Model Checking Early Requirements Specificationsin Tropos

Marco Pistore
IRST-ITC

pistore@tc.it

Ariel Fuxman
University of Toronto
af uxman@s. t oront o. edu

Abstract

The paper describes an approach that bridges the gap
between early requirements specifications and formal meth-
ods. Inparticular, we propose a new specificationlanguage,
called Formal Tropos, that offers the primitive concepts of
early requirements frameworks (actor, goal, strategic de-
pendency) [13], but supplements them with a rich tempo-
ral specification language. We also extend existing formal
analysis techniques, and in particular model checking, to
allow for an automatic verification of relevant properties of
the early requirements specification. Our preliminary ex-
periments show that formal analysisreveal s gapsand incon-
sistenciesin early requirements that are by no meanstrivial
to discover without the help of formal analysistools.

1. Introduction

Early requirements analysisisone of the most important
and difficult phases of the software development process. It
isthe phase where the requirements engineer istrying to un-
derstand the organizational context for an information sys-
tem, and the goal s and social dependencies of its stakehol d-
ers. Thisphase demands critical interactionswith the users;
a misunderstanding at this point may lead to expensive er-
rorsduring later devel opment stages. Not surprisingly, sev-
eral approaches have been researched inrecent years on suit-
able concepts, languages and analysis techniques specifi-
caly tailored for this phase (eg., [8, 13, 1]).

Forma Methods have a great potentia as powerful
means for the specification, early debugging and certifica-
tion of software. They have been successfully applied in
severa industrial applications, and, incertainfields, they are
even becoming integral components of standards[2]. How-
ever, the application of forma methods to early require-
mentsis by no means trivial. Most formal techniques have
been designed to work (and have been mainly applied) in
later phases of software development, e.g. the design phase
(see for instance [6]). As aresult, there is a mismatch be-
tween the concepts used for early requirements specifica
tions (such as godl, actor . .. ) and the constructs of formal
specification languages such as Z [11], SCR [10], etc.
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Our amisto provideaframework for the effective use of
formal methodsintheearly requirements phase. Theframe-
work alowsfor theforma and mechanized anaysisof early
requirements specifications expressed in aforma modeling
language. In thispaper, we present some resultsthat consti-
tute afirst step towards this goal. We achieve these results
by extending and formalizing an existing early requirements
modeling language, and by building on state-of-the-art for-
mal verification techniques.

In order to alow for formal analysis, we extend the i*
modeling language[13] into aformal specification language
called Formal Tropos. The language offers al the primi-
tive concepts of i* (such as actors, goal's, and dependencies
among actors), but supplements them with a rich tempora
specification language inspired by KAOS [8].

In order to support formal analysis within the Formal
Tropos framework, we extend an existing formal verifica
tion technique, model checking [9]. To accomplish this, we
defineanintermediatelanguagethat serves asalink between
Formal Tropos and model checking. Tropos specifications
can be mapped into the intermediate language, which is
amenable to model checking analysis. Asaresult, early re-
quirements specifications can be checked for contradictions
(consistency checking), and properties that are supposed to
hold can be verified on the specification (property vaida
tion). Moreover, it is possible to use model checking to ac-
tually animate Tropos specifications.

Our prototypeimplementation of the above ideas comes
intheform of atool which trand atesautomatically early re-
quirementswrittenin Troposinto theintermediatelanguage.
In addition, the tool extends NuSMV [5], a state-of-the-art
symbolic model checker, to do analysis on theintermediate
language, including consistency checking, property valida
tion, and animation. We have experimented with the pro-
posed framework and the supporting tool, using a smple
case study. In spite of its simplicity, the case study demon-
strates the benefits of formal analysis in revealing incom-
pleteness/inconsistencies errors that are by no meanstrivia
to discover in an informal setting.

Formal Troposispart of awider-scope framework, caled
Tropos|[4], which proposesthe application of concepts from
the early requirements phase to thewhol e software devel op-
ment process, including late requirements, architectural and



detailed design, and implementation.

Structureof thepaper. In Section2we present thei* mod-
eling language and introduce the case study wewill work on
in the rest of the paper. Section 3 presents the Formal Tro-
poslanguageand explainsitsoriginal aspects with respect to
an i* specification. Section 4 elaborates the different kinds
of forma anaysisthat the engineer can perform within the
proposed framework, while Section 5 describes the techni-
cal aspects of the verification process and thetool. Findly,
Section 6 presents some concluding remarks and discusses
future research directions.

2. Thei* Modeing Language

Thei* modeling language has been specifically designed
for the description of early requirements. It assumes that
during this phase it is necessary to model socia settings
which involve actors who depend on each other for goals
to be achieved, tasks to be performed, and resources to be
furnished. The language provides graphical notationsto de-
scribe the requirements of the system. The SD diagram, for
instance, is used to represent a central concept of i*: the
strategic dependencies of the actors. Dependencies express
intentional relationshipsthat exist among actors in order to
fulfill some strategic objectives. A dependency describesan
“agreement” between two actors, the depender and the de-
pendee. The type of the dependency describes the nature
of the agreement. Goal dependencies are used to represent
delegation of responsibility for fulfillingagoal; softgoal de-
pendenciesaresimilar to goa dependencies, but their fulfill-
ment cannot be defined precisdly (for instance, it is a mat-
ter of persond fedling, or the fulfillment can occur only to a
given extent); task dependencies represent situationswhere
the dependee is required to perform a given activity, while
resource dependenciesrequire the dependeeto provideare-
source to the depender.

The details on i* are presented in [13]; we will briefly
review it by using the Insurance Company case study, ini-
tially introduced in [14]. The actors of the case study
are the customers and the insurance company, Cust oner
and | nsuranceCo. The main goa of the customer is
to be reimbursed for damages in case of an accident (goa
Bel nsur ed inwhat follows). As the customer isnot able
tofulfill thisgoal by herself, thegoal isrefinedintoagoa de-
pendency Cover Danages, fromthe customer totheinsur-
ance company. Conversely, theinsurance company depends
on its customers to have a continued business, by fulfilling
softgoal dependencies such as At t ract Cust oners. In
order to achieve the previousgoals, it isnecessary toinclude
additiond actors, such as BodyShop and Appr ai ser,
and additiona dependencies. For instance, the Cust oner
depends on the Body Shop to have her car repaired (de-
pendency Repai r Car) and the insurance company de-
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Figure 1. SD diagram of the case study.

pendsonthe Appr ai ser to estimate the reasonability and
amount of the damages (Appr ai seDanage).

Figurel presentsani* SD diagramfor the case study. We
will use a subset of this case study as the running example
for therest of the paper. In particular, we will focus on the
Cover Danages and Repai r Car dependencies. Thefor-
mal specification of thissubset isgiven in Figure 2.

3. The Formal Tropos L anguage

A Formal Tropos specification describes the relevant ob-
jects of the modeled domains and their relationships. The
description of each object is structured in two layers. The
outer layer is similar to a class declaration, since it defines
the structure of the instances together with their attributes.
The inner layer expresses constraints on the lifetime of the
object, given in afirst-order linear-timetempora logic.

A class can be of type actor, dependency, or entity. The
notion of entity is not included in i*. Entities are used to
represent non-intentional e ements that exist inthe environ-
ment or organizational setting, but are not directly relevant
to an actor’s strategic goals. In our example (see Figure 2)
we havethe entitiesC ai mand Car .

The attributes of a Formal Tropos class denote relation-
shipsamong the different objectsbeing modeled. For exam-
ple, each claim generated by a customer refers to a specific
car, represented by attributecar of entity G ai m(see Fig-
ure2). Thefacet constant of thisattributestatesthat, oncea
car isassociated to aclaim, therel ationship must be kept for-
ever. Formal Tropos defines other attributefacets, likemul-
tivalued and optional, which do not appear in our example.

Asini*, actors in Formal Tropos can have goals that
describe their strategic interests.  This is the case of
goa Bel nsur ed of actor Cust orrer . Also, the inten-
tional relationships between actors are represented as de-
pendencies (see, e.g., dependencies Cover Danmages and
Repai r Car in the example). The type of a dependency
(goal, softgoal, task, resource), aswell asitsdepender and



Entity Claim
Attribute constant car: Car
Entity Car
Attribute runsOK: boolean
Actor InsuranceCo
Actor BodyShop
Actor Customer
Goal Belnsured
Mode maintain
Fulfillment definition Ycov : Cover Damages
(cov.depender = sel f — O Ful filled(cov))
Dependency CoverDamages
Type goal
Mode achieve
Depender Customer
Dependee InsuranceCo
Attribute constant cl: Claim
Creation
condition =¢l.car.runsOK
trigger JustCreated(cl)
Dependency RepairCar
Type goal
Mode achieve
Depender Customer
Dependee BodyShop
Attribute constant ¢l : Claim
Creation
condition —¢l.car.runsOK
Fulfillment
condition for depender cl.car.runsOK

Figure 2. The Formal Tropos specification.

dependee are included as specia attributes in the depen-
dency declaration.

Goals and dependencies can be fulfilled in different
modes. For example, the modality of Repair Car is
achieve, which means that an instance of the dependency
is satisfied if the car is eventually repaired at least once.
Dependency Cover Danage is dso an achieve depen-
dency, since it is satisfied as soon as the insurance com-
pany reimburses the damages. Goa Bel nsur ed of agent
Cust omer , instead, isof maintain modality: the customer
will stay insured forever, not just once. There are other
modalities, such as achieve& maintain, which is a combi-
nation of the previous two modes (it requiresthe fulfillment
conditionsto be achieved a some point and then satisfied in
a continuing way); and avoid, which means that the fulfill-
ment condition should be prevented.

The inner layer of a Formal Tropos class declaration de-
scribes constraints on the possible evol ution of theinstances
of that class. In the case of a dependency declaration we
have three types of constraints. Creation assertions im-

pose congtraints at the time of creation of a new instance
of the dependency; fulfillment assertions define conditions
for the satisfaction of the dependency; and invariants rep-
resent conditions that should be true during the whole life
of the dependency. We also distinguish formulas that ex-
press sufficient conditions (facet trigger), necessary condi-
tions (facet condition), and necessary-and-sufficient condi-
tions (facet definition) for the event.

In our example, dependency Cover Damages hasacre-
ation condition (formula—cl.car.runsO K in Figure 2) that
states that the car should not be working at the time the goal
is created; itscreation trigger represents the fact that, when-
ever acustomer fillsaclaim ¢l (formula.JustCreated(cl)),
then a dependency for covering the repairs arises from the
customer to itsinsurance company. According to the speci-
ficationin Figure 2, thegoal of repairingacar can only arise
if the car is not working. Similarly, a necessary condition
for the fulfillment of the dependency is that the car should
be running OK. This is a condition that the customer im-
poses (the body-shop would be happy to declare a car re-
paired even if it does not run); in Formal Tropos, we rep-
resent this fact with the facet for depender.

Not only dependencies, but aso entities and actors of a
Tropos specification may have creation conditions and in-
variants;, however, they cannot have fulfillment conditions.
Actor goals do have fulfillment conditions, but do not have
creation conditions (they are assumed to be there with their
owning actor) or invariants (the actor goals do not have at-
tributes).

Congtraintson thelifetime of the classinstances(i.e., the
inner layer of a Formal Tropos specification) are given in
afirst-order linear-time temporal logic. In the formulas we
have the usua first-order logic quantifies V and 3, that can
range over dl theinstancesof agiven class. AsFormal Tro-
pos alows for the dynamic creation of new instances of a
given entity, therange of aquantifier dependsonthe statein
which the quantifier is evaluated. So, in the fulfillment def-
inition for goal Bel nsur ed of Figure 2, quantifier Veouv :
CoverDamages . .. bindsvariablecov torangeover all the
instances of class Cover Danages that exist inthe system.
Thelogic formulasthat appear inside agiven class declara
tion of the Tropos specification may refer to the attributes
of the class viatheir names. Also, each instance of the class
may express propertiesabout itself using keyword sel f (see
the fulfillment definition of goa Bel nsur ed in Figure 2).
Three specia predicates can appear in the tempora logic
formulas: predicate JustCreated(el) holdsin astate if -
ement e/ exists in this state but not in the previous one.
Predicate Ful filled(el) holdsif el has been fulfilled. Fi-
naly, predicate Just Ful filled(el) holdsif Fulfilled(el)
holds in this state, but not in the previous one. Predicates
Fulfilled and Just Ful filled are defined only for goas
and dependencies.

Using suitabletemporal operators, thelogic makesit pos-



sibleto express propertiesthat are not limited to the current
state of the system, but also toitspast and future history. For
instance, formulaClf (dlwaysin thefuture f) expressesthe
fact that formula f should hold in the current state and in
all the future states of the evolution of the system. Formula
4 / (sometimes in the past), holdsif f istruein the current
state or if it was truein some past state of the system. The
classical tempora operators used in the Formal Tropos for-
mulas are o (next state), ¢ (previous state), ¢ (eventudly in
the future), ¢ (sometimesin the past), O (alwaysin the fu-
ture) and B (always in the past). Other useful operators are
(OV4#) (once, in the past or in the future) and (CAM) (a-
waysin the past and in the future).

Goal and dependency modalities often hide the usage of
tempora operators. Thisis done on purpose. Reducing the
number of temporal operatorsintheformulasresultsin more
intuitive and readable specifications. Modalities provide an
easy-to-understand subset of the language of tempord log-
ics. When the modalities are not enough to capture al the
temporal aspects of acondition, the tempora operators may
appear explicitly in the formulas. This is the case for goal
Bel nsur ed of actor Cust oner in the example in Fig-
ure 2: its fulfillment condition requires that, whenever a
Cover Danages dependency exists for the customer, then
it will eventualy be fulfilled (formula { Ful filled(cov));
since the goa isamaintain goal, this property hasto hold
in a continuous way for the goal to befulfilled.

The conditionsin our example arerequired tohold for all
models of the specification. In general, we distinguish two
sets of formulasin the specification: thosethat are enforced
on the system and thosethat express desired behaviors. The
formulas of the former set express facts on the behavior of
the system that we assume to hold. The formulasin the lat-
ter set express expectations (denoted by the facet assertion)
on the behaviors of the system. In the next section, we will
show how we check whether these assertions are satisfied by
the specification.

Besides the class declarations, a Forma Tropos specifi-
cation is completed by system-level formulas that describe
properties of the system as awhole. We distinguish among
threekindsof system formulas. First, they may beinvariants
that are required to holdin all states of the system (keyword
System invariant). Second, they may be desired properties
of all the executions of the system (keyword System asser-
tion). Finaly, they may express desired properties that are
expected to hold on some possible behaviors of the system
(keyword System possibility); they describe scenarios that
are expected to be compatible with the requirements. In the
next section wewill see an example of thelatter kind of sys-
tem level formulas.

4. Formal Analysis

Formal anaysis techniques are usualy applied during
late phases of devel opment, and are used to validatethe im-
plementation of a system against its requirements. In the
(early) requirements phase, however, the aim must be dif-
ferent, since, infact, weare till gathering the requirements!
Nevertheless, forma analysistechniques can assist the ana-
lyst in the requirements elicitation, by allowing her to iden-
tify errorsand limitationsof the specification that are not ev-
ident in an informal setting.

We developed atool that, starting from the Tropos spec-
ification, builds an automaton that represents al the possi-
ble executions of the system that satisfy the requirements
enforced in the specification (see Section 5). Once the au-
tomaton is built, our tool verifies the expected behaviors of
the system, expressed viaassertion and possibility formu-
las. Whenever a verification fails, a counterexample isre-
ported, that is, a scenario where the expected property fail-
ureisshown to the users.

Property validation. The designer can represent expected
behaviors of the system viaassertion propertiesin the For-
mal Tropos specification. The assertions come from differ-
ent sources. First, they may represent expectations of the
stakeholder (“if al the requirements are met by the system,
then | expect that this situation never happens’). Second,
they may be formulas included by the engineer in order to
check whether she is correctly modeling the intended be-
havior of the system. For instance, if there are two ways
to specify arequirement that seem equiva ent, one might be
enforced, and the other checked. If thetwo requirementsare
not equivalent, the behavior that distinguishesthem exhibits
Situations that were not taken into account by the require-
mentsengineer. Findly, itisoftenuseful toadd simpleprop-
ertiesto catch errors dueto theinherent difficulty of writing
formal specifications.

Thefirst kind of assertions, the expected outcomes from
the stakeholder, is the most important. We are interested in
gathering assertionswhich, although not likely to be verified
immediately, are expected to yield interesting counterexam-
ples. Such counterexamples should enabl e the stakehol ders
to dicit their requirements with greater accuracy, and drive
the refinement of the formal specification.

In our example, an important goa of the stakeholders
isto avoid “unreasonable’ claims, though it is difficult for
them to precisdly define the concept. Nevertheless, they
are able to present particular scenarios that involve such
claims. For instance, they do not want to cover claims for
which there is no proof (e.g., an invoice) that the car was
repaired. We stete this as an assertion: if an instance of
Cover Damages for a given claim is fulfilled and the car
runs OK, then the stakehol ders expect that arepair has been
done for that claim.
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Figure 3. An example of a counterexample.

Dependency CoverDamages
Fulfillment
assertion condition for dependee
cl.car.runsOK — Jrep : RepairCar
(rep.cl = cl A Fulfilled(rep))

When checking the assertion, the tool exhibits the coun-
terexample shown in Figure 3. The key point is that, when
thecar stopsrunning OK at timet,, the customer makes two
clamscl 1 andcl 2, for thesame car car 1, but with dif-
ferent insurance companies. At timets, an instance covl
of Cover Danages isaso created and associated to ¢l 1.
Then, at timets, aninstancer epl of Repai r Car iscre-
ated and associated totheother claim, cl 2. Later, at timet.,
repl isfulfilled and the car starts running OK; eventually,
at timets, covl isfulfilled. The problem hereisthat dam-
agesare covered for acertain claim, whiletherepair isdone
for another claim but for the same car. This situation might
occur inred lifeif a customer has policiesat two insurance
companies. When her car breaks, she can repair it a one
body-shop and attempt to get damage costs from both insur-
ance companies, clearly aninadmissiblesituation, at least in
the domain we consider. A preliminary fix for this problem
isto requiretherepairsfor acertain claim to be done before
theclaimisfulfilled. Thiscan be achieved by adding thefol-
lowing fulfillment condition to the specification of Figure 2.

Dependency CoverDamages
Fulfillment condition for dependee
drep : RepairCar(rep.cl = cl A Ful filled(rep))

Consistency check. Theam of the consistency check isto
verify that the specification allowsfor a set of behaviorsthat
are possiblein the system.

As a simple form of consistency check, we can ask
whether there is any execution of the system that respects
all the constraints enforced by the requirements; if thisis
not the case, the specification isinconsistent. Inconsisten-
cies among the requirements occur quite often, in particular
if the requirementsare obtained from different stakeholders,
so it isimportant to identify and eventually solve them. As
inconsistencies can be caused by the theinterplay of differ-
ent objectsin the specification, it isoften hard to detect them
without the support of automatic analysis techniques.

Besides checking that the specifications are consistent, it
isimportant to check that they allow for some execution his-
tories (or scenarios) that the stakehol der expects to happen.
Itisoftenthe case that a specification is consistent, but some
reasonable scenarios are ruled out as vaid executions be-
cause they are in conflict with some requirements.

For instance, suppose we would liketo check that after a
car breaks, it may never run OK again, but the damages are
neverthel ess covered by theinsurance company. Thisissen-
sible, sinceacar might be so damaged that it isimpossibleto
repair. Thischeck is specified as the following system-level
formula

System possibility 3cov : Cover Damages
JustCreated(cov) A QFul filled(cov)

A O=cov.cl.car.runsOK

This formula asserts that it is possible that some
Cover Damages cov is eventudly fulfilled even if
the associated car never runs OK again after dependency
cov has been raised. The consistency check for theresulting
specification fails. Indeed, there is a global inconsistency
between the system formula and the fulfillment condition
for Cover Danages introduced previoudly in this Section.
The problem s that the fulfillment condition does not alow
the insurance company to cover the damages if arepair has
not been performed. The consistency check succeeds if we
fix that fulfillment condition and allow the damages to be
covered by the insurance company in the case the car never
runs OK again.

Dependency CoverDamages
Fulfillment condition for dependee
Arep : RepairCar(rep.cl = cl A Ful filled(rep)))
VO=el.car.runsOK

Animation of the specification. Our tool allows the user
to interactively explore the automaton generated from the
early reguirements specification. Since the automaton ex-
hibits only those sequences of states that respect al there-
quirements, the user gets immediate feedback on their ef-
fects.

While very simple, the animation of requirements is
extremely useful to identify missing trivia requirements,
which are often assumed for granted in an informal setting.
For instance, if we had forgotten to add the creation condi-
tion —cl.car.runsOk in the specification of Repai r Car ,
by exploring the system we would have obtained histories
where the goal of repairing a car arises when the car isrun-
ning OK. Moreover, the possibility of showing possibleevo-
Iutions of the system is often a very effective way of com-
muni cating with the stakehol ders.



5. From Formal Troposto Model Checking

In thissection we describe the technicalities of theformal
analysis performed on a Tropos specification.

The first step carried out by the tool consists of trans-
forming agiven Formal Tropos specification into an equiva
lent specification in asuitable Intermediate Language. Dur-
ing this trandation, the strategic flavor of the Forma Tro-
pos specification islost and the focus shifts to the dynamic
aspects of the system. * This Intermediate L anguage speci-
fication isthen passed to the NuSMV model verifier, which
synthesizes an automaton for the specification and performs
the actual analysis.

5.1. The Intermediate L anguage

Westart by givingin Figure4 an excerpt of thelntermedi-
ate Language specification for our running example. It con-
sistsof four parts. “class’ declarations, tempord “specifica
tions’, “assertion” formulasand “possibility” formulas.

Theclassdeclarations(keyword CL ASS) definethedata
types of the system; they correspond to the entities, ac-
tors, and dependencies (the outer layer) of the Forma Tro-
pos specification. We remark that some new attributes, not
present in the Formal Tropos specification, are added to the
classes during the trandation. Thisisthe case, for instance,
of attribute ful fill edBel nsured of Cust oner, or
of attributef ul fi | | ed of dependency Cover Danmages.
The fact that goa's and dependencies have been fulfilled is
primitivein Formal Tropos(F'ul filled predicate), butisen-
coded as a state variablein the Intermediate Language; this
isan exampl e of the change of focusthat occurs when trans-
lating afrom Formal Tropos specification into the Interme-
diate Language.

The temporal specifications (keyword SPECIFICA-
TION) restrict the valid tempora behaviors of the system.
Some of these formulas model the semantics of a Formal
Tropos specification. For instance, thefirst two SPECIFI-
CATION formulasin Figure 4 expressthefact that attribute
car of a Claim and atribute claim of a RepairCar are
constant. Other formulas correspond to the temporal con-
straints that constitute the inner layer of the Formal Tropos
specification. For instance, the third and fourth SPECIFI-
CATION formulasin Figure 4 correspond, respectively, to
the creation and fulfillment condition of goal dependency
Repai r Car ; and thelast SPECIFICATION formulacor-
respondsto thefulfillment condition of goa Bel nsur ed.
Asthese formulas are no longer syntactically anchored to a
particular event of the specification, (e.g., the fulfillment of

1We remark that the translation from the Tropos specification to the In-
termediate Language specification is performed in a completely automatic
way by thetool: we do not require the user to “operationalize” the specifi-
cation in order to verify it.

CLASSClaim
car: Car
CLASS Car
runsOK: boolean
CLASS Customer
fulfilledBelnsured: boolean
CLASS InsuranceCo
CLASS BodyShop
CLASS CoverDamages
depender: Customer
dependee: InsuranceCo
cl: Claim
fulfilled: boolean
CLASS RepairCar
depender: Customer
dependee: BodyShop
cl: Claim
fulfilled: boolean
SPECIFICATIONVYc! : Clatm Vecar : Car
(cl.car = car — o(cl.car = car))
SPECIFICATIONVrc : RepairCar Vel : Claim
(re.cl = cl = o(re.cl = dl))
SPECIFICATIONVYrc : RepairCar
(JustCreated(rc) — —re.cl.car.runsOK)
SPECIFICATIONVrc : RepairCar
(re.ful filled — #re.cl.car.runsOK)
SPECIFICATION Ycust : Customer
(cust. ful filledBelnsured <
(OAR)(Ycouv : Cover Damages
cov.depender = cust — Qcov. ful filled))
ASSERTION Vcov : Cover Damages
(cov. ful filled —
#(cov.cl.car.runsOK — Frep : RepairCar
(rep.cl = cov.cl Arep. ful filled)))
POSSIBILITY dcov : Cover Damages
(JustCreated(cov) A Qcov. ful filled
A O=cov.cl.car.runsOK)

Figure 4. Example of Intermediate Language.

thedependency), they need a“context” to definetheir mean-
ing. This context isdefined in the trand ation rules that map
a Tropos specification into an Intermediate Language spec-
ification. For instance, the fulfillment condition ¢ of a de-
pendency Dep with an achieve modality is mapped into a
SPECIFICATION of theform

Vd : Dep (d.fulfilled — 4¢)

mesaning that “if an achieve dependency isfulfilled, then its
fulfillment conditionwastrue at least onceinthepast”. This
isthe rulethat has been applied to the fulfillment condition
of Repai r Car (compare Figures?2 and 4).

Aswe can seeinthistrand ation, we add auxiliary tempo-
ra operatorstothelL specification. These operatorsdepend
not only on the kind of formulabut also on the mode of the
dependency. For instance, in the case of amaintain depen-



dency, thetrandation of the fulfillment condition ¢ isgiven
by rule

Vd : Dep (d.ful filled — (OAR)¢)

meaning that “if a maintain dependency isfulfilled, then its
conditions should hold during the whole life of the depen-
dency”. In our specification, asimilar ruleisapplied to goa
Bel nsur ed of the Cust oner .

The assertion and possibility formulas (keywords AS-
SERTION and POSSIBILITY) specify expected proper-
ties of the behavior of the system. The former correspond
to the assertion formulas of Formal Tropos, and they are
trandated in asimilar way astemporal specification formu-
las. The latter correspond to the System possibility formu-
las of the Formal Tropos specification.

We remark that some of the details of the Formal Tropos
specification arelost in the corresponding I ntermediate Lan-
guage specification; thisisthe case, for instance, of the dis-
tinction among the different dependency types. Whilethese
aspects are important in the overall description and specifi-
cation of the system, they do not play any rolein the formal
analysis, and so they are discarded when moving to the In-
termediate Language.

The Intermediate Language plays a fundamental role in
covering the gap between early requirements and forma
methods. First of all, it is much smdler than Forma Tro-
pos, and therefore alowsfor amuch simpler formal seman-
tics.? Second, it is rather independent from the particul ari-
ties of Formal Tropos. By moving to different domains, it
will probably become necessary to “tune’ Forma Tropos,
for instance by adding new modalitiesfor the dependencies.
Theformal approach described in this paper can be a so ap-
pliedtothesedialectsof Tropos, at thecost of defininganew
trand ation. Furthermore, the | ntermediate Language can be
applied to requirements languages that are based on differ-
ent concepts from the ones of Tropos, such as KAOS [§].

Finally, the Intermediate Language, while more suitable
to forma anaysis, is still independent from the particular
analysis techniques. For the moment, we have applied only
model checking techniques; however, we planto apply tech-
niques based on LTL-satisfiability or theorem proving.

5.2. Model Checking

Starting from an Intermediate Language representation
of the Tropos specification, the actua verification is per-
formed on top of the NuSMV verification framework.
NuSMV [5] is a state-of-the-art model checker based on a

2For lack of space, we do not present the formal semantics of the In-
termediate Languagein the details. In brief, the semanticsis defined using
standard techniquesfor interpreting LTL specifications on domainswith an
agebraic structure of states.

symbolic representation of the domain to be verified. Sym-
bolic techniques [3] have been developed to face the well-
known state explosion problem. When performing model
checking, it is necessary to explorethe states of the system;
if the system is huge, as it isusualy the case in red appli-
cations, it is impossible to explore it explicitly. Symbolic
techniques alow for representing sets of states via boolean
propositions and for casting the basic operations of model
checking agorithms as logical operations on these formu-
las. Inthisway, it is not necessary to enumerate the states
explicitly.

Althoughthey make it possibleto anayze large systems,
the techniques provided by NuSMV till requirethe system
to befinite. In our case, the consequence is that we have to
put an upper bound in the number of instances of each class
of entities, actors or dependencies that can be created in the
system. We do this by declaring these upper boundsin the
Intermediate Language specification.

The choice of the number of instancesis a critical point.
In our experimentswe have seen that many subtle bugsonly
appear when morethat oneinstance of the classesisalowed
inthe system. Consider for instance the scenario, discussed
in Section 4, of the customer that presents claimsto two dif-
ferent insurance companies for the same repair; clearly, this
scenario requires usto alow for more than one instance of
Cl ai mand | nsur anceCo in the system. On the other
hand, our experiments a so show that bugs usually become
evident with just a small number of instances. In particu-
lar, in the Insurance Company case study all the mistakes
became evident with just two instances of each class.

Given the Intermediate Language specification and the
boundsin the number of instances, the first step performed
by the tool is to synthesize the (symbolic) automaton for
the specification. The states of this automaton respect the
CLASS structure of the Intermediate Language specifica-
tion, and its executions are al and only the executions that
respect the SPECIFICATION formulas.

NuSMV provides a synthesis algorithm for LTL speci-
fications, that is based on a tableau construction technique
[7]. In order to deal with the particularities of the Interme-
diate Language, we had to extend the algorithm in some di-
rections. For instance, the tableau construction described in
[7], and the LTL logics usualy exploited in model check-
ing, only consider future tempora operators. In the early
requirements specification, instead, it is also convenient to
reason about the past. Therefore, we have extended the
tableau construction to ded with the past fragment of LTL.
Also, dthoughitispossibleto defineclassesin NuSMV that
can be instantiated, it does not allow the crestion of new in-
stances at run-time. Thisis because NuUSMV was initialy
designed to verify hardware systems, where there are no dy-
namic creations of components. To deal with instance cre-
ation, we have adapted the tableau construction and other
routines of NUSMV. Internally, the fact that an instance has



been created is modeled by a specia bit of its status; the
guantifiers are interpreted so that their range is restricted to
theinstances of a class that exist in the current state.
Animmediate outcome of the synthesisprocessisthein-
consistency check. Infact, if the specificationsareinconsis-
tent, the synthesis process failsand no automatonisbuilt. If
the specifications are consistent, instead, the forma analy-
sis can proceed. The animation of the specificationsis per-
formed using the simulator provided by NuSMV, which al-
lows both for an interactive exploration of the automaton,
and for arandom execution of a certain number of stepsin
the system. Consistency check and property validation are
performed using the standard approach of model checking,
by verifyingthe ASSERTION and POSSIBILITY formu-
las against the executions of the automaton. Whenever one
of these checks fails, the tool reportsthe failureto the user.
In the case of an invalid ASSERTION, NuSMV provides
a counterexample, which corresponds to a scenario that vi-
olates the assertion. A counterexample is provided aso in
the case of aninvalid POSSIBILITY. In thiscase, by defi-
nition, al the executions of themodel do not satisfy the pos-
sihility formula; nevertheless, the returned counterexample
should hel p the user to understand and identify the problem.

6. Conclusions

We have described aformal modeling language for early
requirements and a prototype tool which supports the anal-
ysis of specifications. The novelty of our approach liesin
extending mode checking techniques— which rely mostly
on design-inspired specification languages — so that they
can be used with an expressive modeling language suitable
for early requirementsmodeling and analysis. The contribu-
tion of our preliminary resultsisto show that formal analysis
techniques are useful in devel opment phases that were once
considered to be informal by nature, asis the case of early
requirements engineering.

Our proposa complements analysi stechniques proposed
in the KAOS project, which rely mostly on theorem prov-
ing to support requirements analysis[8, 12]. In[12], for in-
stance, the emphasis is put on obtaining a formal specifica-
tionof thegod conflictsthat occur in the requirements spec-
ification; our techniques, instead, provide concrete scenar-
ios of these conflicts. While model checking techniques d-
low for an automatic generation of the scenarios, the formal
analysistechniques of [12] may be very expensive.

There are several directions for further research on this
project. First, we are working on the application of the
methodology to more complex case studies, which should
give an exact evaluation of the scalability of our method-
ology to real applications. Second, we are working in ex-
tending the formd verification tool. So far, we have mostly
adapted verification techniques of NuSMV to the new do-
main; however, there is much work to be done on formal

methods techniques specifically tailored for requirements
engineering. For instance, we should enhance the animator
of thespecifications. Atthemoment, NuSMV representsthe
evolution of the system inatabular format similar tothe one
of Figure 3; we are investigating different waysto make the
traces produced by the animator more readabl e to the engi-
neer. Third, we will investigate on the possibility of apply-
ing some of the techniques of the KAOS framework to For-
mal Tropos. Finally, apromisingdirection of futureresearch
is the support for other forms of analysis, such as checking
thevalidity of goal decompositionsor incorporating require-
ments traceability techniques.
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