
Model Checking Early Requirements Specifications in Tropos

Ariel Fuxman
University of Toronto

afuxman@cs.toronto.edu

Marco Pistore
IRST-ITC

pistore@itc.it

John Mylopoulos
University of Toronto
jm@cs.toronto.edu

Paolo Traverso
IRST-ITC

traverso@itc.it

Abstract

The paper describes an approach that bridges the gap
between early requirements specifications and formal meth-
ods. In particular, we propose a new specification language,
called Formal Tropos, that offers the primitive concepts of
early requirements frameworks (actor, goal, strategic de-
pendency) [13], but supplements them with a rich tempo-
ral specification language. We also extend existing formal
analysis techniques, and in particular model checking, to
allow for an automatic verification of relevant properties of
the early requirements specification. Our preliminary ex-
periments show that formal analysis reveals gaps and incon-
sistencies in early requirements that are by no means trivial
to discover without the help of formal analysis tools.

1. Introduction

Early requirements analysis is one of the most important
and difficult phases of the software development process. It
is the phase where the requirements engineer is trying to un-
derstand the organizational context for an information sys-
tem, and the goals and social dependencies of its stakehold-
ers. This phase demands critical interactions with the users;
a misunderstanding at this point may lead to expensive er-
rors during later development stages. Not surprisingly, sev-
eral approaches have been researched in recent years on suit-
able concepts, languages and analysis techniques specifi-
cally tailored for this phase (e.g., [8, 13, 1]).

Formal Methods have a great potential as powerful
means for the specification, early debugging and certifica-
tion of software. They have been successfully applied in
several industrial applications, and, in certain fields, they are
even becoming integral components of standards [2]. How-
ever, the application of formal methods to early require-
ments is by no means trivial. Most formal techniques have
been designed to work (and have been mainly applied) in
later phases of software development, e.g. the design phase
(see for instance [6]). As a result, there is a mismatch be-
tween the concepts used for early requirements specifica-
tions (such as goal, actor �����) and the constructs of formal
specification languages such as Z [11], SCR [10], etc.

Our aim is to provide a framework for the effective use of
formal methods in the early requirements phase. The frame-
work allows for the formal and mechanized analysis of early
requirements specifications expressed in a formal modeling
language. In this paper, we present some results that consti-
tute a first step towards this goal. We achieve these results
by extending and formalizing an existing early requirements
modeling language, and by building on state-of-the-art for-
mal verification techniques.

In order to allow for formal analysis, we extend the i*
modeling language [13] into a formal specification language
called Formal Tropos. The language offers all the primi-
tive concepts of i* (such as actors, goals, and dependencies
among actors), but supplements them with a rich temporal
specification language inspired by KAOS [8].

In order to support formal analysis within the Formal
Tropos framework, we extend an existing formal verifica-
tion technique, model checking [9]. To accomplish this, we
define an intermediate language that serves as a link between
Formal Tropos and model checking. Tropos specifications
can be mapped into the intermediate language, which is
amenable to model checking analysis. As a result, early re-
quirements specifications can be checked for contradictions
(consistency checking), and properties that are supposed to
hold can be verified on the specification (property valida-
tion). Moreover, it is possible to use model checking to ac-
tually animate Tropos specifications.

Our prototype implementation of the above ideas comes
in the form of a tool which translates automatically early re-
quirements written in Tropos into the intermediate language.
In addition, the tool extends NuSMV [5], a state-of-the-art
symbolic model checker, to do analysis on the intermediate
language, including consistency checking, property valida-
tion, and animation. We have experimented with the pro-
posed framework and the supporting tool, using a simple
case study. In spite of its simplicity, the case study demon-
strates the benefits of formal analysis in revealing incom-
pleteness/inconsistencies errors that are by no means trivial
to discover in an informal setting.

Formal Tropos is part of a wider-scope framework, called
Tropos [4], which proposes the application of concepts from
the early requirements phase to the whole software develop-
ment process, including late requirements, architectural and

detailed design, and implementation.

Structure of the paper. In Section 2 we present the i* mod-
eling language and introduce the case study we will work on
in the rest of the paper. Section 3 presents the Formal Tro-
pos language and explains its original aspects with respect to
an i* specification. Section 4 elaborates the different kinds
of formal analysis that the engineer can perform within the
proposed framework, while Section 5 describes the techni-
cal aspects of the verification process and the tool. Finally,
Section 6 presents some concluding remarks and discusses
future research directions.

2. The i* Modeling Language

The i* modeling language has been specifically designed
for the description of early requirements. It assumes that
during this phase it is necessary to model social settings
which involve actors who depend on each other for goals
to be achieved, tasks to be performed, and resources to be
furnished. The language provides graphical notations to de-
scribe the requirements of the system. The SD diagram, for
instance, is used to represent a central concept of i*: the
strategic dependencies of the actors. Dependencies express
intentional relationships that exist among actors in order to
fulfill some strategic objectives. A dependency describes an
“agreement” between two actors, the depender and the de-
pendee. The type of the dependency describes the nature
of the agreement. Goal dependencies are used to represent
delegation of responsibility for fulfilling a goal; softgoal de-
pendencies are similar to goal dependencies, but their fulfill-
ment cannot be defined precisely (for instance, it is a mat-
ter of personal feeling, or the fulfillment can occur only to a
given extent); task dependencies represent situations where
the dependee is required to perform a given activity, while
resource dependencies require the dependee to provide a re-
source to the depender.

The details on i* are presented in [13]; we will briefly
review it by using the Insurance Company case study, ini-
tially introduced in [14]. The actors of the case study
are the customers and the insurance company, Customer
and InsuranceCo. The main goal of the customer is
to be reimbursed for damages in case of an accident (goal
BeInsured in what follows). As the customer is not able
to fulfill this goal by herself, the goal is refined intoa goal de-
pendencyCoverDamages, from the customer to the insur-
ance company. Conversely, the insurance company depends
on its customers to have a continued business, by fulfilling
softgoal dependencies such as AttractCustomers. In
order to achieve the previous goals, it is necessary to include
additional actors, such as BodyShop and Appraiser,
and additional dependencies. For instance, the Customer
depends on the BodyShop to have her car repaired (de-
pendency RepairCar) and the insurance company de-

RepairCar

KeepClient

Customer

Appraiser

InsuranceCo

Premium

Resource

TaskSoftgoal

Goal

Dependencies

BodyShop

AppraiseDamage

KeepJob

Attract
Customers

CoverDamages

Figure 1. SD diagram of the case study.

pends on the Appraiser to estimate the reasonability and
amount of the damages (AppraiseDamage).

Figure 1 presents an i* SD diagram for the case study. We
will use a subset of this case study as the running example
for the rest of the paper. In particular, we will focus on the
CoverDamages andRepairCardependencies. The for-
mal specification of this subset is given in Figure 2.

3. The Formal Tropos Language

A Formal Tropos specification describes the relevant ob-
jects of the modeled domains and their relationships. The
description of each object is structured in two layers. The
outer layer is similar to a class declaration, since it defines
the structure of the instances together with their attributes.
The inner layer expresses constraints on the lifetime of the
object, given in a first-order linear-time temporal logic.

A class can be of type actor, dependency, or entity. The
notion of entity is not included in i*. Entities are used to
represent non-intentional elements that exist in the environ-
ment or organizational setting, but are not directly relevant
to an actor’s strategic goals. In our example (see Figure 2)
we have the entities Claim and Car.

The attributes of a Formal Tropos class denote relation-
ships among the different objects being modeled. For exam-
ple, each claim generated by a customer refers to a specific
car, represented by attribute car of entity Claim (see Fig-
ure 2). The facet constant of this attribute states that, once a
car is associated to a claim, the relationshipmust be kept for-
ever. Formal Tropos defines other attribute facets, like mul-
tivalued and optional, which do not appear in our example.

As in i*, actors in Formal Tropos can have goals that
describe their strategic interests. This is the case of
goal BeInsured of actor Customer. Also, the inten-
tional relationships between actors are represented as de-
pendencies (see, e.g., dependencies CoverDamages and
RepairCar in the example). The type of a dependency
(goal, softgoal, task, resource), as well as its depender and

2

Entity Claim
Attribute constant car: Car

Entity Car
Attribute runsOK: boolean

Actor InsuranceCo
Actor BodyShop
Actor Customer

Goal BeInsured
Mode maintain
Fulfillment definition

���������
	����
�����������������
� �����

��� ������� � � �"!#����$&%('*),+�-�$.%0/1$2$&� � � �3���
4�4
Dependency CoverDamages

Type goal
Mode achieve
Depender Customer
Dependee InsuranceCo
Attribute constant cl: Claim
Creation

condition 5 �6$ � �3��� � ��-0�7� 8�9
trigger : -��6;<	���� ��;<� � � �6$&4

Dependency RepairCar
Type goal
Mode achieve
Depender Customer
Dependee BodyShop
Attribute constant cl : Claim
Creation

condition 5 �6$ � �3��� � ��-0�7� 8�9
Fulfillment

condition for depender
�6$
�

�3���
�

��-��7��8�9

Figure 2. The Formal Tropos specification.

dependee are included as special attributes in the depen-
dency declaration.

Goals and dependencies can be fulfilled in different
modes. For example, the modality of RepairCar is
achieve, which means that an instance of the dependency
is satisfied if the car is eventually repaired at least once.
Dependency CoverDamage is also an achieve depen-
dency, since it is satisfied as soon as the insurance com-
pany reimburses the damages. Goal BeInsured of agent
Customer, instead, is of maintain modality: the customer
will stay insured forever, not just once. There are other
modalities, such as achieve&maintain, which is a combi-
nation of the previous two modes (it requires the fulfillment
conditions to be achieved at some point and then satisfied in
a continuing way); and avoid, which means that the fulfill-
ment condition should be prevented.

The inner layer of a Formal Tropos class declaration de-
scribes constraints on the possible evolution of the instances
of that class. In the case of a dependency declaration we
have three types of constraints. Creation assertions im-

pose constraints at the time of creation of a new instance
of the dependency; fulfillment assertions define conditions
for the satisfaction of the dependency; and invariants rep-
resent conditions that should be true during the whole life
of the dependency. We also distinguish formulas that ex-
press sufficient conditions (facet trigger), necessary condi-
tions (facet condition), and necessary-and-sufficient condi-
tions (facet definition) for the event.

In our example, dependency CoverDamages has a cre-
ation condition (formula 5 �6$ � �3��� � ��-��7��8�9

in Figure 2) that
states that the car should not be working at the time the goal
is created; its creation trigger represents the fact that, when-
ever a customer fills a claim

�=$
(formula : -��6;<	>������;<� � � �6$&4),

then a dependency for covering the repairs arises from the
customer to its insurance company. According to the speci-
fication in Figure 2, the goal of repairing a car can only arise
if the car is not working. Similarly, a necessary condition
for the fulfillment of the dependency is that the car should
be running OK. This is a condition that the customer im-
poses (the body-shop would be happy to declare a car re-
paired even if it does not run); in Formal Tropos, we rep-
resent this fact with the facet for depender.

Not only dependencies, but also entities and actors of a
Tropos specification may have creation conditions and in-
variants; however, they cannot have fulfillment conditions.
Actor goals do have fulfillment conditions, but do not have
creation conditions (they are assumed to be there with their
owning actor) or invariants (the actor goals do not have at-
tributes).

Constraints on the lifetime of the class instances (i.e., the
inner layer of a Formal Tropos specification) are given in
a first-order linear-time temporal logic. In the formulas we
have the usual first-order logic quantifies

�
and ? , that can

range over all the instances of a given class. As Formal Tro-
pos allows for the dynamic creation of new instances of a
given entity, the range of a quantifier depends on the state in
which the quantifier is evaluated. So, in the fulfillment def-
inition for goal BeInsured of Figure 2, quantifier

�7�3���(�
	����
� �����������@� �

����� binds variable
�3���

to range over all the
instances of class CoverDamages that exist in the system.
The logic formulas that appear inside a given class declara-
tion of the Tropos specification may refer to the attributes
of the class via their names. Also, each instance of the class
may express properties about itself using keyword

� �3$&%
(see

the fulfillment definition of goal BeInsured in Figure 2).
Three special predicates can appear in the temporal logic
formulas: predicate : -0�=;<	���� ��;<� � � ��$&4 holds in a state if el-
ement

�3$
exists in this state but not in the previous one.

Predicate
+>-�$&%�/1$2$&� � � �3$.4 holds if

��$
has been fulfilled. Fi-

nally, predicate : -��=;<+�-�$.%0/1$2$&� � � ��$&4 holds if
+�-A$&%0/1$2$&� � � ��$&4

holds in this state, but not in the previous one. Predicates+�-A$&%0/1$2$&� � and : -0�=;<+�-A$&%�/2$2$.� � are defined only for goals
and dependencies.

Using suitable temporal operators, the logic makes it pos-

3

sible to express properties that are not limited to the current
state of the system, but also to its past and future history. For
instance, formula � %

(always in the future
%

) expresses the
fact that formula

%
should hold in the current state and in

all the future states of the evolution of the system. Formula� %
(sometimes in the past), holds if

%
is true in the current

state or if it was true in some past state of the system. The
classical temporal operators used in the Formal Tropos for-
mulas are � (next state), � (previous state),

)
(eventually in

the future),
�

(sometimes in the past), � (always in the fu-
ture) and � (always in the past). Other useful operators are�)�� � 4

(once, in the past or in the future) and
�
����� 4

(al-
ways in the past and in the future).

Goal and dependency modalities often hide the usage of
temporal operators. This is done on purpose. Reducing the
number of temporal operators in the formulas results in more
intuitive and readable specifications. Modalities provide an
easy-to-understand subset of the language of temporal log-
ics. When the modalities are not enough to capture all the
temporal aspects of a condition, the temporal operators may
appear explicitly in the formulas. This is the case for goal
BeInsured of actor Customer in the example in Fig-
ure 2: its fulfillment condition requires that, whenever a
CoverDamages dependency exists for the customer, then
it will eventually be fulfilled (formula

) +�-A$&%�/2$1$&� � � �3���
4);
since the goal is a maintain goal, this property has to hold
in a continuous way for the goal to be fulfilled.

The conditions in our example are required to hold for all
models of the specification. In general, we distinguish two
sets of formulas in the specification: those that are enforced
on the system and those that express desired behaviors. The
formulas of the former set express facts on the behavior of
the system that we assume to hold. The formulas in the lat-
ter set express expectations (denoted by the facet assertion)
on the behaviors of the system. In the next section, we will
show how we check whether these assertions are satisfied by
the specification.

Besides the class declarations, a Formal Tropos specifi-
cation is completed by system-level formulas that describe
properties of the system as a whole. We distinguish among
three kinds of system formulas. First, they may be invariants
that are required to hold in all states of the system (keyword
System invariant). Second, they may be desired properties
of all the executions of the system (keyword System asser-
tion). Finally, they may express desired properties that are
expected to hold on some possible behaviors of the system
(keyword System possibility); they describe scenarios that
are expected to be compatible with the requirements. In the
next section we will see an example of the latter kind of sys-
tem level formulas.

4. Formal Analysis

Formal analysis techniques are usually applied during
late phases of development, and are used to validate the im-
plementation of a system against its requirements. In the
(early) requirements phase, however, the aim must be dif-
ferent, since, in fact, we are still gathering the requirements!
Nevertheless, formal analysis techniques can assist the ana-
lyst in the requirements elicitation, by allowing her to iden-
tify errors and limitationsof the specification that are not ev-
ident in an informal setting.

We developed a tool that, starting from the Tropos spec-
ification, builds an automaton that represents all the possi-
ble executions of the system that satisfy the requirements
enforced in the specification (see Section 5). Once the au-
tomaton is built, our tool verifies the expected behaviors of
the system, expressed via assertion and possibility formu-
las. Whenever a verification fails, a counterexample is re-
ported, that is, a scenario where the expected property fail-
ure is shown to the users.

Property validation. The designer can represent expected
behaviors of the system via assertion properties in the For-
mal Tropos specification. The assertions come from differ-
ent sources. First, they may represent expectations of the
stakeholder (“if all the requirements are met by the system,
then I expect that this situation never happens”). Second,
they may be formulas included by the engineer in order to
check whether she is correctly modeling the intended be-
havior of the system. For instance, if there are two ways
to specify a requirement that seem equivalent, one might be
enforced, and the other checked. If the two requirements are
not equivalent, the behavior that distinguishes them exhibits
situations that were not taken into account by the require-
ments engineer. Finally, it is often useful to add simple prop-
erties to catch errors due to the inherent difficulty of writing
formal specifications.

The first kind of assertions, the expected outcomes from
the stakeholder, is the most important. We are interested in
gathering assertions which, although not likely to be verified
immediately, are expected to yield interesting counterexam-
ples. Such counterexamples should enable the stakeholders
to elicit their requirements with greater accuracy, and drive
the refinement of the formal specification.

In our example, an important goal of the stakeholders
is to avoid “unreasonable” claims, though it is difficult for
them to precisely define the concept. Nevertheless, they
are able to present particular scenarios that involve such
claims. For instance, they do not want to cover claims for
which there is no proof (e.g., an invoice) that the car was
repaired. We state this as an assertion: if an instance of
CoverDamages for a given claim is fulfilled and the car
runs OK, then the stakeholders expect that a repair has been
done for that claim.

4

;�� ;�� ;�� ;�� ;��
car1.runsOK

� 	 	 � �

cl1.car car1 car1 car1 car1
cl2.car car1 car1 car1 car1
cov1.cl cl1 cl1 cl1 cl1
Fulfilled(cov1)

	 	 	 �

rep1.cl cl2 cl2 cl2
Fulfilled(rep1)

	 � �

Figure 3. An example of a counterexample.

Dependency CoverDamages
Fulfillment

assertion condition for dependee�6$
�

��� �
�

��-��7� 8�9 ' ? ����� ��
 � �0��/.��	����
� �����

�

�6$! �=$ � +�-A$&%�/2$1$&� � � ������4�4

When checking the assertion, the tool exhibits the coun-
terexample shown in Figure 3. The key point is that, when
the car stops running OK at time

; �
, the customer makes two

claims cl1 and cl2, for the same car car1, but with dif-
ferent insurance companies. At time

;��
, an instance cov1

of CoverDamages is also created and associated to cl1.
Then, at time

;
�
, an instance rep1 of RepairCar is cre-

ated and associated to the other claim, cl2. Later, at time
;��

,
rep1 is fulfilled and the car starts running OK; eventually,
at time

;��
, cov1 is fulfilled. The problem here is that dam-

ages are covered for a certain claim, while the repair is done
for another claim but for the same car. This situation might
occur in real life if a customer has policies at two insurance
companies. When her car breaks, she can repair it at one
body-shop and attempt to get damage costs from both insur-
ance companies, clearly an inadmissible situation, at least in
the domain we consider. A preliminary fix for this problem
is to require the repairs for a certain claim to be done before
the claim is fulfilled. This can be achieved by adding the fol-
lowing fulfillment condition to the specification of Figure 2.

Dependency CoverDamages
Fulfillment condition for dependee

? ��� �(��
 ������/&��	���� � �����
�

�=$�! �=$ � +�-�$.%0/1$2$&� � � ��� �04�4

Consistency check. The aim of the consistency check is to
verify that the specification allows for a set of behaviors that
are possible in the system.

As a simple form of consistency check, we can ask
whether there is any execution of the system that respects
all the constraints enforced by the requirements; if this is
not the case, the specification is inconsistent. Inconsisten-
cies among the requirements occur quite often, in particular
if the requirements are obtained from different stakeholders,
so it is important to identify and eventually solve them. As
inconsistencies can be caused by the the interplay of differ-
ent objects in the specification, it is often hard to detect them
without the support of automatic analysis techniques.

Besides checking that the specifications are consistent, it
is important to check that they allow for some execution his-
tories (or scenarios) that the stakeholder expects to happen.
It is often the case that a specification is consistent, but some
reasonable scenarios are ruled out as valid executions be-
cause they are in conflict with some requirements.

For instance, suppose we would like to check that after a
car breaks, it may never run OK again, but the damages are
nevertheless covered by the insurance company. This is sen-
sible, since a car might be so damaged that it is impossible to
repair. This check is specified as the following system-level
formula:

System possibility ? �3��� �
	����
��������� �������
: -��6;<	���� ��;<� � � �3���
4 �),+�-�$.%0/1$2$&� � � �3���
4
� � 5 ����� � �6$ � �3��� � ��-��7��8�9

This formula asserts that it is possible that some
CoverDamages

�3���
is eventually fulfilled even if

the associated car never runs OK again after dependency�3���
has been raised. The consistency check for the resulting

specification fails. Indeed, there is a global inconsistency
between the system formula and the fulfillment condition
for CoverDamages introduced previously in this Section.
The problem is that the fulfillment condition does not allow
the insurance company to cover the damages if a repair has
not been performed. The consistency check succeeds if we
fix that fulfillment condition and allow the damages to be
covered by the insurance company in the case the car never
runs OK again.

Dependency CoverDamages
Fulfillment condition for dependee

? ��� �(��
 � �0��/&��	>� � � �����
�

�6$�! �6$ � +�-A$&%0/1$2$&� � � ��� �04 4�4� �"5 �6$ � �3��� � ��-0�7� 8�9

Animation of the specification. Our tool allows the user
to interactively explore the automaton generated from the
early requirements specification. Since the automaton ex-
hibits only those sequences of states that respect all the re-
quirements, the user gets immediate feedback on their ef-
fects.

While very simple, the animation of requirements is
extremely useful to identify missing trivial requirements,
which are often assumed for granted in an informal setting.
For instance, if we had forgotten to add the creation condi-
tion 5 �=$ � �3��� � ��-0�7� 8��

in the specification of RepairCar,
by exploring the system we would have obtained histories
where the goal of repairing a car arises when the car is run-
ning OK. Moreover, the possibilityof showing possible evo-
lutions of the system is often a very effective way of com-
municating with the stakeholders.

5

5. From Formal Tropos to Model Checking

In this section we describe the technicalities of the formal
analysis performed on a Tropos specification.

The first step carried out by the tool consists of trans-
forming a given Formal Tropos specification into an equiva-
lent specification in a suitable Intermediate Language. Dur-
ing this translation, the strategic flavor of the Formal Tro-
pos specification is lost and the focus shifts to the dynamic
aspects of the system. 1 This Intermediate Language speci-
fication is then passed to the NuSMV model verifier, which
synthesizes an automaton for the specification and performs
the actual analysis.

5.1. The Intermediate Language

We start by giving in Figure 4 an excerpt of the Intermedi-
ate Language specification for our running example. It con-
sists of four parts: “class” declarations, temporal “specifica-
tions”, “assertion” formulas and “possibility” formulas.

The class declarations (keyword CLASS) define the data
types of the system; they correspond to the entities, ac-
tors, and dependencies (the outer layer) of the Formal Tro-
pos specification. We remark that some new attributes, not
present in the Formal Tropos specification, are added to the
classes during the translation. This is the case, for instance,
of attribute fulfilledBeInsured of Customer, or
of attribute fulfilled of dependency CoverDamages.
The fact that goals and dependencies have been fulfilled is
primitive in Formal Tropos (

+�-A$&%0/1$2$&� � predicate), but is en-
coded as a state variable in the Intermediate Language; this
is an example of the change of focus that occurs when trans-
lating a from Formal Tropos specification into the Interme-
diate Language.

The temporal specifications (keyword SPECIFICA-
TION) restrict the valid temporal behaviors of the system.
Some of these formulas model the semantics of a Formal
Tropos specification. For instance, the first two SPECIFI-
CATION formulas in Figure 4 express the fact that attribute�3���

of a
	 $&��/.�

and attribute
�6$&��/.�

of a

"� �0��/.��	����

are
constant. Other formulas correspond to the temporal con-
straints that constitute the inner layer of the Formal Tropos
specification. For instance, the third and fourth SPECIFI-
CATION formulas in Figure 4 correspond, respectively, to
the creation and fulfillment condition of goal dependency
RepairCar; and the last SPECIFICATION formula cor-
responds to the fulfillment condition of goal BeInsured.
As these formulas are no longer syntactically anchored to a
particular event of the specification, (e.g., the fulfillment of

1We remark that the translation from the Tropos specification to the In-
termediate Language specification is performed in a completely automatic
way by the tool: we do not require the user to “operationalize” the specifi-
cation in order to verify it.

CLASS Claim
car: Car

CLASS Car
runsOK: boolean

CLASS Customer
fulfilledBeInsured: boolean

CLASS InsuranceCo
CLASS BodyShop
CLASS CoverDamages

depender: Customer
dependee: InsuranceCo
cl: Claim
fulfilled: boolean

CLASS RepairCar
depender: Customer
dependee: BodyShop
cl: Claim
fulfilled: boolean

SPECIFICATION ���������	��

��� ����

�����	

�� ����� ��

�	����

����� � ����� ��

�	����

�����
SPECIFICATION � �!�"�
#%$�&'

�����	

�(�'���)���	��

���� ���*� ���+�,���+�-� � ���*� ���+�,�������
SPECIFICATION � �!�"�
#%$�&'

�����	

���.0/�132 �"��$3
 2 $�4 � �!�!�5�-65���*� ����� ��

���7� /'8+1�9": �
SPECIFICATION � �!�"�
#%$�&'

�����	

�� ���*� ; / ��;+������$�4<��=>���*� ����� ��

�!� � /'8+1�9": �
SPECIFICATION ��� /'1�2 ��� /�132�? �@$*�� � /'1�2 � ; / ��;+�A�B��$�4
CD$FE 8+1�/ ��$34<G�IH"J�K � � ��� ?�L ��� ?�L $F��MN

�O
*P�$ 1

� ?�L � 4�$Q&�$ 8 4�$F�%��� /'1�2 ��R�� ?�L � ; / ��;+������$�4
���
ASSERTION ��� ?�L ��� ?�L $F��MN

�O
*P�$ 1� � ?�L � ; / ��;+�A�B��$�4"�

= � � ?�L � ����� ��

���7� /'8+1�9": �-ST��$�&U��#%$Q&�

���3�	

�� ��$�&V� ���+�,� ?�L � ��� J ��$�&V� ; / ��;+������$�4
�����
POSSIBILITY SW� ?�L �
� ?�L $*��MN

�O
*P�$ 1��.0/�132 �"��$3
 2 $�4 � � ?�L � J R�� ?�L �7; / ��;+������$�4JXH 6�� ?�L � ���I� ��

��� � /�8Y1�9": �

Figure 4. Example of Intermediate Language.

the dependency), they need a “context” to define their mean-
ing. This context is defined in the translation rules that map
a Tropos specification into an Intermediate Language spec-
ification. For instance, the fulfillment condition Z of a de-
pendency

��� �
with an achieve modality is mapped into a

SPECIFICATION of the form
� � �
��� � � � � %0-A$&%�/2$1$&� � ' � Z 4

meaning that “if an achieve dependency is fulfilled, then its
fulfillment condition was true at least once in the past”. This
is the rule that has been applied to the fulfillment condition
of RepairCar (compare Figures 2 and 4).

As we can see in this translation, we add auxiliary tempo-
ral operators to the IL specification. These operators depend
not only on the kind of formula but also on the mode of the
dependency. For instance, in the case of a maintain depen-

6

dency, the translation of the fulfillment condition Z is given
by rule

� � �
����� � � � %�-�$&%�/1$2$&� � ' �
����� 4 Z 4

meaning that “if a maintain dependency is fulfilled, then its
conditions should hold during the whole life of the depen-
dency”. In our specification, a similar rule is applied to goal
BeInsured of the Customer.

The assertion and possibility formulas (keywords AS-
SERTION and POSSIBILITY) specify expected proper-
ties of the behavior of the system. The former correspond
to the assertion formulas of Formal Tropos, and they are
translated in a similar way as temporal specification formu-
las. The latter correspond to the System possibility formu-
las of the Formal Tropos specification.

We remark that some of the details of the Formal Tropos
specification are lost in the corresponding Intermediate Lan-
guage specification; this is the case, for instance, of the dis-
tinction among the different dependency types. While these
aspects are important in the overall description and specifi-
cation of the system, they do not play any role in the formal
analysis, and so they are discarded when moving to the In-
termediate Language.

The Intermediate Language plays a fundamental role in
covering the gap between early requirements and formal
methods. First of all, it is much smaller than Formal Tro-
pos, and therefore allows for a much simpler formal seman-
tics.2 Second, it is rather independent from the particulari-
ties of Formal Tropos. By moving to different domains, it
will probably become necessary to “tune” Formal Tropos,
for instance by adding new modalities for the dependencies.
The formal approach described in this paper can be also ap-
plied to these dialects of Tropos, at the cost of defining a new
translation. Furthermore, the Intermediate Language can be
applied to requirements languages that are based on differ-
ent concepts from the ones of Tropos, such as KAOS [8].

Finally, the Intermediate Language, while more suitable
to formal analysis, is still independent from the particular
analysis techniques. For the moment, we have applied only
model checking techniques; however, we plan to apply tech-
niques based on LTL-satisfiability or theorem proving.

5.2. Model Checking

Starting from an Intermediate Language representation
of the Tropos specification, the actual verification is per-
formed on top of the NuSMV verification framework.
NuSMV [5] is a state-of-the-art model checker based on a

2For lack of space, we do not present the formal semantics of the In-
termediate Language in the details. In brief, the semantics is defined using
standard techniques for interpreting LTL specifications on domains with an
algebraic structure of states.

symbolic representation of the domain to be verified. Sym-
bolic techniques [3] have been developed to face the well-
known state explosion problem. When performing model
checking, it is necessary to explore the states of the system;
if the system is huge, as it is usually the case in real appli-
cations, it is impossible to explore it explicitly. Symbolic
techniques allow for representing sets of states via boolean
propositions and for casting the basic operations of model
checking algorithms as logical operations on these formu-
las. In this way, it is not necessary to enumerate the states
explicitly.

Although they make it possible to analyze large systems,
the techniques provided by NuSMV still require the system
to be finite. In our case, the consequence is that we have to
put an upper bound in the number of instances of each class
of entities, actors or dependencies that can be created in the
system. We do this by declaring these upper bounds in the
Intermediate Language specification.

The choice of the number of instances is a critical point.
In our experiments we have seen that many subtle bugs only
appear when more that one instance of the classes is allowed
in the system. Consider for instance the scenario, discussed
in Section 4, of the customer that presents claims to two dif-
ferent insurance companies for the same repair; clearly, this
scenario requires us to allow for more than one instance of
Claim and InsuranceCo in the system. On the other
hand, our experiments also show that bugs usually become
evident with just a small number of instances. In particu-
lar, in the Insurance Company case study all the mistakes
became evident with just two instances of each class.

Given the Intermediate Language specification and the
bounds in the number of instances, the first step performed
by the tool is to synthesize the (symbolic) automaton for
the specification. The states of this automaton respect the
CLASS structure of the Intermediate Language specifica-
tion, and its executions are all and only the executions that
respect the SPECIFICATION formulas.

NuSMV provides a synthesis algorithm for LTL speci-
fications, that is based on a tableau construction technique
[7]. In order to deal with the particularities of the Interme-
diate Language, we had to extend the algorithm in some di-
rections. For instance, the tableau construction described in
[7], and the LTL logics usually exploited in model check-
ing, only consider future temporal operators. In the early
requirements specification, instead, it is also convenient to
reason about the past. Therefore, we have extended the
tableau construction to deal with the past fragment of LTL.
Also, although it is possible to define classes in NuSMV that
can be instantiated, it does not allow the creation of new in-
stances at run-time. This is because NuSMV was initially
designed to verify hardware systems, where there are no dy-
namic creations of components. To deal with instance cre-
ation, we have adapted the tableau construction and other
routines of NuSMV. Internally, the fact that an instance has

7

been created is modeled by a special bit of its status; the
quantifiers are interpreted so that their range is restricted to
the instances of a class that exist in the current state.

An immediate outcome of the synthesis process is the in-
consistency check. In fact, if the specifications are inconsis-
tent, the synthesis process fails and no automaton is built. If
the specifications are consistent, instead, the formal analy-
sis can proceed. The animation of the specifications is per-
formed using the simulator provided by NuSMV, which al-
lows both for an interactive exploration of the automaton,
and for a random execution of a certain number of steps in
the system. Consistency check and property validation are
performed using the standard approach of model checking,
by verifying the ASSERTION and POSSIBILITY formu-
las against the executions of the automaton. Whenever one
of these checks fails, the tool reports the failure to the user.
In the case of an invalid ASSERTION, NuSMV provides
a counterexample, which corresponds to a scenario that vi-
olates the assertion. A counterexample is provided also in
the case of an invalid POSSIBILITY. In this case, by defi-
nition, all the executions of the model do not satisfy the pos-
sibility formula; nevertheless, the returned counterexample
should help the user to understand and identify the problem.

6. Conclusions

We have described a formal modeling language for early
requirements and a prototype tool which supports the anal-
ysis of specifications. The novelty of our approach lies in
extending model checking techniques — which rely mostly
on design-inspired specification languages — so that they
can be used with an expressive modeling language suitable
for early requirements modeling and analysis. The contribu-
tion of our preliminary results is to show that formal analysis
techniques are useful in development phases that were once
considered to be informal by nature, as is the case of early
requirements engineering.

Our proposal complements analysis techniques proposed
in the KAOS project, which rely mostly on theorem prov-
ing to support requirements analysis [8, 12]. In [12], for in-
stance, the emphasis is put on obtaining a formal specifica-
tion of the goal conflicts that occur in the requirements spec-
ification; our techniques, instead, provide concrete scenar-
ios of these conflicts. While model checking techniques al-
low for an automatic generation of the scenarios, the formal
analysis techniques of [12] may be very expensive.

There are several directions for further research on this
project. First, we are working on the application of the
methodology to more complex case studies, which should
give an exact evaluation of the scalability of our method-
ology to real applications. Second, we are working in ex-
tending the formal verification tool. So far, we have mostly
adapted verification techniques of NuSMV to the new do-
main; however, there is much work to be done on formal

methods techniques specifically tailored for requirements
engineering. For instance, we should enhance the animator
of the specifications. At the moment, NuSMV represents the
evolution of the system in a tabular format similar to the one
of Figure 3; we are investigating different ways to make the
traces produced by the animator more readable to the engi-
neer. Third, we will investigate on the possibility of apply-
ing some of the techniques of the KAOS framework to For-
mal Tropos. Finally, a promisingdirection of future research
is the support for other forms of analysis, such as checking
the validityof goal decompositions or incorporating require-
ments traceability techniques.

References

[1] A. Anton. Goal based requirements analysis. In Proc. 2nd
Int. Conf. on Requirements Engineering ICRE’96, 1996.

[2] J. Bowen and V. Stavridou. Safety-critical systems, for-
mal methods and standards. IEE/BCS Software Engineering
Journal, 8(4):189–209, July 1993.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and
L. J. Hwang. Symbolic Model Checking: ���

���
States and

Beyond. Information and Computation, 98(2):142–170,
June 1992.

[4] J. Castro, M. Kolp, and J. Mylopoulos. A Requirements-
Driven Development Methodology. 13th Int. Conf. on Ad-
vanced Information Systems Engineering (CAiSE’01), June
2001. To appear.

[5] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NuSMV: a new Symbolic Model Checker. Int. Journal on
Software Tools for Technology Transfer (STTT). To appear.

[6] A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F. To-
rielli, and P. Traverso. Formal Verification of a Railway In-
terlocking System using Model Checking. Journal on For-
mal Aspects in Computing, 10:361–380, 1998.

[7] E. Clarke, O. Grumberg, and K. Hamaguchi. Another look
at LTL model checking. Formal Methods in System Design,
10(1):57–71, February 1997.

[8] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal di-
rected requirements acquisition. Science of Computer Pro-
gramming, 20:3–50, 1993.

[9] J. Halpern and M. Vardi. Model checking vs. theorem prov-
ing: A manifesto. In Proc. KR’91, 1991.

[10] C. Heitmeyer, R. Jeffords, and B. Labaw. Automated con-
sistency checking of requirements specifications. ACM
Trans. on Software Eng. and Methodology, 5(3):231–261,
July 1996.

[11] J. Spivey. The Z Notation. Prentice Hall, 1989.
[12] A. van Lamsweerde, R. Darimont, and E. Letier. Manag-

ing conflicts in goal-driven requirements engineering. IEEE
Transaction on Software Engineering, November 1998.

[13] E. Yu. Towards modelling and reasoning support for early-
phase requirements engineering. Proc. 3rd IEEE Int. Symp.
on Requirements Engineering RE’97, pages 226–235, Jan-
uary 1997.

[14] E. Yu and J. Mylopoulos. Towards modelling strategic ac-
tor relationships for information systems development – with
examples from business process reengineering. In Proc. 4th
Workshop on Information Technologies and Systems, 1994.

8

