizen wants to get cultural information and
depends on PAT to fulfill the softgoal taxes well spent, a
high level goal that motivates more specific PAT’s respon-
sibilities, namely to provide an Internet infrastructure, to
deliver on the eCulture system and make it usable too.

The early requirements analysis goes on extending the
actor diagram by incrementally adding more specific actor
dependencies which come out from a means-end analysis
of each goal. We specify this analysis using rationale dia-
grams. Figure 2 depicts a fragment of one such diagram,
obtained by exploding part of the diagram in Figure 1,
where the perspective of PAT is modeled. The diagram ap-
pears as a balloon within which PAT’s goals are analyzed
and dependencies with other actors are established. This
example is intended to illustrate how means-ends analysis is
conducted. Throughout, the idea is that goals are decom-
posed into subgoals and positive/negative contributions of
subgoals to goals are specified. Thus, in Figure 2, the goals
increase internet use and eCulture system available
are both well served by the goal build eCulture System.
The (high level) softgoal taxes well spent gets two pos-
itive contributions, which can be thought as justifications
for the selection of particular dependencies. The final re-
sult of this phase is a set of strategic dependencies among
actors, built incrementally by performing means-end anal-
ysis on each goal, until all goals have been analyzed. The
later it is added, the more specific a goal is. For instance, in
the example in Figure 2 PAT’s goal build eCulture system
is introduced last and, therefore, has no subgoals and it is
motivated by the higher level goals it fulfills.*

4. LATE REQUIREMENTS

During late requirement analysis the system-to-be (the
eCulture System in our example) is described within its op-
erating environment, along with relevant functions and qual-
ities. The system is represented as one or more actors which
have a number of dependencies with the actors in their en-
vironment. These dependencies define all functional and
non-functional requirements for the system-to-be.

Figure 3 illustrates the late requirements actor diagram
where the eCulture System actor has been introduced. The
PAT depends on it to provide eCultural services, one of
the PAT’s subgoals discovered during the means-end anal-
ysis depicted in Figure 2. The softgoal usable eCulture
system, for which Citizen depends on PAT (see Figure 1),
has been delegated by PAT to the eCulture system. More-
over, the eCulture System is expected to fulfill other PAT
softgoals such as extensible eCulture system, flexible
eCulture system, and use internet technology. The bal-

*In rationale diagrams one can also introduce tasks and re-
sources and connect them to the fulfillment of goals.

e £h provide
gCultural
SBRICES

24

usgahle
eCuliure
System

usahle
eculfure
System

exensible
eCuliure
System

availahle
eculture [
System

sermendly
eCulture
Systemn

Figure 3: A fragment of the actor diagram including
the PAT and the eCulture System actors; the rationale
diagram for the eCulture System is detailed within
the balloon.

loon in Figure 3 shows how two of the PAT’s dependums can
be further analyzed from the point of view of the eCulture
System. The goal provide eCultural services is decom-
posed (AND decomposition) into four subgoals: make re-
servation, provide info, educational services and vir-
tual visit that can be further specified along a subgoal
hierarchy. For instance, the types of information that the
system has to provide are both logistical (timetables and vis-
iting instructions for museums), and cultural (for instance,
cultural content of museums and special cultural events).

The rationale diagram includes also a softgoal analysis.
The usable eCulture system softgoal has two positive (+)
contributions from user friendly eCulture systemand a-
vailable eCulture system. This latter softgoal in turns
specifies the following three basic requirements: system por-
tability, scalability, and availability over time.

Starting from this analysis the system-to-be actor can be
decomposed into sub-actors that take on the responsibil-
ity of fulfilling one or more goals of the system. Figure 4
shows the resulting eCulture System actor diagram: the
eCulture System depends on the Info Broker to provide
info, on the Educational Broker to provide educational
services, on the Reservation Broker to make reserva-
tion, on the Virtual Visit Broker to provide virtual
visit, and on the System Manager to provide interface.
Furthermore each sub-actor can be further decomposed in
sub-actors responsible for the fulfillment of one or more sub-
goals.

At this point of the analysis we can look into the actor di-
agram for a direct dependency between the Citizen, which
plays the role of system user, and the eCulture System. In
other words we can now see how the former Citizen’s goal
get cultural information can be fulfilled by the current
eCulture System. The rational diagram of this goal depen-
dency, see Figure 5, provides a sort of use-case analysis [7].

eulture
Systermn

educations
59W|CES)@SEN31|09 Glr‘tual VISD

provide
interface

Systam
Manager

System
interfacing |nter?acmg

System
Interface
Manager

Figure 4: The system actor diagram. Sub-actors

decomposition for the eCulture System.

5. ARCHITECTURAL DESIGN

The architectural design phase consists of three steps:
1. refining the system actor diagram

2. identifying capabilities and

3. assigning them to agents.

In the first step the system actor diagram is extended
according to design patterns [6] that provide solutions to
heterogeneous agents communication and to non-functional
requirements.® Figure 6 shows the extended actor diagram
with respect to the Info Broker.® The User Interface
Manager and the Sources Interface Manager are responsi-
ble for interfacing the system to the external actors Citizen
and Museum respectively.

The second step consists in capturing actor capabilities
from the analysis of the tasks that actors and sub-actors
will carry on in order to fulfill functional requirements (hard
goals). A capability is the set of events, plans and beliefs
necessary for the fulfillment of actor goals and tasks. Fig-
ure 7 shows an example for the Info Broker actor anal-
ysis, with respect to the goal of searching information by
topic area. The Info Broker is decomposed into three sub-
actors: the Area Classifier, the Results Synthesizer,
and the Info Searcher. The Area Classifier is respon-
sible for the classification of the information provided by
the user. It depends on the User Interface Manager for
interfacing to the users. The Info Searcher depends on

5In this step design patterns for agent systems are mapped
to actor diagrams.

5For the sake of readability we do not show all the actors
needed to take into account other non-functional require-
ments, e.g., system extensibility and user friendliness.

A -

Speuhecatm
form

[
SRAr
ar

-

=
e e m—-—t

query result

| infa about

»
- e s0urce @

Figure 5: Rationale diagram for the goal get
cultural information. Hexagonal shapes model
tasks. Task decomposition links model task-subtask
relationships. Goal-task links are a type of means-
ends links.

the Area Classifier to have information about the the-
matic area that the user is interested in and on the Sources
Interface Manager for interfacing to the sources (muse-
ums). The Results Synthesizer depends on the Info Sear-
cher for the information concerning the pending query and
on the Museum to have the query results.

Capabilities can be easily identified by analyzing the di-
agram in Figure 7. In particular each dependency relation-
ship can give place to one or more capabilities triggered by
external events. Table 1 lists the capabilities associated to
the extended actor diagram of Figure 7. They are listed
with respect to the system-to-be actors, and then numbered
in order to eliminate possible copies whereas.

The last step of the architectural design consists in defin-
ing a set of agent types and in assigning to each agent one
or more different capabilities (agent assignment). Table 2
reports the agents assignment with respect to the capabil-
ities listed in Table 1. The capabilities concern exclusively
the task search by area assigned to the Info Broker. Of
course, many other capabilities and agent types are needed
in case we consider all the goals and tasks associated to the
complete extended actor diagram.

In general, the agents assignment is not unique and de-
pends on the designer. The number of agents and the ca-
pabilities assigned to each of them are choices driven by
the analysis of the extend actor diagram and by the way
in which the designer thinks the system in term of agents.
Some of the activities done in architectural design can be
compared to what Wooldridge et al. propose to do within
the Gaia methodology [14]. For instance what we do in ac-
tor diagram refinement can be compared to “role modeling”
in Gaia. We instead consider also non-functional require-
ments. Similarly, capability analysis can be compared to
“protocols modeling”, even if in Gaia only external events
are considered.

pefiitatio
form

. _area.
informatiorg

interfacing to
the users

nterfacing to
the eCultural
System

ey results

Muselm

interfacing to
the sources

Figure 7: Actor diagram for capability analysis, Info Broker.

]
interfacing toyfinterfacing toy, fMterfacing t
the eCultural
the usere)@e soudrces System

2
nterfacing td
the eCultural

Systam

Figure 6: Extended actor diagram, Info Broker.

6. DETAILED DESIGN

The detailed design phase aims at specifying agent ca-
pabilities and interactions. The specification of capabilities
amounts to modeling external and internal events that trig-
ger plans and the beliefs involved in agent reasoning. Prac-
tical approaches to this step are often used.” In the paper
we adapt a subset of the AUML diagrams proposed in [11].
In particular:

"For instance the Data-Event-Plan diagram used by JACK
developer. Ralph Ronnquist, personal communication.

1. capability diagrams. The AUML activity diagram al-
lows to model a capability (or a set of correlated ca-
pabilities), from the point of view of a specific actor.
External events set up the starting state of a capa-
bility diagram, activity nodes model plans, transition
arcs model events, beliefs are modeled as objects. For
instance Figure 8 depicts the capability diagram of
the query results capability of the User Interface
Agent.

2. plan diagrams. Each plan node of a capability diagram
can be further specified by AUML action diagrams.

3. agent interaction diagrams. Here AUML sequence dia-
grams can be exploited. In AUML sequence diagrams,
agents corresponds to objects, whose life-line is inde-
pendent from the specific interaction to be modeled
(in UML an object can be created or destroyed during
the interaction); communication acts between agents
correspond to asynchronous message arcs. It can be
shown that sequence diagrams modeling Agent Inter-
action Protocols, proposed by [11], can be straightfor-
wardly applied to our example.

7. IMPLEMENT ATION USING A BDI AR-
CHITECTURE

The BDI platform chosen for the implementation is JACK
Intelligent Agents, an agent-oriented development environ-
ment built on top and fully integrated with Java. Agents in

=

Actor Name Capability

Area Classifier Get area specification form
Classify area

Provide area information
Provide service description

B w N

Get area information

Find information source
Compose query

Query source

Provide query information
Provide service description

Info Searcher

© o ~NO O

Results Synthesizer 10 Get query information
11 Get query results
12 Provide query results
13 Synthesize area query results
Provide service description

Sources Interface 14 Wrap information source
Manager Provide service description
User Interface 15 Get user specification
Manager 16 Provide user specification

17 Get query results

18 Present query results to the user

Provide service description

Table 1: Actors capabilities

Agent Capabilities

Query Handler 1, 3, 4, 5, 7, 8, 9, 10, 11, 12

Classifier 2, 4
Searcher 6, 4
Synthesizer 13, 4
Wrapper 14, 4

User Interface Agent 15, 16, 17, 18, 4

Table 2: Agent types and their capabilities

JACK are autonomous software components that have ex-
plicit goals (desires) to achieve or events to handle. Agents
are programmed with a set of plans in order to make them
capable of achieving goals.

The implementation activity follows step by step, in a nat-
ural way, the detailed design specification described in sec-
tion 6. In fact, the notions introduced in that section have a
direct correspondence with the following JACK’s constructs,
as explained below:

e Agent. A JACK’s agent construct is used to define the
behavior of an intelligent software agent. This includes
the capabilities an agent has, the types of messages and
events it responds to and the plans it uses to achieve
its goals.

e Capability. A JACK’s capability construct can include
plans, events, beliefs and other capabilities. An agent
can be assigned a number of capabilities. Furthermore,
a given capability can be assigned to different agents.
JACK’s capability provides a way of applying reuse
concepts.

EE: inform(SIA UlA query results)

=t Query results

eval uate query
results

E: (enpty result Sj;t)/@\:(resut cet)

present enpty
present query

O

Figure 8: Capability diagram using AUML activity
diagram. Ovals represent plans, arcs internal and
external events.

e Belief. Currently, in Tropos, this concept is used only
in the implementation phase, but we are considering
to move it up to earlier phases. The JACK’s database
construct provides a generic relational database. A
database describes a set of beliefs that the agent can
have.

e Event. Internal and external events specified in the
detailed design map to the JACK’s event construct.
In JACK an event describes a triggering condition for
agents actions.

e Plan. The plans contained into the capability speci-
fication resulting from the detailed design level map
to the JACK’s plan construct. In JACK a plan is
a sequence of instructions the agent follows to try to
achieve goals and handle designed events.

As an example, the definition for the UserInterface agent,
in JACK code, is as follows:

public agent UserInterface extends Agent {
#has capability GetQueryResults;
#has capability ProvideUserSpecification;
#has capability GetUserSpecification;
#has capability PresentQueryResults;
#handles event InformQueryResults;
#handles event ResultsSet;

The capability PresentQueryResults, analyzed in detail in
the previous section (see Figure 8) is defined as follows:

public capability PresentQueryResults
extends Capability {
#handles external event InformQueryResults;
#posts event ResultsSet ;

#posts event EmptyResultsSet ;
#private database QueryResults ();
#private database ResultsModel ();
#uses plan EvaluateQueryResults;
#uses plan PresentEmptyResults;
#uses plan PresentResults;

}
8. CONCLUSIONS

In this paper we have proposed Tropos, a new software
engineering methodology which allows us to exploit the ad-
vantages and the extra flexibility (if compared with other
programming paradigms, for instance OOP) coming from
using AOP. The two main intuitions underlying Tropos are
the pervasive use, in all phases, of knowledge level specifica-
tions, and the idea that one should start from the very early
phase of early requirements specification. This allows us to
create a continuum where one starts with a set of mentalistic
notions (beliefs, goals, plans, ...), always present in (the why
of) early requirements, and to progressively convert them
into the actual mentalistic notions implemented in an agent
oriented software. This direct mapping from the early re-
quirements down to the actual implementation allows us to
develop software architectures which are “well tuned” with
the problems they solve and have, therefore, the extra flex-
ibility needed in the complex applications mentioned in the
introduction.

Several open points still remain. The most important are:
we should be able to use concepts such as beliefs and events
as early as possible in the Tropos methodology; we should be
able to better favor the application of adaptation and reuse
concepts during all the activities in the development process,
as well as to support an iterative process; we should be able
to extend the Tropos process also to other important activi-
ties of software engineering, such as testing, deployment and
maintenance.

9. ACKNOWLEDGMENTS

The knowledge that Paolo Busetta has of JACK has been
invaluable. Without him this paper would have been much
harder to write. We'd like to thank also Ralph Rénnquist
and Manuel Kolp for their helpful comments on the paper.

10. REFERENCES

[1] G. Booch, J. Rambaugh, and J. Jacobson. The Unified
Modeling Language User Guide. The Addison-Wesley
Object Technology Series. Addison-Wesley, 1999.

[2] P. Busetta, R. Ronnquist, A. Hodgson, and A. Lucas.
Jack intelligent agents - components for intelligent
agents in java. AOS Technical Report tr9901, Jan.
1999. http://www.jackagents.com/pdf/tr9901.pdf.

[3] J. Castro, M. Kolp, and J. Mylopoulos. Developing
agent-oriented information systems for the enterprise.
In Proceedings Third International Conference on
Enterprise Information Systems, Stafford UK, July
2000.

[4] L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.
Non-Functional Requirements in Software
Engineering. Kluwer Publishing, 2000.

[6] A. Dardenne, A. van Lamsweerde, and S. Fickas.
“goal” directed requirements acquisition. Science of
Computer Programming, (20), 1993.

[6]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

S. Hayden, C. Carrick, and Q. Yang. Architectural
design patterns for multiagent coordination. In
Proceedings of the International Conference on Agent
Systems ’99, Seattle, WA, May 1999.

I. Jacobson, M. Christerson, P. Jonsson, and

G. Overgaard. Object-Oriented Software Engineering:
a Use-Case Driven Approach. Addison Wesley,
Readings, MA, 1992.

N. R. Jennings. On agent-based software engineering.
Artificial Intelligence, 117(2), 2000.

J. Mylopoulos and J. Castro. Tropos: A Framework
for Requirements-Driven Software Development.
Lecture Notes in Computer Science. Springer-Verlag,
2000.

A. Newell. The knowledge level. Artificial Intelligence,
18, 1982.

J. Odell and C. Bock. Suggested UML extensions for
agents. Technical report, OMG, Dec. 1999. Submitted
to the OMG’s Analysis and Design Task Force
(ADTF) in response to the Request for Information
(RFI) entitled “UML2.0 RFI”.

Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60(1), 1993.

M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. Knowledge Engineering Review,
10(2), 1995.

M. Wooldridge, N. R. Jennings, and D. Kinny. The
Gaia methodology for agent-oriented analysis and
design. Journal of Autonomous Agents and

Multi- Agent Systems, 3(3), 2000.

E. Yu. Modeling organizations for information systems
requirements engineering. In Proceedings First IEEE
International Symposium on Requirements
Engineering, pages 34-41, San Jose, Jan. 1993. IEEE.
E. Yu. Modeling Strategic Relationships for Process
Reengineering. PhD thesis, University of Toronto,
Department of Computer Science, University of
Toronto, 1995.

E. Yu and J. Mylopoulos. From E-R to “A-R” —
modeling strategic actor relationships for business
process reengineering. In P. Loucopoulos, editor,
Proceedings of 13th Int. Conf. on the
Entity-Relationship Approach (ER’94), number 881 in
Lecture Notes in Computer Science, pages 548-565,
Manchester, U.K., Dec. 1994. Springer-Verlag.

E. Yu and J. Mylopoulos. Understanding ‘why’ in
software process modeling, analysis and design. In
Proceedings Sizteenth International Conference on
Software Engineering, Sorrento, Italy, May 1994.

E. Yu and J. Mylopoulos. Using goals, rules, and
methods to support reasoning in business process
reengineering. International Journal of Intelligent
Systems in Accounting, Finance and Management,
1(5), Jan. 1996.

